HS-CNN: a CNN with hybrid convolution scale for EEG

Journal of Neural Engineering 17, 016025 DOI: 10.1088/1741-2552/ab405f

Citation Report

#	Article	IF	CITATIONS
1	Data augmentation for deep-learning-based electroencephalography. Journal of Neuroscience Methods, 2020, 346, 108885.	1.3	201
2	SessionNet: Feature Similarity-Based Weighted Ensemble Learning for Motor Imagery Classification. IEEE Access, 2020, 8, 134524-134535.	2.6	15
3	Classify Motor Imagery by a Novel CNN with Data Augmentation. , 2020, 2020, 192-195.		6
4	Data Augmentation for Motor Imagery Signal Classification Based on a Hybrid Neural Network. Sensors, 2020, 20, 4485.	2.1	61
5	A Novel Deep Learning Scheme for Motor Imagery EEG Decoding Based on Spatial Representation Fusion. IEEE Access, 2020, 8, 202100-202110.	2.6	13
6	Brainwave Classification Using Covariance-Based Data Augmentation. IEEE Access, 2020, 8, 211714-211722.	2.6	4
7	A Brute-Force CNN Model Selection for Accurate Classification of Sensorimotor Rhythms in BCIs. IEEE Access, 2020, 8, 101014-101023.	2.6	14
8	Cross-Dataset Variability Problem in EEG Decoding With Deep Learning. Frontiers in Human Neuroscience, 2020, 14, 103.	1.0	72
9	Deep learning for motor imagery EEG-based classification: A review. Biomedical Signal Processing and Control, 2021, 63, 102172.	3.5	178
10	Adaptive Spatiotemporal Graph Convolutional Networks for Motor Imagery Classification. IEEE Signal Processing Letters, 2021, 28, 219-223.	2.1	24
11	Global research on artificial intelligence-enhanced human electroencephalogram analysis. Neural Computing and Applications, 0, , 1.	3.2	11
12	Channel Drop Out: A Simple Way to Prevent CNN from Overfitting in Motor Imagery Based BCI. Communications in Computer and Information Science, 2021, , 443-452.	0.4	2
13	Early classification of motor tasks using dynamic functional connectivity graphs from EEG. Journal of Neural Engineering, 2021, 18, 016015.	1.8	21
14	Multiscale space-time-frequency feature-guided multitask learning CNN for motor imagery EEG classification. Journal of Neural Engineering, 2021, 18, 026003.	1.8	27
15	Improving the performance of multisubject motor imagery-based BCIs using twin cascaded softmax CNNs. Journal of Neural Engineering, 2021, 18, 036024.	1.8	17
16	EEG-inception: an accurate and robust end-to-end neural network for EEG-based motor imagery classification. Journal of Neural Engineering, 2021, 18, 046014.	1.8	72
17	A novel motor imagery EEG decoding method based on feature separation. Journal of Neural Engineering, 2021, 18, 036022.	1.8	13
18	Determination of Effective Signal Processing Stages for Brain Computer Interface on BCI Competition IV Data Set 2b: A Review Study. IETE Journal of Research, 2023, 69, 3144-3155.	1.8	11

#	Article	IF	CITATIONS
19	Review of brain encoding and decoding mechanisms for EEG-based brain–computer interface. Cognitive Neurodynamics, 2021, 15, 569-584.	2.3	41
20	Synthetic Biological Signals Machine-Generated by GPT-2 Improve the Classification of EEG and EMG Through Data Augmentation. IEEE Robotics and Automation Letters, 2021, 6, 3498-3504.	3.3	26
21	A novel decoding method for motor imagery tasks with 4D data representation and 3D convolutional neural networks. Journal of Neural Engineering, 2021, 18, 046029.	1.8	14
22	A Convolution Neural Network with Mixed-Size Kernels for Time-Frequency Characteristics of Motor Imagery. , 2021, , .		0
23	A Survey on Deep Learning-Based Short/Zero-Calibration Approaches for EEG-Based Brain–Computer Interfaces. Frontiers in Human Neuroscience, 2021, 15, 643386.	1.0	19
24	Optimization of preprocessing stage in EEG based BCI systems in terms of accuracy and timing cost. Biomedical Signal Processing and Control, 2021, 67, 102548.	3.5	26
25	A deep learning framework with multi-perspective fusion for interictal epileptiform discharges detection in scalp electroencephalogram. Journal of Neural Engineering, 2021, 18, 0460b3.	1.8	16
26	Spatial Pattern Evaluation of Rural Tourism via the Multifactor-Weighted Neural Network Model in the Big Data Era. Computational Intelligence and Neuroscience, 2021, 2021, 1-12.	1.1	5
27	Multi-class motor imagery EEG classification method with high accuracy and low individual differences based on hybrid neural network. Journal of Neural Engineering, 2021, 18, 0460f1.	1.8	19
28	Deep learning techniques for classification of electroencephalogram (EEG) motor imagery (MI) signals: a review. Neural Computing and Applications, 2023, 35, 14681-14722.	3.2	123
29	Two-branch 3D convolutional neural network for motor imagery EEG decoding. Journal of Neural Engineering, 2021, 18, 0460c7.	1.8	4
30	Attention-Based Parallel Multiscale Convolutional Neural Network for Visual Evoked Potentials EEG Classification. IEEE Journal of Biomedical and Health Informatics, 2021, 25, 2887-2894.	3.9	14
31	An end-to-end CNN with attentional mechanism applied to raw EEG in a BCI classification task. Journal of Neural Engineering, 2021, 18, 0460e3.	1.8	18
32	Research Status of Motor Imagery EEG Signal Based on Deep Learning. Smart Innovation, Systems and Technologies, 2021, , 11-17.	0.5	0
33	Low-Dose CT Denoising Using Octave Convolution with High and Low Frequency Bands. Lecture Notes in Computer Science, 2020, , 68-78.	1.0	3
34	Multi-Domain Convolutional Neural Networks for Lower-Limb Motor Imagery Using Dry vs. Wet Electrodes. Sensors, 2021, 21, 6672.	2.1	6
35	Truncation thresholds based empirical mode decomposition approach for classification performance of motor imagery BCI systems. Chaos, Solitons and Fractals, 2021, 152, 111450.	2.5	3
37	EEG-based mild depression recognition using multi-kernel convolutional and spatial-temporal Feature. , 2020, , .		5

#	Article	IF	CITATIONS
38	Improvement of Smoker Prediction System Based on Hyperspectral Image with Hybrid Deep Learning Model. , 2021, , .		1
39	NeuroGrasp: Real-Time EEG Classification of High-Level Motor Imagery Tasks Using a Dual-Stage Deep Learning Framework. IEEE Transactions on Cybernetics, 2022, 52, 13279-13292.	6.2	24
40	FB-CGANet: filter bank channel group attention network for multi-class motor imagery classification. Journal of Neural Engineering, 2022, 19, 016011.	1.8	11
41	A Multibranch of Convolutional Neural Network Models for Electroencephalogram-Based Motor Imagery Classification. Biosensors, 2022, 12, 22.	2.3	25
42	A multiscale siamese convolutional neural network with cross-channel fusion for motor imagery decoding. Journal of Neuroscience Methods, 2022, 367, 109426.	1.3	8
43	Few-Shot Relation Learning with Attention for EEG-based Motor Imagery Classification. , 2020, , .		18
44	EEG based Graph Network Analysis for Motor Imagery Task. , 2021, , .		1
45	Dynamic Hand Gesture Recognition via Electromyographic Signal Based on Convolutional Neural Network. , 2021, , .		5
46	Driver Drowsiness Detection: An Approach Based on Intelligent Brain–Computer Interfaces. IEEE Systems, Man, and Cybernetics Magazine, 2022, 8, 16-28.	1.2	10
48	Decoding motor imagery tasks using ESI and hybrid feature CNN. Journal of Neural Engineering, 2022, 19, 016022.	1.8	9
49	An efficient multi-scale CNN model with intrinsic feature integration for motor imagery EEG subject classification in brain-machine interfaces. Biomedical Signal Processing and Control, 2022, 74, 103496.	3.5	61
50	A comprehensive review of the movement imaginary brain-computer interface methods: Challenges and future directions. , 2022, , 23-74.		6
51	Efficient Brain Decoding Based on Adaptive EEG Channel Selection and Transformation. IEEE Transactions on Emerging Topics in Computational Intelligence, 2022, 6, 1314-1323.	3.4	5
52	Knowledge-driven feature component interpretable network for motor imagery classification. Journal of Neural Engineering, 2022, 19, 016032.	1.8	5
53	Motor Imagery Classification based on Multi-Kernel CNN with the amalgamated Cross Entropy Loss. , 2022, , .		3
55	Studies to Overcome Brain–Computer Interface Challenges. Applied Sciences (Switzerland), 2022, 12, 2598.	1.3	9
56	A Two-Branch CNN Fusing Temporal and Frequency Features for Motor Imagery EEG Decoding. Entropy, 2022, 24, 376.	1.1	10
57	Discriminative Frequencies and Temporal EEG Segmentation in the Motor Imagery Classification Approach. Applied Sciences (Switzerland), 2022, 12, 2736.	1.3	3

#	Article	IF	CITATIONS
58	Enhancing the decoding accuracy of EEG signals by the introduction of anchored-STFT and adversarial data augmentation method. Scientific Reports, 2022, 12, 4245.	1.6	12
59	A lightweight and accurate double-branch neural network for four-class motor imagery classification. Biomedical Signal Processing and Control, 2022, 75, 103582.	3.5	7
60	Data augmentation for cross-subject EEG features using Siamese neural network. Biomedical Signal Processing and Control, 2022, 75, 103614.	3.5	1
61	A Novel DCNN Based MI-EEG Classification Method Using Spatio-Frequency Information. , 2021, , .		2
62	Classification of Raw Spinal Cord Injury EEG Data Based on the Temporal-Spatial Inception Deep Convolutional Neural Network. , 2021, , .		2
63	Data Augmentation for Deep Neural Networks Model in EEG Classification Task: A Review. Frontiers in Human Neuroscience, 2021, 15, 765525.	1.0	30
64	A 1D CNN for high accuracy classification and transfer learning in motor imagery EEG-based brain-computer interface. Journal of Neural Engineering, 2021, 18, 066053.	1.8	55
65	A Multi-Branch Convolutional Neural Network with Squeeze-and-Excitation Attention Blocks for EEG-Based Motor Imagery Signals Classification. Diagnostics, 2022, 12, 995.	1.3	33
66	ASTERI: image-based representation of EEG signals for motor imagery classification. Research on Biomedical Engineering, 2022, 38, 661-681.	1.5	2
67	Wearable Supernumerary Robotic Limb System Using a Hybrid Control Approach Based on Motor Imagery and Object Detection. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2022, 30, 1298-1309.	2.7	15
68	Multi-Hierarchical Fusion to Capture the Latent Invariance for Calibration-Free Brain-Computer Interfaces. Frontiers in Neuroscience, 2022, 16, 824471.	1.4	0
69	EEG Signal Classification Based on Neural Network with Depthwise Convolution. Journal of Physics: Conference Series, 2022, 2219, 012056.	0.3	0
70	Multimodal Human-Exoskeleton Interface for Lower Limb Movement Prediction Through a Dense Co-Attention Symmetric Mechanism. Frontiers in Neuroscience, 2022, 16, 796290.	1.4	7
71	A novel multi-branch hybrid neural network for motor imagery EEG signal classification. Biomedical Signal Processing and Control, 2022, 77, 103718.	3.5	16
72	The quantitative application of channel importance in movement intention decoding. Biocybernetics and Biomedical Engineering, 2022, 42, 630-645.	3.3	4
73	Motor Imagery Tasks EEG Signals Classification Using ResNet with Multi-Time-Frequency Representation. , 2022, , .		5
74	Copula-based transformer in EEG to assess visual discomfort induced by stereoscopic 3D. Biomedical Signal Processing and Control, 2022, 77, 103803.	3.5	3
75	Study on classification algorithm of motor imagination EEC signal. , 2021, , .		1

#	Article	IF	CITATIONS
76	Epileptic Seizure Detection Using Continuous Wavelet Transform and Deep Neural Networks. Lecture Notes in Electrical Engineering, 2022, , 291-300.	0.3	2
77	Decoding motor imagery with a simplified distributed dipoles model at source level. Cognitive Neurodynamics, 2023, 17, 445-457.	2.3	2
78	Motor Imagery EEG Classification Based on Transfer Learning and Multi-Scale Convolution Network. Micromachines, 2022, 13, 927.	1.4	8
79	Use of deep learning techniques in EEG-based BCI applications. , 2022, , 173-189.		Ο
80	A Novel Multimodal Human-Exoskeleton Interface Based on EEG and sEMG Activity for Rehabilitation Training. , 2022, , .		1
81	SEEG-Net: An explainable and deep learning-based cross-subject pathological activity detection method for drug-resistant epilepsy. Computers in Biology and Medicine, 2022, 148, 105703.	3.9	7
82	Improving the performance of deep learning-based classification when a sample has various appearances. Journal of Experimental and Theoretical Artificial Intelligence, 2024, 36, 235-256.	1.8	1
83	CNN models for EEG motor imagery signal classification. Signal, Image and Video Processing, 2023, 17, 825-830.	1.7	7
84	TCACNet: Temporal and channel attention convolutional network for motor imagery classification of EEG-based BCI. Information Processing and Management, 2022, 59, 103001.	5.4	16
85	Electroencephalogram-Based Motor Imagery Signals Classification Using a Multi-Branch Convolutional Neural Network Model with Attention Blocks. Bioengineering, 2022, 9, 323.	1.6	11
86	Data augmentation strategies for EEG-based motor imagery decoding. Heliyon, 2022, 8, e10240.	1.4	16
87	Motor Imagery Classification Based on Plain Convolutional Neural Network and Linear Interpolation. Journal of Shanghai Jiaotong University (Science), 0, , .	0.5	Ο
88	A parallel multi-scale time-frequency block convolutional neural network based on channel attention module for motor imagery classification. Biomedical Signal Processing and Control, 2023, 79, 104066.	3.5	9
89	Multi-Channel EEG Emotion Recognition Based on Parallel Transformer and 3D-Convolutional Neural Network. Mathematics, 2022, 10, 3131.	1.1	12
90	Adaptive transfer learning-based multiscale feature fused deep convolutional neural network for EEG MI multiclassification in brain–computer interface. Engineering Applications of Artificial Intelligence, 2022, 116, 105347.	4.3	65
91	Task-Oriented Self-supervised Learning forÂAnomaly Detection inÂElectroencephalography. Lecture Notes in Computer Science, 2022, , 193-203.	1.0	2
92	FBMSNet: A Filter-Bank Multi-Scale Convolutional Neural Network for EEG-Based Motor Imagery Decoding. IEEE Transactions on Biomedical Engineering, 2023, 70, 436-445.	2.5	14
93	Subject-Independent Classification of Motor Imagery Tasks in EEG Using Multisubject Ensemble CNN. IEEE Access, 2022, 10, 81355-81363.	2.6	7

#	Article	IF	CITATIONS
94	Effect of Balancing Data Using Synthetic Data on the Performance of Machine Learning Classifiers for Intrusion Detection in Computer Networks. IEEE Access, 2022, 10, 96731-96747.	2.6	15
95	A novel hybrid CNN-Transformer model for EEG Motor Imagery classification. , 2022, , .		8
96	Novel hybrid visual stimuli incorporating periodic motions into conventional flickering or pattern-reversal visual stimuli for steady-state visual evoked potential-based brain-computer interfaces. Frontiers in Neuroinformatics, 0, 16, .	1.3	3
97	A Parallel Feature Fusion Network Combining GRU and CNN for Motor Imagery EEG Decoding. Brain Sciences, 2022, 12, 1233.	1.1	9
98	Research on recognition of O-MI based on CNN combined with SST and LSTM. Optoelectronics Letters, 2022, 18, 566-571.	0.4	1
99	Fixed template network and dynamic template network: novel network designs for decoding steady-state visual evoked potentials. Journal of Neural Engineering, 2022, 19, 056049.	1.8	4
100	A Novel Motor Imagery EEG Classification Model Using Frequency-Temporal-Spatial Convolutional Neural Network with Channel Attention. , 2022, , .		1
101	3D Convolution neural network with multiscale spatial and temporal cues for motor imagery EEG classification. Cognitive Neurodynamics, 2023, 17, 1357-1380.	2.3	2
102	Multi-Source Transfer Learning for EEG Classification Based on Domain Adversarial Neural Network. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2023, 31, 218-228.	2.7	6
103	A Spatio-Temporal Interactive Attention Network for Motor Imagery EEG Decoding. , 2022, , .		1
104	Classification of P300 signals from P300 spelling system based on ASK-CNN model. , 2022, , .		0
105	Brain–Computer Interface-Controlled Exoskeletons in Clinical Neurorehabilitation: Ready or Not?. Neurorehabilitation and Neural Repair, 2022, 36, 747-756.	1.4	14
106	The Analysis of EEG after Mild Traumatic Brain Injury(mTBI) Using CWT and CNN. Journal of Physics: Conference Series, 2022, 2386, 012032.	0.3	0
107	Classification algorithm for motor imagery EEG signals based on parallel DAMSCN-LSTM. , 2022, , .		0
108	A deep learning approach for intrusion detection in Internet of Things using focal loss function. Internet of Things (Netherlands), 2023, 22, 100699.	4.9	23
109	A Model Combining Multi Branch Spectral-Temporal CNN, Efficient Channel Attention, and LightGBM for MI-BCI Classification. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2023, 31, 1311-1320.	2.7	15
110	Input Shape Effect on Classification Performance of Raw EEG Motor Imagery Signals with Convolutional Neural Networks for Use in Brain—Computer Interfaces. Brain Sciences, 2023, 13, 240.	1.1	2
111	A Novel Multiscale Dilated Convolution Neural Network With Gating Mechanism for Decoding Driving Intentions Based on EEG. IEEE Transactions on Cognitive and Developmental Systems, 2023, 15, 1712-1721	2.6	0

#	Article	IF	CITATIONS
112	Convolutional Neural Network with a Topographic Representation Module for EEG-Based Brain—Computer Interfaces. Brain Sciences, 2023, 13, 268.	1.1	1
113	Comparative study of EEG motor imagery classification based on DSCNN and ELM. Biomedical Signal Processing and Control, 2023, 84, 104750.	3.5	6
114	A double-branch graph convolutional network based on individual differences weakening for motor imagery EEG classification. Biomedical Signal Processing and Control, 2023, 84, 104684.	3.5	4
115	Brain-Computer Interface Based Control for Disabled. , 2022, , .		0
116	Classification of Motor Imagery EEG Signals Based on Data Augmentation and Convolutional Neural Networks. Sensors, 2023, 23, 1932.	2.1	7
117	Filter bank sinc-convolutional network with channel self-attention for high performance motor imagery decoding. Journal of Neural Engineering, 2023, 20, 026001.	1.8	8
118	A mutli-scale spatial-temporal convolutional neural network with contrastive learning for motor imagery EEG classification. Medicine in Novel Technology and Devices, 2023, 17, 100215.	0.9	2
119	A Spiking Neural Network With Adaptive Graph Convolution and LSTM for EEG-Based Brain-Computer Interfaces. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2023, 31, 1440-1450.	2.7	6
120	Improving Multi-Class Motor Imagery EEG Classification Using Overlapping Sliding Window and Deep Learning Model. Electronics (Switzerland), 2023, 12, 1186.	1.8	5
121	EEG Motion Classification Combining Graph Convolutional Network and Self-attentiion. , 2023, , .		0
122	IFNet: An Interactive Frequency Convolutional Neural Network for Enhancing Motor Imagery Decoding From EEG. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2023, 31, 1900-1911.	2.7	8
123	Features Domains and Classification Algorithms in Motor Imagery Brain Computer Interface. , 2022, , .		0
124	One-dimension Local Binary pattern and common spatial pattern feature fusion brain network for central neuropathic pain. International Journal of Neural Systems, 0, , .	3.2	0
125	Convolutional Neural Network-Based EEG Signal Analysis: A Systematic Review. Archives of Computational Methods in Engineering, 2023, 30, 3585-3615.	6.0	3
126	Future Developments in Brain/Neural–Computer Interface Technology. Advances in Neuroethics, 2023, , 65-85.	0.1	2
168	Motor Imagery EEG Recognition Based onÂanÂImproved Convolutional Neural Network withÂParallel Gate Recurrent Unit. Lecture Notes in Computer Science, 2024, , 316-327.	1.0	0
173	EEG Data Classification Using CNN Method with Various Data Models. , 2023, , .		0