Anisotropic plasticity characterization of 6000- and 700 various strain rates

International Journal of Impact Engineering 135, 103390

DOI: 10.1016/j.ijimpeng.2019.103390

Citation Report

#	Article	IF	CITATIONS
1	Meso-mechanics and damage evolution of AA5182-O aluminum alloy sheet Based on the GTN model. Engineering Fracture Mechanics, 2020, 235, 107162.	2.0	11
2	Characterization of yield stress surface and strain-rate potential for tubular materials using multiaxial tube expansion test method. International Journal of Plasticity, 2020, 133, 102838.	4.1	20
3	Advances in anisotropy of plastic behaviour and formability of sheet metals. International Journal of Material Forming, 2020, 13, 749-787.	0.9	50
4	A prediction model of milling force for aviation 7050 aluminum alloy based on improved RBF neural network. International Journal of Advanced Manufacturing Technology, 2020, 110, 2493-2501.	1.5	7
5	Investigation of the Springback Behaviour of High-strength Aluminium Alloys Based on Cross Profile Deep Drawing Tests. Procedia Manufacturing, 2020, 47, 1223-1229.	1.9	9
6	Accounting for Shear Anisotropy and Material Frame Rotation on the Constitutive Characterization of Automotive Alloys using Simple Shear Tests. Mechanics of Materials, 2020, 148, 103419.	1.7	28
7	A modified Johnson-Cook model of 6061-T6 Aluminium profile. Australian Journal of Mechanical Engineering, 2022, 20, 516-526.	1.5	7
8	Direct measurement of shot velocity and numerical analysis of residual stress from pneumatic shot peening. Surfaces and Interfaces, 2021, 22, 100827.	1.5	15
9	Effects of cold temperatures, strain rates and anisotropy on the mechanical behavior and fracture morphology of an Al–Zn–Mg–Cu alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 806, 140691.	2.6	14
10	Inertia-based identification of elastic anisotropic properties for materials undergoing dynamic loadings using the virtual fields method and heterogeneous impact tests. Materials and Design, 2021, 203, 109594.	3.3	4
11	Friction characterization and application to warm forming of a high strength 7000-series aluminum sheet. Journal of Materials Processing Technology, 2021, 293, 117066.	3.1	18
12	The Correlation of Texture and the Formation of the Adiabatic Shear Band in 7XXX Aluminum Alloy during Dynamic Loading. Discrete Dynamics in Nature and Society, 2021, 2021, 1-8.	0.5	2
13	Simple shear behavior of 2024-T351 aluminum alloy over a wide range of strain rates and temperatures: Experiments and constitutive modeling. International Journal of Impact Engineering, 2021, 156, 103972.	2.4	13
14	Effect of plastic anisotropy and Portevin-Le Chatelier bands on hole-expansion in AA7075 sheets in -T6 and -W tempers. Journal of Materials Processing Technology, 2021, 296, 117211.	3.1	20
15	Characterization on the thermal anisotropic behaviors of high strength AA7075 alloy with the Yld2004-18p yield function. Journal of Alloys and Compounds, 2021, 877, 159955.	2.8	7
16	Dynamic Tensile Deformation of High Strength Aluminum Alloys Processed Following Novel Thermomechanical Treatment Strategies. Advanced Engineering Materials, 2020, 22, 2000193.	1.6	10
17	Parameter Estimation and Application of Anisotropic Yield Criteria for Cylindrical Aluminum Extrusions: Theoretical Developments and StereoDIC Measurements. Applied Sciences (Switzerland), 2021, 11, 9701.	1.3	1
18	Lengthscale effects in optical strain measurement for fracture characterization in simple shear. International Journal of Fracture, 2021, 232, 153-180.	1.1	7

#	Article	IF	CITATIONS
19	Damage Evolution of 6005A Aluminum Alloy Sheet Based on Gurson-Tvagaard-Needleman Model: Experiment and Finite Element Simulation. Journal of Materials Engineering and Performance, 2022, 31, 3902-3917.	1.2	1
20	Effect of saturation peening on shape and residual stress distribution after peen forming. International Journal of Advanced Manufacturing Technology, 2022, 119, 4659-4675.	1.5	8
21	Study on anisotropic behavior of 7075 Al alloy after extrusion. Materials Research Express, 2022, 9, 026508.	0.8	6
22	Characterization and prediction of fracture in 6000- and 7000-series aluminum alloy sheet under various stress states. Thin-Walled Structures, 2022, 173, 108958.	2.7	11
23	Heteroscedastic sparse Gaussian process regression-based stochastic material model for plastic structural analysis. Scientific Reports, 2022, 12, 3017.	1.6	7
24	An investigation into the characterization of the hardening response of sheet metals using tensile and shear tests with surface strain measurement. Forces in Mechanics, 2022, 7, 100090.	1.3	14
25	Solution to problems caused by associated non-quadratic yield functions with respect to the ductile fracture. International Journal of Plasticity, 2022, 154, 103301.	4.1	5
26	Connection of difficult-to-form sheets by clinching process: A review. Materials Science and Technology, 2022, 38, 622-644.	0.8	3
27	Sheared Edge Formability Characterization of High Strength Aluminum Alloys at Room and Elevated Temperatures using Hole Expansion Tests. IOP Conference Series: Materials Science and Engineering, 2022, 1238, 012040.	0.3	0
28	A VFM-based identification method for the dynamic anisotropic plasticity of sheet metals. International Journal of Mechanical Sciences, 2022, 230, 107550.	3.6	2
29	Prediction and control of bending quality of double-layered gap tube. International Journal of Mechanical Sciences, 2022, 228, 107474.	3.6	8
30	Double-machine-learning-based data-driven stochastic flow stress model for aluminium alloys at elevated temperatures. Materials Today Communications, 2022, 33, 104506.	0.9	2
31	Characterization of Anisotropic Fracture Behavior of 7075-T6 Aluminum Alloy Sheet under Various Stress States. Journal of Materials Engineering and Performance, 0, , .	1.2	6
32	Energy absorption and dynamic behaviour of 6xxx series aluminium alloys: A review. International Journal of Impact Engineering, 2023, 172, 104397.	2.4	12
33	Damage evolution and failure mechanism of three-dimensional braided composite subjected to varied high strain-rate loadings. Textile Reseach Journal, 2023, 93, 1783-1802.	1.1	4
34	Determination of Johnson-Cook damage model for 7xxx laminated aluminum alloy and simulation application. Materials Today Communications, 2023, 34, 105224.	0.9	2
35	A novel technique to measure the local mechanical properties of third generation advanced high strength steel resistance spot welds. Forces in Mechanics, 2022, 9, 100150.	1.3	4
36	Analytically described polynomial yield criterion by considering both plane strain and pure shear states. International Journal of Plasticity, 2023, 162, 103514.	4.1	14