Recent Advances in 1D Stretchable Electrodes and Devi Electronics: Materials, Fabrications, and Applications

Advanced Materials 32, e1902532 DOI: 10.1002/adma.201902532

Citation Report

#	Article	IF	CITATIONS
1	Breathable and Flexible Polymer Membranes with Mechanoresponsive Electric Resistance. Advanced Functional Materials, 2020, 30, 1907555.	7.8	44
2	Organic Bioelectronics: Using Highly Conjugated Polymers to Interface with Biomolecules, Cells, and Tissues in the Human Body. Advanced Materials Technologies, 2020, 5, 2000384.	3.0	38
3	Large-Area, Wearable, Self-Powered Pressure–Temperature Sensor Based on 3D Thermoelectric Spacer Fabric. ACS Sensors, 2020, 5, 2545-2554.	4.0	106
4	Multiresponsive MXene (Ti ₃ C ₂ T <i>_x</i>)-Decorated Textiles for Wearable Thermal Management and Human Motion Monitoring. ACS Applied Materials & Interfaces, 2020, 12, 34226-34234.	4.0	106
5	Scalable thermoelectric fibers for multifunctional textile-electronics. Nature Communications, 2020, 11, 6006.	5.8	122
6	Smart materials for smart healthcare– moving from sensors and actuators to self-sustained nanoenergy nanosystems. Smart Materials in Medicine, 2020, 1, 92-124.	3.7	85
7	Recent Advances in Flexible Fieldâ€Effect Transistors toward Wearable Sensors. Advanced Intelligent Systems, 2020, 2, 2000113.	3.3	46
8	Robust Deposition of Silver Nanoparticles on Paper Assisted by Polydopamine for Green and Flexible Electrodes. ACS Sustainable Chemistry and Engineering, 2020, 8, 12842-12851.	3.2	37
9	Graphene-based encapsulation of liquid metal particles. Nanoscale, 2020, 12, 23995-24005.	2.8	37
10	Synthesis of a Three-Dimensional Interconnected Oxygen-, Boron-, Nitrogen-, and Phosphorus Tetratomic-Doped Porous Carbon Network as Electrode Material for the Construction of a Superior Flexible Supercapacitor. ACS Applied Materials & Interfaces, 2020, 12, 46170-46180.	4.0	53
11	Electrostatic Twisting of Core–Shell Nanofibers for Strain Sensing Applications. ACS Applied Polymer Materials, 2020, 2, 4472-4480.	2.0	6
12	Ultrasensitive and Stretchable Conductive Fibers Using Percolated Pd Nanoparticle Networks for Multisensing Wearable Electronics: Crack-Based Strain and H ₂ Sensors. ACS Applied Materials & Interfaces, 2020, 12, 45243-45253.	4.0	16
13	Performance Evaluation of Knitted and Stitched Textile Strain Sensors. Sensors, 2020, 20, 7236.	2.1	25
14	Parallel-Stacked Flexible Organic Light-Emitting Diodes for Wearable Photodynamic Therapeutics and Color-Tunable Optoelectronics. ACS Nano, 2020, 14, 15688-15699.	7.3	62
15	Microstructure Design of Carbonaceous Fibers: A Promising Strategy toward Highâ€Performance Weaveable/Wearable Supercapacitors. Small, 2020, 16, e2000653.	5.2	48
16	Enabling Deformable and Stretchable Batteries. Advanced Energy Materials, 2020, 10, 2001424.	10.2	136
17	An All-Textile Non-muscular Biomimetic Actuator Based on Electrohydrodynamic Swelling. Frontiers in Bioengineering and Biotechnology, 2020, 8, 408.	2.0	8
18	Smart Textiles for Electricity Generation. Chemical Reviews, 2020, 120, 3668-3720.	23.0	644

#	Article	IF	CITATIONS
19	Recent progress on hollow array architectures and their applications in electrochemical energy storage. Nanoscale Horizons, 2020, 5, 1188-1199.	4.1	48
20	An "inverted load―strategy to fabricate interface-optimized flexible electrodes with superior electrochemical performance and ultrastability. Journal of Materials Chemistry C, 2020, 8, 11128-11137.	2.7	0
21	On the Interaction between 1D Materials and Living Cells. Journal of Functional Biomaterials, 2020, 11, 40.	1.8	6
22	Advances in Sweat Wearables: Sample Extraction, Real-Time Biosensing, and Flexible Platforms. ACS Applied Materials & Interfaces, 2020, 12, 34337-34361.	4.0	72
23	Multifunctional Conductive Hydrogel/Thermochromic Elastomer Hybrid Fibers with a Core–Shell Segmental Configuration for Wearable Strain and Temperature Sensors. ACS Applied Materials & Interfaces, 2020, 12, 7565-7574.	4.0	114
24	Perovskite-Carbon Nanotube Light-Emitting Fibers. Nano Letters, 2020, 20, 3178-3184.	4.5	18
25	Wearable, ultrathin and transparent bacterial celluloses/MXene film with Janus structure and excellent mechanical property for electromagnetic interference shielding. Chemical Engineering Journal, 2021, 403, 126438.	6.6	145
26	Functional Fibers and Fabrics for Soft Robotics, Wearables, and Human–Robot Interface. Advanced Materials, 2021, 33, e2002640.	11.1	278
27	Stretchable, Washable, and Ultrathin Triboelectric Nanogenerators as Skinâ€Like Highly Sensitive Selfâ€Powered Haptic Sensors. Advanced Functional Materials, 2021, 31, .	7.8	155
28	Flexible and freestanding MoS2/rGO/CNT hybrid fibers for high-capacity all-solid supercapacitors. Carbon, 2021, 172, 132-137.	5.4	81
29	Thermal management of wearable and implantable electronic healthcare devices: Perspective and measurement approach. International Journal of Energy Research, 2021, 45, 1517-1534.	2.2	14
30	Soft Electronics Based on Stretchable and Conductive Nanocomposites for Biomedical Applications. Advanced Healthcare Materials, 2021, 10, e2001397.	3.9	39
31	Fractional structured molybdenum oxide catalyst as counter electrodes of all-solid-state fiber dye-sensitized solar cells. Journal of Colloid and Interface Science, 2021, 584, 520-527.	5.0	16
32	Stretchable Electronics Based on PDMS Substrates. Advanced Materials, 2021, 33, e2003155.	11.1	319
33	Recent Progress in Flexible Microstructural Pressure Sensors toward Human–Machine Interaction and Healthcare Applications. Small Methods, 2021, 5, e2001041.	4.6	101
34	Recent advances on the fabrication methods of nanocomposite yarn-based strain sensor. Nanotechnology Reviews, 2021, 10, 221-236.	2.6	22
35	Anisotropic conductive networks for multidimensional sensing. Materials Horizons, 2021, 8, 2615-2653.	6.4	30
36	Interface Design for Stretchable Electronic Devices. Advanced Science, 2021, 8, 2004170.	5.6	44

#	Article	IF	CITATIONS
37	Ultrarobust, tough and highly stretchable self-healing materials based on cartilage-inspired noncovalent assembly nanostructure. Nature Communications, 2021, 12, 1291.	5.8	254
38	Highly stretchable large area woven, knitted and robust braided textile based interconnection for stretchable electronics. Scientific Reports, 2021, 11, 4038.	1.6	7
39	High-Performance Laminated Fabric with Enhanced Photothermal Conversion and Joule Heating Effect for Personal Thermal Management. ACS Applied Materials & Interfaces, 2021, 13, 8851-8862.	4.0	100
40	High performance carbon nanotube/polymer composite fibers and water-driven actuators. Composites Science and Technology, 2021, 206, 108676.	3.8	25
41	Ultrahigh Sensitive Wearable Pressure Sensors Based on Reduced Graphene Oxide/Polypyrrole Foam for Sign Language Translation. Advanced Materials Technologies, 2021, 6, 2001188.	3.0	15
42	Bioinspired tough gel sheath for robust and versatile surface functionalization. Science Advances, 2021, 7, .	4.7	44
43	Hybridâ€Filler Stretchable Conductive Composites: From Fabrication to Application. Small Science, 2021, 1, 2000080.	5.8	80
44	Application-Driven Carbon Nanotube Functional Materials. ACS Nano, 2021, 15, 7946-7974.	7.3	102
45	Scale production of conductive cotton yarns by sizing process and its conductive mechanism. SN Applied Sciences, 2021, 3, 1.	1.5	2
46	Buckled Fiber Conductors with Resistance Stability under Strain. Advanced Fiber Materials, 2021, 3, 149-159.	7.9	23
47	A Novel Oriented CNT fiber/PDMS Elastic Conductive Composite with Reversible Two-Stage Conductivity. Nano, 2021, 16, 2150062.	0.5	0
48	Light-weight strain sensor based on carbon nanotube/epoxy composite yarn. Journal of Materials Science, 2021, 56, 13156-13164.	1.7	7
49	The Advance and Perspective on Electrode Materials for Metal–Ion Hybrid Capacitors. Advanced Energy and Sustainability Research, 2021, 2, 2100022.	2.8	13
50	Recent Advances in Multidimensional (1D, 2D, and 3D) Composite Sensors Derived from MXene: Synthesis, Structure, Application, and Perspective. Small Methods, 2021, 5, e2100409.	4.6	67
51	Two-dimensional black phosphorus: Properties, fabrication and application for flexible supercapacitors. Chemical Engineering Journal, 2021, 412, 128744.	6.6	37
52	Anomalous thermally expanded polymer networks for flexible perceptual devices. Matter, 2021, 4, 1832-1862.	5.0	10
53	Electronic fibers and textiles: Recent progress and perspective. IScience, 2021, 24, 102716.	1.9	60
54	Multi-functional and water-resistant conductive silver nanoparticle-decorated cotton textiles with excellent joule heating performances and human motion monitoring. Cellulose, 2021, 28, 7483-7495.	2.4	20

#	Article	IF	CITATIONS
55	Stencil printed liquid metal based micron-sized interconnects for stretchable electronics. Materials Today: Proceedings, 2021, , .	0.9	2
56	Microstructure Engineering of Stretchable Resistive Strain Sensors with Discrimination Capabilities in Transverse and Longitudinal Directions. Macromolecular Materials and Engineering, 2021, 306, 2100283.	1.7	8
57	A strain gradient strategy to quantifying longitudinal compression behavior in slender fibrous assembly structures. Textile Reseach Journal, 2022, 92, 346-355.	1.1	1
58	Macroscopic weavable fibers of carbon nanotubes with giant thermoelectric power factor. Nature Communications, 2021, 12, 4931.	5.8	84
59	Ultrathin Stretchable Triboelectric Nanogenerators Improved by Postcharging Electrode Material. ACS Applied Materials & Interfaces, 2021, 13, 42966-42976.	4.0	50
60	Scalable production of high-performing woven lithium-ion fibre batteries. Nature, 2021, 597, 57-63.	13.7	270
61	Liquid Metal Hybrid Composites with High-Sensitivity and Large Dynamic Range Enabled by Micro- and Macrostructure Engineering. ACS Applied Polymer Materials, 2021, 3, 5302-5315.	2.0	22
62	Developing a Multifunctional Silk Fabric with Dual-Driven Heating and Rapid Photothermal Antibacterial Abilities Using High-Yield MXene Dispersions. ACS Applied Materials & Interfaces, 2021, 13, 43414-43425.	4.0	45
63	Self-Powered Smart Arm Training Band Sensor Based on Extremely Stretchable Hydrogel Conductors. ACS Applied Materials & Interfaces, 2021, 13, 44868-44877.	4.0	49
64	Advances in lateral copper electroplated metallic tracks—production and applications by using hydrogen evolution-assisted electroplating. MRS Advances, 2021, 6, 654-658.	0.5	2
65	An integrated wearable strain, temperature and humidity sensor for multifunctional monitoring. Composites Part A: Applied Science and Manufacturing, 2021, 149, 106504.	3.8	21
66	Catalytic flower-shaped α-MoO3 lamellar structure for solid-state fiber-dye-sensitized solar cells. Journal of Power Sources, 2021, 512, 230496.	4.0	6
67	A multifunctional hollow TPU fiber filled with liquid metal exhibiting fast electrothermal deformation and recovery. Soft Matter, 2021, 17, 10016-10024.	1.2	26
68	Material and configuration design strategies towards flexible and wearable power supply devices: a review. Journal of Materials Chemistry A, 2021, 9, 8950-8965.	5.2	43
69	Rationally designed hierarchical C/TiO ₂ /Ti multilayer core–sheath wires for high-performance energy storage devices. Nanoscale, 2021, 13, 8658-8664.	2.8	4
70	Ultra-highly stretchable and anisotropic SEBS/F127 fiber films equipped with an adaptive deformable carbon nanotube layer for dual-mode strain sensing. Journal of Materials Chemistry A, 2021, 9, 18294-18305.	5.2	28
71	Energy harvesting textiles: using wearable luminescent solar concentrators to improve the efficiency of fiber solar cells. Journal of Materials Chemistry A, 2021, 9, 25974-25981.	5.2	10
72	In situ polymerization of pyrrole on CNT/cotton multifunctional composite yarn for supercapacitors. Ionics, 2021, 27, 279-288.	1.2	17

	Сп	CITATION REPORT	
#	Article	IF	Citations
73	Permeable Conductors for Wearable and Onâ€Skin Electronics. Small Structures, 2022, 3, 2100135.	6.9	46
74	Graphene-Based Multifunctional Textile for Sensing and Actuating. ACS Nano, 2021, 15, 17738-17747	7. 7.3	57
75	Textiles in soft robots: Current progress and future trends. Biosensors and Bioelectronics, 2022, 196, 113690.	5.3	50
76	Thermoelectric Fibers. Progress in Optical Science and Photonics, 2020, , 175-197.	0.3	0
77	In-situ construction of high-modulus nanospheres on elastomer fibers for linearity-tunable strain sensing. Chemical Engineering Journal, 2022, 431, 133488.	6.6	11
78	Flexible one-dimensional Zn-based electrochemical energy storage devices: recent progress and future perspectives. Journal of Materials Chemistry A, 2021, 9, 26573-26602.	5.2	7
79	Twisted fiber batteries for wearable electronic devices. Smart Materials in Medicine, 2022, 3, 1-3.	3.7	5
80	Washable, Low-Temperature Cured Joints for Textile-Based Electronics. Electronics (Switzerland), 2021, 10, 2749.	1.8	4
81	Theoretical Study of the Stress Transfer Effect on the Output of a Composite Piezoelectric Nanogenerator. , 2021, 3, 1793-1798.		3
82	Emerging washable textronics for imminent e-waste mitigation: strategies, reliability, and perspectives. Journal of Materials Chemistry A, 2022, 10, 2697-2735.	5.2	14
83	Stress Dissipation Encoded Silk Fibroin Electrode for the Athleteâ€Beneficial Silk Bioelectronics. Advanced Science, 2022, 9, e2105420.	5.6	11
84	Fabrication of stretchable PEDOT:PSS coated cotton fabric via LBL electrostatic self-assembly and its UV protection and sensing properties. Cellulose, 2022, 29, 2699-2709.	2.4	11
85	Advances in Highâ€Performance Autonomous Energy and Selfâ€Powered Sensing Textiles with Novel Fabric Structures. Advanced Materials, 2022, 34, e2109355.	3D 11.1	118
86	A review of silver nanowire-based composites for flexible electronic applications. Flexible and Printed Electronics, 2022, 7, 014009.	1.5	42
87	Review of Fiber- or Yarn-Based Wearable Resistive Strain Sensors: Structural Design, Fabrication Technologies and Applications. Textiles, 2022, 2, 81-111.	1.8	12
88	Electrogenic Bacteria Promise New Opportunities for Powering, Sensing, and Synthesizing. Small, 2022, 18, e2107902.	5.2	25
89	Advances in Biosensing and Environmental Monitoring Based on Electrospun Nanofibers. Advanced Fiber Materials, 2022, 4, 404-435.	7.9	73
90	Advances in design and manufacture of stretchable electronics. Japanese Journal of Applied Physics, 2022, 61, SE0804.	0.8	11

#	Article	IF	CITATIONS
91	Roadmap for flexible solid-state aqueous batteries: From materials engineering and architectures design to mechanical characterizations. Materials Science and Engineering Reports, 2022, 148, 100671.	14.8	30
92	A Review of Cyclic Olefin Copolymer Applications in Microfluidics and Microdevices. Macromolecular Materials and Engineering, 2022, 307, .	1.7	32
93	Smart Electronic Textiles for Wearable Sensing and Display. Biosensors, 2022, 12, 222.	2.3	26
94	High-linearity, ultralow-detection-limit, and rapid-response strain sensing yarn for data gloves. Journal of Industrial Textiles, 2022, 51, 4554S-4570S.	1.1	5
95	A Catalytic and Interfacing PEDOT:PSS/CuPc Polymerized on Cloth Fiber to Electroâ€Metalize Stretchable Copper Conductive Pattern. Advanced Materials Interfaces, 0, , 2101462.	1.9	2
96	Fabrication of Silver Electrical Circuits on Textile Substrates by Reactive Inkjet Printing. IEEE Sensors Journal, 2022, 22, 11056-11064.	2.4	7
97	Interfacial Electrochemical Polymerization for Spinning Liquid Metals into Core–Shell Wires. ACS Applied Materials & Interfaces, 2022, 14, 18690-18696.	4.0	7
98	Objective evaluation of wearable thermoelectric generator: From platform building to performance verification. Review of Scientific Instruments, 2022, 93, 045105.	0.6	3
99	Polypyrrole Nanofoam/Carbon Nanotube Multilayered Electrode for Flexible Electrochemical Capacitors. ACS Applied Energy Materials, 2022, 5, 4059-4069.	2.5	10
100	State-of-the-art review of advanced electrospun nanofiber yarn-based textiles for biomedical applications. Applied Materials Today, 2022, 27, 101473.	2.3	66
101	Intrinsically flexible displays: key materials and devices. National Science Review, 2022, 9, .	4.6	40
102	Effects of Fe Staple-Fiber Spun-Yarns and Correlation Models on Textile Pressure Sensors. Sensors, 2022, 22, 3152.	2.1	1
103	Electret-Doped Polarized Nanofiber Triboelectric Nanogenerator with Enhanced Electrical Output Performance Based on a Micro-Waveform Structure. ACS Applied Electronic Materials, 2022, 4, 2473-2480.	2.0	3
104	Highly Stretchable, Self-Adhesive, Direction-Aware Wireless Hydrogel-MMT Strain Sensors via a Gradient Structure of Intersecting Networks. ACS Applied Electronic Materials, 2022, 4, 2396-2404.	2.0	4
105	1D-2D nanohybrid-based textile strain sensor to boost multiscale deformative motion sensing performance. Nano Research, 2022, 15, 8398-8409.	5.8	18
106	Surface microstructural engineering of continuous fibers as one-dimensional multifunctional fiber materials for wearable electronic applications. Chemical Engineering Journal, 2022, 446, 137192.	6.6	21
107	Revealing intrinsic spin coupling in transition metal-doped graphene. Physical Chemistry Chemical Physics, 2022, 24, 16300-16309.	1.3	7
108	An intrinsically stretchable and bendable electrochromic device. Nanotechnology, 2022, 33, 405706.	1.3	7

		CITATION R	EPORT	
#	Article		IF	CITATIONS
109	Integrating quasi-one-dimensional superconductors on flexible substrates. AIP Advance	es, 2022, 12, .	0.6	1
110	Advances in the Robustness of Wearable Electronic Textiles: Strategies, Stability, Wash Perspective. Nanomaterials, 2022, 12, 2039.	nability and	1.9	18
111	Stretchable, conductive poly(acrylamide― <scp> <i>co</i> </scp> â€maleic acid)/triet <scp>NaCl</scp> doubleâ€crosslinked organohydrogel with excellent antifreezing and properties. Journal of Applied Polymer Science, 0, , .	hylene glycol/ sensing	1.3	3
113	Electronic Fibers/Textiles for Healthâ€Monitoring: Fabrication and Application. Advance Technologies, 2023, 8, .	ed Materials	3.0	25
114	Recent Advances and Future Perspectives of Fiber-Shaped Batteries. Energy & Fue 9866-9881.	ls, 2022, 36,	2.5	4
115	Large-area Flexible Organic Solar Cells: Printing Technologies and Modular Design. Chir of Polymer Science (English Edition), 2022, 40, 1522-1566.	nese Journal	2.0	27
116	Textile-Triboelectric nanogenerators (T-TENGs) for wearable energy harvesting devices. Engineering Journal, 2023, 451, 138741.	Chemical	6.6	40
117	Controllable Fabrication of Flexible and Foldable Carbon Nanofiber Films. Advanced Ma Interfaces, 2022, 9, .	terials	1.9	2
118	The stretchable carbon black-based strain fiber with a remarkable linearity in a wide ser International Journal of Smart and Nano Materials, 2022, 13, 529-541.	ising range.	2.0	2
119	3D printable conductive polymer hydrogels with ultra-high conductivity and superior st for free-standing elastic all-gel supercapacitors. Chemical Engineering Journal, 2022, 45	rretchability 50, 138311.	6.6	37
120	Co ₉ S ₈ nanoparticles embedded in egg white-derived porous efficient bifunctional cathode catalyst for Zn–air batteries. Sustainable Energy and F 5111-5120.	carbon as an uels, 2022, 6,	2.5	2
121	Ultraâ€Thin Flexible Encapsulating Materials for Soft Bioâ€Integrated Electronics. Adva 2022, 9, .	nced Science,	5.6	37
122	A New Strategy for Fabricating Well-Distributed Polyaniline/Graphene Composite Fiber Flexible High-Performance Supercapacitors. Nanomaterials, 2022, 12, 3297.	s toward	1.9	6
123	A Photohealable Polyurethane with Superior Robustness and Healing Ratio. Macromole 8741-8748.	cules, 2022, 55,	2.2	10
124	MXene-Reinforced Liquid Metal/Polymer Fibers via Interface Engineering for Wearable Multifunctional Textiles. ACS Nano, 2022, 16, 14490-14502.		7.3	66
125	A â€~Moore's law' for fibers enables intelligent fabrics. National Science Review, 20	23, 10, .	4.6	19
126	Flexible and Conductive Polymer Threads for Efficient Fiber-Shaped Supercapacitors <i: Copolymerization. ACS Omega, 2022, 7, 31628-31637.</i: 	›via Vapor	1.6	4
127	Bioinspired Strategies for Stretchable Conductors. Chemical Research in Chinese Unive 39, 30-41.	ersities, 2023,	1.3	3

		CITATION REPORT		
#	Article		IF	Citations
128	Advanced Fiber Materials for Wearable Electronics. Advanced Fiber Materials, 2023, 5,	12-35.	7.9	81
129	Weft-Knitted Spacer Fabric for Highly Stretchable–Compressible Strain Sensor, Supe Joule Heater. Nanomaterials, 2022, 12, 3684.	rcapacitor, and	1.9	5
130	A highly stretchable and conductive continuous composite filament with buckled polyp for stretchy electronic textiles. Applied Surface Science, 2023, 610, 155515.	yyrrole coating	3.1	8
131	Conductive fibers for biomedical applications. Bioactive Materials, 2023, 22, 343-364.		8.6	14
132	Bioinspired ultra-stretchable dual-carbon conductive functional polymer fiber materials monitoring, energy harvesting and self-powered sensing. Chemical Engineering Journal 140384.		6.6	11
133	Stretchable Composite Conductive Fibers for Wearables. Advanced Materials Technolo	gies, 2023, 8, .	3.0	6
134	Cotton textile inspires MoS ₂ @reduced graphene oxide anodes towards h capability or long-cycle stability sodium/lithium-ion batteries. Inorganic Chemistry From 267-279.	igh-rate tiers, 2022, 10,	3.0	4
135	Highly stretchable and robust textile-based capacitive mechanical sensor for human mo detection. Applied Surface Science, 2023, 613, 155961.	btion	3.1	12
136	Three woven structures of reduced graphene oxide conductive silk fabrics prepared by methods for electrical setting and sensing. Journal of Industrial Textiles, 2022, 52, 152	two different 808372211444.	1.1	0
137	Wearable Perovskiteâ€Based Shadow Recognition Sensor for Ambient and Nonobtrusi Human–Computer Interaction. Advanced Intelligent Systems, 2023, 5, .	ve	3.3	3
139	Flexible Point-of-Care Electrodes for Ultrasensitive Detection of Bladder Tumor-Relevan Urine. Analytical Chemistry, 2023, 95, 1847-1855.	t miRNA in	3.2	7
140	Emerging Selfâ€Powered Autonomous Sensing Triboelectric Fibers toward Future Wea Human omputer Interaction Devices. , 2023, 2, .	rable		6
141	Chemical covalent connection of carbon nanotubes for related structural manufacturir molecular dynamics study. Applied Surface Science, 2023, 615, 156296.	ıg: A	3.1	0
142	Rational Design of Electrode Materials for Advanced Supercapacitors: From Lab Resear Commercialization. Advanced Functional Materials, 2023, 33, .	ch to	7.8	66
143	Recent progress in stretchable organic field-effect transistors: key materials, fabrication applications. New Journal of Chemistry, 2023, 47, 5086-5109.	ו and	1.4	3
144	Recent Advances and Challenges Toward Application of Fibers and Textiles in Integrate Energy Storage Devices. Nano-Micro Letters, 2023, 15, .	d Photovoltaic	14.4	34
145	Highly conductive fiber with design of dual conductive Ag/CB layers for ultrasensitive a strain sensing. SmartMat, 2023, 4, .	nd wideâ€ r ange	6.4	7
146	Anodeâ€Patterned Monorailâ€Structure Fiberâ€Based Organic Lightâ€Emitting Diodes High Performance for Truly Wearable Displays. Advanced Optical Materials, 2023, 11, .		3.6	1

#	Article	IF	Citations
147	High-Fidelity sEMG Signals Recorded by an on-Skin Electrode Based on AgNWs for Hand Gesture Classification Using Machine Learning. ACS Applied Materials & Interfaces, 2023, 15, 19374-19383.	4.0	3
148	Highly integrated, breathable, metalized phase change fibrous membranes based on hierarchical coaxial fiber structure for multimodal personal thermal management. Chemical Engineering Journal, 2023, 465, 142835.	6.6	12
149	Liquid Metal Enabled Elastic Conductive Fibers for Selfâ€Powered Wearable Sensors. Advanced Materials Technologies, 2023, 8, .	3.0	0
150	Wireless smart gloves with ultra-stable and all-recyclable liquid metal-based sensing fibers for hand gesture recognition. Chemical Engineering Journal, 2023, 460, 141777.	6.6	2
151	Soft Fiber Electronics Based on Semiconducting Polymer. Chemical Reviews, 2023, 123, 4693-4763.	23.0	40
152	Green Flexible Electronics: Natural Materials, Fabrication, and Applications. Advanced Materials, 2023, 35, .	11.1	40
153	Highly Stretchable Electronic‣kin Sensors with Porous Microstructure for Efficient Multimodal Sensing with Wearable Comfort. Advanced Materials Interfaces, 2023, 10, .	1.9	6
154	Biphasic liquid metal mixtures in stretchable and flexible applications. Sensors & Diagnostics, 2023, 2, 290-306.	1.9	2
155	Stretchable and conductive fibers fabricated by a continuous method for wearable devices. Cell Reports Physical Science, 2023, 4, 101300.	2.8	8
156	Wearable sweat biosensors on textiles for health monitoring. Journal of Semiconductors, 2023, 44, 021601.	2.0	10
157	Advances in Wearable Strain Sensors Based on Electrospun Fibers. Advanced Functional Materials, 2023, 33, .	7.8	31
158	A Controlled Biodegradable Triboelectric Nanogenerator Based on PEGDA/Laponite Hydrogels. ACS Applied Materials & Interfaces, 2023, 15, 12787-12796.	4.0	17
159	Agar/graphene conductive organogel with self-healable, adhesive, and wearable properties. Journal of Materials Science, 2023, 58, 5287-5297.	1.7	2
160	Stabilizing High-Frequency Magnetic Properties of Stretchable CoFeB Films by Ribbon-Patterned Periodic Wrinkles. ACS Applied Materials & Interfaces, 0, , .	4.0	3
161	Vacuum-assisted multi-layer bacterial cellulose/polydopamine-modified Mxene film for joule heating, photo thermal, and humidity sensing. Cellulose, 2023, 30, 4373-4385.	2.4	4
162	Conductive Elastic Composite Electrode and Its Application in Electrocardiogram Monitoring Clothing. ACS Applied Electronic Materials, 2023, 5, 2026-2036.	2.0	2
163	An electrically stable and mechanically robust stretchable fiber conductor prepared by dip-coating silver nanowires on porous elastomer yarn. Materials Advances, 2023, 4, 1978-1988.	2.6	2
164	Strain-Insensitive Stretchable Fiber Conductors Based on Highly Conductive Buckled Shells for Wearable Electronics. ACS Applied Materials & Interfaces, 2023, 15, 18281-18289.	4.0	5

#	Article	IF	CITATIONS
165	Photothermal regulated ion transport in nanofluidics: From fundamental principles to practical applications. Nano Research, 2023, 16, 10061-10071.	5.8	5
179	Smart fibers and textiles for emerging clothe-based wearable electronics: materials, fabrications and applications. Journal of Materials Chemistry A, 2023, 11, 17336-17372.	5.2	11
188	Impact of polymer chemistry on the application of polyurethane/ureas in organic thin film transistors. , 2023, 1, 190-203.		1
216	Ion transport in nanofluidics under external fields. Chemical Society Reviews, 2024, 53, 2972-3001.	18.7	Ο
218	Nickel-Rich Cathode Yarn for Wearable Lithium-Ion Batteries. Advanced Fiber Materials, 2024, 6, 341-353.	7.9	0