A sensitivity enhanced fluorescence method for the det foodstuffs using carbon nanoparticles as sensing agents

Food Chemistry 308, 125590

DOI: 10.1016/j.foodchem.2019.125590

Citation Report

#	Article	IF	CITATIONS
1	An ultra-sensitive analytical platform based on bluish green emitting carbon quantum dots for the detection of curcumin in dietary foods. Journal of Food Composition and Analysis, 2020, 94, 103639.	1.9	15
2	lonic liquid-aided hydrothermal treatment of lignocellulose for the synergistic outputs of carbon dots and enhanced enzymatic hydrolysis. Bioresource Technology, 2020, 305, 123043.	4.8	29
3	Dual-Response Detection of Oxidized Glutathione, Ascorbic Acid, and Cell Imaging Based on pH/Redox Dual-Sensitive Fluorescent Carbon Dots. ACS Omega, 2020, 5, 4482-4489.	1.6	26
4	Highly Emissive Metalâ€Organic Frameworks for Sensitive and Selective Detection of Nitrofuran and Quinolone Antibiotics. Chemistry - an Asian Journal, 2021, 16, 1773-1779.	1.7	34
5	Azithromycin detection in cells and tablets by N,S co-doped carbon quantum dots. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 252, 119506.	2.0	29
6	Small nanoparticles bring big prospect: The synthesis, modification, photoluminescence and sensing applications of carbon dots. Chinese Chemical Letters, 2022, 33, 1659-1672.	4.8	22
7	A facile and sensitive fluorescence assay for glucose via hydrogen peroxide based on MOF-Fe catalytic oxidation of TMB. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 265, 120376.	2.0	20
8	Green Synthesized Nanoparticles as a Promising Strategy for Controlling Microbial Biofilm. Environmental and Microbial Biotechnology, 2021, , 1-28.	0.4	O
9	Series of highly stable Cd(<scp>ii</scp>)-based MOFs as sensitive and selective sensors for detection of nitrofuran antibiotic. CrystEngComm, 2021, 23, 8043-8052.	1.3	60
10	A sensitive spectrofluorimetry method based on S and N dual-doped carbon nanoparticles for ultra-trace detection of ferrocyanide ion in food salt samples. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2021, 38, 195-207.	1.1	1
11	On-off Fluorescent Switching of Excitation-independent Near-ultraviolet Emission Carbon Nanobelts for Ultrasensitive Detection Nimesulide in Pharmaceutical Tablet. Analytical Sciences, 2020, 36, 1379-1383.	0.8	2
12	Green carbon quantum dots from sustainable lignocellulosic biomass and its application in the detection of Fe3+. Cellulose, 2022, 29, 367-378.	2.4	18
13	Fluorescence sensing by carbon nanoparticles. Nanoscale Advances, 2022, 4, 1926-1948.	2.2	14
14	A novel ratiometric fluorescent probe for detection of l-glutamic acid based on dual-emission carbon dots. Talanta, 2022, 245, 123416.	2.9	17
15	Exploring competitive inhibition of a family 10 xylanase derived from Hu sheep rumen microbiota by Oryza sativa xylanase inhibitor protein: In vitro and in silico perspectives. Enzyme and Microbial Technology, 2022, 160, 110082.	1.6	5
16	Biomass-Based Carbon Dots for Fe ³⁺ and Adenosine Triphosphate Detection in Mitochondria. ACS Applied Nano Materials, 2023, 6, 76-85.	2.4	4
17	Comparison of the effects of AgNPs on the morphological and mechanical characteristics of cancerous cells. Journal of Microscopy, 2023, 289, 187-197.	0.8	1
18	Progress in Fluorescence Biosensing and Food Safety towards Point-of-Detection (PoD) System. Biosensors, 2023, 13, 249.	2.3	6

Article IF Citations