Achieving high energy density and high power density

Nature Reviews Materials 5, 5-19 DOI: 10.1038/s41578-019-0142-z

Citation Report

#	Article	IF	CITATIONS
1	MoS ₂ /carbon composites prepared by ball-milling and pyrolysis for the high-rate and stable anode of lithium ion capacitors. RSC Advances, 2019, 9, 42316-42323.	1.7	16
2	Preparation and Carbon-Dependent Supercapacitive Behaviour of Nanohybrid Materials between Polyoxometalate and Porous Carbon Derived from Zeolitic Templates. Materials, 2020, 13, 81.	1.3	4
3	Nickel metal–organic framework nanosheets as novel binder-free cathode for advanced fibrous aqueous rechargeable Ni–Zn battery. Journal of Materials Chemistry A, 2020, 8, 3262-3269.	5.2	68
4	Dihexyl-Substituted Poly(3,4-Propylenedioxythiophene) as a Dual Ionic and Electronic Conductive Cathode Binder for Lithium-Ion Batteries. Chemistry of Materials, 2020, 32, 9176-9189.	3.2	42
5	Hydrated Mg <i>_x</i> V ₅ O ₁₂ Cathode with Improved Mg ²⁺ Storage Performance. Advanced Energy Materials, 2020, 10, 2002128.	10.2	31
6	Tantalum pentoxide-reduced graphene oxide nanocomposite as a new conversion type anode material having extrinsic pseudocapacitance for electrochemical lithium storage. Journal of Energy Storage, 2020, 32, 101991.	3.9	2
7	On the Capacities of Freestanding Vanadium Pentoxide–Carbon Nanotube–Nanocellulose Paper Electrodes for Charge Storage Applications. Energy Technology, 2020, 8, 2000731.	1.8	4
8	Pinning ultrasmall greigite nanoparticles on graphene for effective transition-metal-sulfide supercapacitors in an ionic liquid electrolyte. Journal of Materials Chemistry A, 2020, 8, 25716-25726.	5.2	14
9	CoO Quantum Dots Anchored on Reduced Graphene Oxide Aerogels for Lithium-Ion Storage. ACS Applied Nano Materials, 2020, 3, 10369-10379.	2.4	16
10	Activating the Highly Reversible Mo ⁴⁺ /Mo ⁵⁺ Redox Couple in Amorphous Molybdenum Oxide for High-Performance Supercapacitors. ACS Applied Materials & Interfaces, 2020, 12, 48565-48571.	4.0	28
11	Peanut-like yolk/core-shell MnO/C microspheres for improved lithium storage and the formation mechanism of MnCO3 precursors. Journal of Alloys and Compounds, 2020, 849, 156637.	2.8	14
12	Holey Graphene for Electrochemical Energy Storage. Cell Reports Physical Science, 2020, 1, 100215.	2.8	58
13	Pseudocapacitive Ti-Doped Niobium Pentoxide Nanoflake Structure Design for a Fast Kinetics Anode toward a High-Performance Mg-Ion-Based Dual-Ion Battery. ACS Applied Materials & Interfaces, 2020, 12, 47539-47547.	4.0	35
14	Heavy chalcogenide-transition metal clusters as coordination polymer nodes. Chemical Science, 2020, 11, 8350-8372.	3.7	45
15	Recent progress in metal-organic framework-based supercapacitor electrode materials. Coordination Chemistry Reviews, 2020, 420, 213438.	9.5	280
16	Recent advances in bioelectronics chemistry. Chemical Society Reviews, 2020, 49, 7978-8035.	18.7	54
17	Hybrid supercapacitors from porous boron-doped diamond with water-soluble redox electrolyte. Surface and Coatings Technology, 2020, 398, 126103.	2.2	22
18	Microwave deposition synthesis of Ni(OH)2/sorghum stalk biomass carbon electrode materials for supercapacitors. Journal of Alloys and Compounds, 2020, 846, 156376.	2.8	57

#	Article	IF	CITATIONS
19	Pseudocapacitive material for energy storage application: PEDOT and PEDOT:PSS. AIP Conference Proceedings, 2020, , .	0.3	7
20	Needle-like CoO nanowire composites with NiO nanosheets on carbon cloth for hybrid flexible supercapacitors and overall water splitting electrodes. RSC Advances, 2020, 10, 37489-37499.	1.7	23
21	Maximizing ion accessibility in MXene-knotted carbon nanotube composite electrodes for high-rate electrochemical energy storage. Nature Communications, 2020, 11, 6160.	5.8	183
22	True Meaning of Pseudocapacitors and Their Performance Metrics: Asymmetric versus Hybrid Supercapacitors. Small, 2020, 16, e2002806.	5.2	405
23	Porous PEDOT Network Coated on MoS ₂ Nanobelts toward Improving Capacitive Performance. ACS Sustainable Chemistry and Engineering, 2020, 8, 12696-12705.	3.2	21
25	Confining Ultrathin 2D Superlattices in Mesoporous Hollow Spheres Renders Ultrafast and High apacity Naâ€lon Storage. Advanced Energy Materials, 2020, 10, 2001033.	10.2	25
26	Mesoporous Materials for Electrochemical Energy Storage and Conversion. Advanced Energy Materials, 2020, 10, 2002152.	10.2	162
27	Unraveling the Charge Storage Mechanism of Ti ₃ C ₂ T <i>_{<i>x</i>}</i> MXene Electrode in Acidic Electrolyte. ACS Energy Letters, 2020, 5, 2873-2880.	8.8	129
28	Regulating the electrochemical behaviours of a hierarchically structured Co ₃ (PO ₄) ₂ /Ni–Co–O for a high-performance all-solid-state supercapacitor. Dalton Transactions, 2020, 49, 10621-10630.	1.6	12
29	Inkjet and Extrusion Printing for Electrochemical Energy Storage: A Minireview. Advanced Materials Technologies, 2020, 5, .	3.0	51
30	A graphene-covalent organic framework hybrid for high-performance supercapacitors. Energy Storage Materials, 2020, 32, 448-457.	9.5	103
31	Dual-ion battery with MoS2 cathode. Energy Storage Materials, 2020, 32, 159-166.	9.5	18
32	Amorphous cobalt sulfide/N-doped carbon core/shell nanoparticles as an anode material for potassium-ion storage. Journal of Materials Science, 2020, 55, 15213-15221.	1.7	12
33	Multi-dimensional hybrid heterostructure MoS2@C nanocomposite as a highly reversible anode for high-energy lithium-ion capacitors. Applied Surface Science, 2020, 531, 147222.	3.1	27
34	Perspectives for electrochemical capacitors and related devices. Nature Materials, 2020, 19, 1151-1163.	13.3	1,187
35	Layer-by-layer assembly of inorganic–organic molybdovanadogermanic (GeMoV)-polyluminol composite electrodes for capacitive charge storage. Journal of Materials Chemistry A, 2020, 8, 23463-23472.	5.2	22
36	From energy harvesting to topologically insulating behavior: ABO ₃ -type epitaxial thin films and superlattices. Journal of Materials Chemistry C, 2020, 8, 15575-15596.	2.7	22
37	Tunable Surface Selenization on MoO ₂ â€Based Carbon Substrate for Notably Enhanced Sodiumâ€lon Storage Properties. Small, 2020, 16, e2001905.	5.2	60

#	Article	IF	Citations
38	Amorphous TiO ₂ /C Frameworks as Intercalation Pseudocapacitance Anodes for Fast and Durable Sodium Storage. Energy & Fuels, 2020, 34, 13149-13156.	2.5	9
39	Nanoparticleâ€Based Electrodes with High Charge Transfer Efficiency through Ligand Exchange Layerâ€byâ€Layer Assembly. Advanced Materials, 2020, 32, e2001924.	11.1	22
40	Niobiumâ€Đoped Titanium Dioxide with High Dopant Contents for Enhanced Lithiumâ€lon Storage. ChemElectroChem, 2020, 7, 4016-4023.	1.7	18
41	Combining Batteryâ€Type and Pseudocapacitive Charge Storage in Ag/Ti ₃ C ₂ T <i>_x</i> MXene Electrode for Capturing Chloride Ions with High Capacitance and Fast Ion Transport. Advanced Science, 2020, 7, 2000621.	5.6	101
42	High Power Energy Storage via Electrochemically Expanded and Hydrated Manganese-Rich Oxides. Frontiers in Chemistry, 2020, 8, 715.	1.8	5
43	Overview of transition metal-based composite materials for supercapacitor electrodes. Nanoscale Advances, 2020, 2, 5516-5528.	2.2	96
44	Controllable Synthesis of Anatase TiO ₂ Nanosheets Grown on Amorphous TiO ₂ /C Frameworks for Ultrafast Pseudocapacitive Sodium Storage. ACS Applied Materials & Interfaces, 2020, 12, 43813-43823.	4.0	28
45	Pseudocapacitive Vanadiumâ€based Materials toward Highâ€Rate Sodiumâ€Ion Storage. Energy and Environmental Materials, 2020, 3, 221-234.	7.3	95
46	Novel Strategy of Constructing Hollow Ga ₂ O ₃ @N-CQDs as a Self-Healing Anode Material for Lithium-Ion Batteries. ACS Sustainable Chemistry and Engineering, 2020, 8, 13692-13700.	3.2	32
47	Mono-faceted WO _{3â^'x} nanorods <i>in situ</i> hybridized in carbon nanosheets for ultra-fast/stable sodium-ion storage. Journal of Materials Chemistry A, 2020, 8, 23919-23929.	5.2	15
48	2D Sandwiched Nano Heterostructures Endow MoSe ₂ /TiO _{2â^²} <i>_x</i> /Graphene with High Rate and Durability for Sodium Ion Capacitor and Its Solid Electrolyte Interphase Dependent Sodiation/Desodiation Mechanism. Small, 2020, 16, e2004457.	5.2	38
49	Metal–Organic Frameworkâ€Derived Anode and Polyaniline Chain Networked Cathode with Mesoporous and Conductive Pathways for High Energy Density, Ultrafast Rechargeable, and Longâ€Life Hybrid Capacitors. Advanced Energy Materials, 2020, 10, 2001851.	10.2	32
50	Densified Metallic MoS ₂ /Graphene Enabling Fast Potassiumâ€lon Storage with Superior Gravimetric and Volumetric Capacities. Advanced Functional Materials, 2020, 30, 2001484.	7.8	82
51	In-situ electrolytic synthesis and superior lithium storage capability of Ni–NiO/C nanocomposite by sacrificial nickel anode in molten carbonates. Journal of Alloys and Compounds, 2020, 834, 155111.	2.8	11
52	Intercalation pseudocapacitance in electrochemical energy storage: recent advances in fundamental understanding and materials development. Materials Today Advances, 2020, 7, 100072.	2.5	119
53	A N, O co-doped hierarchical carbon cathode for high-performance Zn-ion hybrid supercapacitors with enhanced pseudocapacitance. Journal of Materials Chemistry A, 2020, 8, 11617-11625.	5.2	130
54	Large-Scale Electric-Field Confined Silicon with Optimized Charge-Transfer Kinetics and Structural Stability for High-Rate Lithium-Ion Batteries. ACS Nano, 2020, 14, 7066-7076.	7.3	114
55	Three-Dimensional Topotactic Host Structure-Secured Ultrastable VP-CNO Composite Anodes for Long Lifespan Lithium- and Sodium-Ion Capacitors. ACS Applied Materials & Interfaces, 2020, 12, 29218-29227.	4.0	3

#	Article	IF	CITATIONS
56	Hierarchical CuO@ZnCo–OH core-shell heterostructure on copper foam as three-dimensional binder-free electrodes for high performance asymmetric supercapacitors. Journal of Power Sources, 2020, 465, 228239.	4.0	40
57	A Review on Nano-/Microstructured Materials Constructed by Electrochemical Technologies for Supercapacitors. Nano-Micro Letters, 2020, 12, 118.	14.4	146
58	Harmonizing self-supportive VN/MoS2 pseudocapacitance core-shell electrodes for boosting the areal capacity of lithium storage. Materials Today Energy, 2020, 17, 100461.	2.5	59
59	S-doped porous carbon anode with superior capacity for high-performance sodium storage. RSC Advances, 2020, 10, 22663-22667.	1.7	3
60	Nb2O5 nanotubes on carbon cloth for high performance sodium-ion capacitors. Science China Materials, 2020, 63, 1171-1181.	3.5	13
61	Enriched pseudocapacitive lithium storage in electrochemically activated carbonaceous vanadium(<scp>iv</scp> , <scp>v</scp>) oxide hydrate. Journal of Materials Chemistry A, 2020, 8, 13183-13196.	5.2	8
62	A Highâ€Rate and Longâ€Life Rechargeable Battery Operated at â^'75  o C. Batteries and Supercaps, 2020, 3, 1016-1020.	2.4	17
63	Lowâ€Temperature Charge/Discharge of Rechargeable Battery Realized by Intercalation Pseudocapacitive Behavior. Advanced Science, 2020, 7, 2000196.	5.6	82
64	MOF derived graphitic carbon nitride/oxygen vacancies-rich zinc oxide nanocomposites with enhanced supercapacitive performance. Ionics, 2020, 26, 5155-5165.	1.2	15
65	Fast Charging Materials for High Power Applications. Advanced Energy Materials, 2020, 10, 2001128.	10.2	136
66	Flexible Pseudocapacitive Electrochromics via Inkjet Printing of Additiveâ€Free Tungsten Oxide Nanocrystal Ink. Advanced Energy Materials, 2020, 10, 2000142.	10.2	82
67	Substantially Improved Na-Ion Storage Capability by Nanostructured Organic–Inorganic Polyaniline-TiO ₂ Composite Electrodes. ACS Applied Energy Materials, 2020, 3, 3477-3487.	2.5	13
68	Phenothiazine–MXene Aqueous Asymmetric Pseudocapacitors. ACS Applied Energy Materials, 2020, 3, 3144-3149.	2.5	40
69	Unraveling and Regulating Self-Discharge Behavior of Ti ₃ C ₂ T _{<i>x</i>} MXene-Based Supercapacitors. ACS Nano, 2020, 14, 4916-4924.	7.3	203
70	Addressing the Achilles' heel of pseudocapacitive materials: Longâ€ŧerm stability. InformaÄnÃ-Materiály, 2020, 2, 807-842.	8.5	135
71	Differentiating Double-Layer, Psuedocapacitance, and Battery-like Mechanisms by Analyzing Impedance Measurements in Three Dimensions. ACS Applied Materials & Interfaces, 2020, 12, 14071-14078.	4.0	64
72	Manganeseâ€based layered oxide cathodes for sodium ion batteries. Nano Select, 2020, 1, 200-225.	1.9	25
73	Regulating the breathing of mesoporous Fe0.95S1.05 nanorods for fast and durable sodium storage. Energy Storage Materials, 2020, 32, 151-158.	9.5	40

#	Article	IF	CITATIONS
74	Perspective on Highâ€Energy Carbonâ€Based Supercapacitors. Energy and Environmental Materials, 2020, 3, 286-305.	7.3	124
75	The Development of Vanadyl Phosphate Cathode Materials for Energy Storage Systems: A Review. Chemistry - A European Journal, 2020, 26, 8190-8204.	1.7	21
76	An approaching-theoretical-capacity anode material for aqueous battery: Hollow hexagonal prism Bi2O3 assembled by nanoparticles. Energy Storage Materials, 2020, 28, 82-90.	9.5	109
77	Fatsia Japonica-Derived Hierarchical Porous Carbon for Supercapacitors With High Energy Density and Long Cycle Life. Frontiers in Chemistry, 2020, 8, 89.	1.8	22
78	Encapsulation of MnS Nanocrystals into N, S-Co-doped Carbon as Anode Material for Full Cell Sodium-Ion Capacitors. Nano-Micro Letters, 2020, 12, 34.	14.4	42
79	Novel Ag configurations decorated CuO hybrid electrode for high-performance asymmetric supercapacitor. Journal of Materials Science, 2020, 55, 6963-6975.	1.7	25
80	Super Kinetically Pseudocapacitive MnCo ₂ S ₄ Nanourchins toward Highâ€Rate and Highly Stable Sodiumâ€Ion Storage. Advanced Functional Materials, 2020, 30, 1909702.	7.8	47
81	Hierarchical materials constructed by 1D hollow nickel–cobalt sulfide nanotubes supported on 2D ultrathin MXenes nanosheets for high-performance supercapacitor. Ceramics International, 2020, 46, 12200-12208.	2.3	17
82	Porous FeP/C composite nanofibers as high-performance anodes for Li-ion/Na-ion batteries. Materials Today Energy, 2020, 16, 100410.	2.5	23
83	Hieratical CuO clusters in-situ grown on copper films coated three-dimensional nickel foams for high-performance supercapacitors. Ceramics International, 2020, 46, 17461-17468.	2.3	18
84	Toward Critical Electrode/Electrolyte Interfaces in Rechargeable Batteries. Advanced Functional Materials, 2020, 30, 1909887.	7.8	251
85	Capacitive property studies of electrochemically synthesized Co3O4 and Mn3O4 on inexpensive stainless steel current collector for supercapacitor application. Ceramics International, 2020, 46, 14640-14649.	2.3	26
86	Hydrogenated dual-shell sodium titanate cubes for sodium-ion batteries with optimized ion transportation. Journal of Materials Chemistry A, 2020, 8, 15829-15833.	5.2	14
87	Full pseudocapacitive behavior hypoxic graphene for ultrafast and ultrastable sodium storage. Journal of Materials Chemistry A, 2020, 8, 9911-9918.	5.2	5
88	Recent Advances and Promise of MXeneâ€Based Nanostructures for Highâ€Performance Metal Ion Batteries. Advanced Functional Materials, 2020, 30, 2000706.	7.8	192
89	Ta2O5 nanoparticles as an anode material for lithium ion battery. Journal of Solid State Electrochemistry, 2020, 24, 1067-1074.	1.2	17
91	Construction of hydrangea-like nickel cobalt sulfide through efficient microwave-assisted approach for remarkable supercapacitors. Applied Surface Science, 2021, 539, 148260.	3.1	17
92	Tunable agglomeration of Co3O4 nanowires as the growing core for in-situ formation of Co2NiO4 assembled with polyaniline-derived carbonaceous fibers as the high-performance asymmetric supercapacitors. Journal of Alloys and Compounds, 2021, 853, 157210.	2.8	47

#	Article	IF	CITATIONS
93	Reactivity with Water and Bulk Ruthenium Redox of Lithium Ruthenate in Basic Solutions. Advanced Functional Materials, 2021, 31, 2002249.	7.8	5
94	New types of hybrid electrolytes for supercapacitors. Journal of Energy Chemistry, 2021, 57, 219-232.	7.1	106
95	The NaxMnO2 materials prepared by a glycine-nitrate method as advanced cathode materials for aqueous sodium-ion rechargeable batteries. Ceramics International, 2021, 47, 4595-4603.	2.3	15
96	One produced three: A capacitor-battery integration strategy in a dual-carbon device. Energy Storage Materials, 2021, 34, 356-364.	9.5	7
97	Synthesis of nickel sulfide-supported on porous carbon from a natural seaweed-derived polysaccharide for high-performance supercapacitors. Journal of Alloys and Compounds, 2021, 853, 157123.	2.8	36
98	In-situ hydrothermal synthesis of δ-MnO2/soybean pod carbon and its high performance application on supercapacitor. Journal of Alloys and Compounds, 2021, 853, 157357.	2.8	18
99	Bio-inspired Mn3O4@N, P-doped carbon cathode for 2.6â€V flexible aqueous asymmetric supercapacitors. Chemical Engineering Journal, 2021, 407, 126874.	6.6	24
100	Ultrathin holey reduced graphene oxide/Ni(picolinic acid)2 papers for flexible battery-supercapacitor hybrid devices. Chemical Engineering Journal, 2021, 408, 127302.	6.6	17
101	Non-metallic charge carriers for aqueous batteries. Nature Reviews Materials, 2021, 6, 109-123.	23.3	250
102	Intercalation pseudocapacitive electrochemistry of Nb-based oxides for fast charging of lithium-ion batteries. Nano Energy, 2021, 81, 105635.	8.2	52
103	Morphology-controlled synthesis of one-dimensional zinc molybdate nanorods for high-performance pseudocapacitor electrode application. Chemical Papers, 2021, 75, 1715-1726.	1.0	7
104	Two-dimensional MXenes for electrochemical capacitor applications: Progress, challenges and perspectives. Energy Storage Materials, 2021, 35, 630-660.	9.5	182
105	Oxygen-vacancy-rich cobalt–aluminium hydrotalcite structures served as high-performance supercapacitor cathode. Journal of Materials Chemistry C, 2021, 9, 620-632.	2.7	41
106	Kinetic-matching between electrodes and electrolyte enabling solid-state sodium-ion capacitors with improved voltage output and ultra-long cyclability. Chemical Engineering Journal, 2021, 421, 127832.	6.6	6
107	Highâ€Performance Lithiumâ€lon Capacitors Based on Porosityâ€Regulated Zirconium Metalâ^'Organic Frameworks. Small, 2021, 17, e2005209.	5.2	46
108	Ultralight Flexible Electrodes of Nitrogenâ€Doped Carbon Macrotube Sponges for Highâ€Performance Supercapacitors. Small, 2021, 17, e2004827.	5.2	59
109	Facile synthesis of V2O5/graphene composites as advanced electrode materials in supercapacitors. Journal of Alloys and Compounds, 2021, 862, 158006.	2.8	40
110	Review on Current Progress of MnO ₂ â€Based Ternary Nanocomposites for Supercapacitor Applications. ChemElectroChem, 2021, 8, 291-336.	1.7	62

#	Article	IF	CITATIONS
111	Probing local electrochemistry via mechanical cyclic voltammetry curves. Nano Energy, 2021, 81, 105592.	8.2	23
112	Spontaneously Forming Oxide Layer of High Entropy Alloy Nanoparticles Deposited on Porous Carbons for Supercapacitors. ChemElectroChem, 2021, 8, 260-269.	1.7	15
113	Interface Inversion: A Promising Strategy to Configure Ultrafine Nanoparticles over Graphene for Fast Sodium Storage. Small, 2021, 17, 2005119.	5.2	6
114	Atomic layer deposition regulating hydrated K2Ti6O13 nanobelts on graphene platform with accelerated solid solution potassiation for potassium ion capacitors. Chemical Engineering Journal, 2021, 417, 128048.	6.6	13
115	High-performance Bi2O3-NC anodes through constructing carbon shells and oxygen vacancies for flexible battery-supercapacitor hybrid devices. Nanoscale Advances, 2021, 3, 593-603.	2.2	8
116	Facile Fabrication of Fe ₂ O ₃ -Decorated Carbon Matrixes with a Multidimensional Structure as Anodes for Lithium-Ion Batteries. Energy & Fuels, 2021, 35, 816-826.	2.5	14
117	Rare earth metal La-doped induced electrochemical evolution of LiV ₃ O ₈ with an oxygen vacancy toward a high energy-storage capacity. Journal of Materials Chemistry A, 2021, 9, 1845-1858.	5.2	27
118	Topological materials and topologically engineered materials: properties, synthesis, and applications for energy conversion and storage. Journal of Materials Chemistry A, 2021, 9, 1297-1313.	5.2	17
119	Ti3C2Tx/RGO//PANI/RGO all-solid-state asymmetrical fiber supercapacitor with high energy density and superior flexibility. Journal of Alloys and Compounds, 2021, 861, 157950.	2.8	15
120	Facile synthesis of strontium ferrite nanorods/graphene composites as advanced electrode materials for supercapacitors. Journal of Colloid and Interface Science, 2021, 588, 795-803.	5.0	33
121	Improved pseudocapacitances of supercapacitors based on electrodes of nitrogen-doped Ti3C2Tx nanosheets with in-situ growth of carbon nanotubes. Journal of Alloys and Compounds, 2021, 859, 158347.	2.8	10
122	Favorable anion adsorption/desorption of high rate NiSe2 nanosheets/hollow mesoporous carbon for battery-supercapacitor hybrid devices. Nano Research, 2021, 14, 2574-2583.	5.8	52
123	Effects of Anion Carriers on Capacitance and Selfâ€Discharge Behaviors of Zinc Ion Capacitors. Angewandte Chemie, 2021, 133, 1024-1034.	1.6	21
124	An unconventional full dual-cation battery. Nano Energy, 2021, 81, 105539.	8.2	13
125	Effects of Anion Carriers on Capacitance and Selfâ€Discharge Behaviors of Zinc Ion Capacitors. Angewandte Chemie - International Edition, 2021, 60, 1011-1021.	7.2	122
126	Oxygenâ€vacancyâ€rich hydrated bimetallic chloride for supercapacitor cathode with remarkable enhanced performance. International Journal of Energy Research, 2021, 45, 2899-2911.	2.2	6
127	Microwave rapid synthesis of nickel cobalt sulfides/CNTs composites as superior cycling ability electrode materials for supercapacitors. Journal of Materials Science, 2021, 56, 1561-1576.	1.7	27
128	High-performance aqueous Zn–MnO ₂ batteries enabled by the coupling engineering of K ⁺ pre-intercalation and oxygen defects. Journal of Materials Chemistry A, 2021, 9, 15637-15647.	5.2	46

#	Article	IF	CITATIONS
129	Triggering the phase transition and capacity enhancement of Nb ₂ O ₅ for fast-charging lithium-ion storage. Journal of Materials Chemistry A, 2021, 9, 14534-14544.	5.2	14
130	Recent advances in the synthesis of mesoporous materials and their application to lithium-ion batteries and hybrid supercapacitors. Korean Journal of Chemical Engineering, 2021, 38, 227-247.	1.2	37
131	The rise of flexible zinc-ion hybrid capacitors: advances, challenges, and outlooks. Journal of Materials Chemistry A, 2021, 9, 19054-19082.	5.2	60
132	A high-performance rocking-chair lithium-ion battery-supercapacitor hybrid device boosted by doubly matched capacity and kinetics of the faradaic electrodes. Energy and Environmental Science, 2021, 14, 2269-2277.	15.6	63
133	Tunable and Well-Defined Bimodal Porous Model Electrodes for Revealing Multiscale Structural Effects in the Nonaqueous Li–O ₂ Electrode Process. Journal of Physical Chemistry C, 2021, 125, 1403-1413.	1.5	6
134	Constructing a hierarchically structured KNi _{0.67} Co _{0.33} PO ₄ ·H ₂ O-graphene hydrogel/Ni foam electrode for superior all-solid-state supercapacitor. Dalton Transactions, 2021, 50, 13276-13285.	1.6	2
135	Threeâ€dimensional electrostatic capacitors as futuristic miniaturized energy storage component for energy autonomous systems. Energy Storage, 2021, 3, e225.	2.3	3
136	Coupling of EDLC and the reversible redox reaction: oxygen functionalized porous carbon nanosheets for zinc-ion hybrid supercapacitors. Journal of Materials Chemistry A, 2021, 9, 15404-15414.	5.2	62
137	High energy density hybrid supercapacitor based on cobalt-doped nickel sulfide flower-like hierarchitectures deposited with nitrogen-doped carbon dots. Nanoscale, 2021, 13, 1689-1695.	2.8	44
138	Pseudocapacitive porous hard carbon anode with controllable pyridinic nitrogen and thiophene sulfur co-doping for high-power dual-carbon sodium ion hybrid capacitors. Journal of Materials Chemistry A, 2021, 9, 20483-20492.	5.2	13
139	Emerging trends in anion storage materials for the capacitive and hybrid energy storage and beyond. Chemical Society Reviews, 2021, 50, 6734-6789.	18.7	93
140	Microwave assisted growth of MnO2 on biomass carbon for advanced supercapacitor electrode materials. Journal of Materials Science, 2021, 56, 6987-6996.	1.7	14
141	Pseudocapacitance-Dominated Li-Ion Capacitors Showing Remarkable Energy Efficiency by Introducing Amorphous LiFePO ₄ in the Cathode. ACS Applied Energy Materials, 2021, 4, 1824-1832.	2.5	7
142	Constructing anion vacancy-rich MoSSe/G van der Waals heterostructures for high-performance Mg–Li hybrid-ion batteries. Journal of Materials Chemistry A, 2021, 9, 23276-23285.	5.2	10
143	Ion regulation of ionic liquid electrolytes for supercapacitors. Energy and Environmental Science, 2021, 14, 2859-2882.	15.6	71
144	High-performance ultracapacitor electrodes realized by 3-dimensionally bicontinuous block copolymer nanostructures with enhanced ion kinetics. Journal of Materials Chemistry A, 2021, 9, 16119-16128.	5.2	2
145	<i>Operando</i> Leaching of Pre-Incorporated Al and Mechanism in Transition Metal Hybrids for Elaborately Enhanced Charge Storage. SSRN Electronic Journal, 0, , .	0.4	0
146	Lithium storage performance of α-Ni(OH)2 regulated by partial interlayer anion exchange. Ionics, 2021, 27, 1125-1135.	1.2	7

#	Article	IF	CITATIONS
147	Reagent-assisted hydrothermal synthesis of NiCo ₂ O ₄ nanomaterials as electrodes for high-performance asymmetric supercapacitors. New Journal of Chemistry, 2021, 45, 9230-9242.	1.4	16
148	Niobium pentoxide based materials for high rate rechargeable electrochemical energy storage. Materials Horizons, 2021, 8, 1130-1152.	6.4	51
149	A novel sodium-ion supercabattery based on vacancy defective Ni–Co–Mn ternary perovskite fluoride electrode materials. Journal of Materials Chemistry A, 2021, 9, 14276-14284.	5.2	18
150	<scp>3D</scp> flowerâ€like oxygenâ€deficient nonâ€stoichiometry zinc cobaltite for high performance hybrid supercapacitors. International Journal of Energy Research, 2021, 45, 10832-10842.	2.2	29
151	Sodiation mechanism via reversible surface film formation on metal oxides for sodiumâ€ion batteries. Nano Select, 2021, 2, 1533-1543.	1.9	3
152	One-Dimensional/Two-Dimensional Homo-Orientation Co ₃ O ₄ /NiCo ₂ O ₄ Nanoarray toward Ultrastable Hybrid Supercapacitor. Energy & Fuels, 2021, 35, 4524-4532.	2.5	31
153	Designing Rational Interfacial Bonds for Hierarchical Mineralâ€Type Trogtalite with Double Carbon towards Ultraâ€Fast Sodiumâ€Ions Storage Properties. Advanced Functional Materials, 2021, 31, 2100156.	7.8	31
154	High-performance multi-dimensional nitrogen-doped N+MnO2@TiC/C electrodes for supercapacitors. Electrochimica Acta, 2021, 370, 137716.	2.6	24
155	Oxidized-Polydopamine-Coated Graphene Anodes and N,P Codoped Porous Foam Structure Activated Carbon Cathodes for High-Energy-Density Lithium-Ion Capacitors. ACS Applied Materials & Interfaces, 2021, 13, 10336-10348.	4.0	20
156	Confined pulverization promoting durable pseudocapacitance for FeOOH@PEDOT anode in Li-ion battery. Journal of Electroanalytical Chemistry, 2021, 882, 115005.	1.9	14
157	High-Capacitance Pseudocapacitors from Li ⁺ Ion Intercalation in Nonporous, Electrically Conductive 2D Coordination Polymers. Journal of the American Chemical Society, 2021, 143, 2285-2292.	6.6	99
158	Recent Progress in Binderâ€Free Electrodes Synthesis for Electrochemical Energy Storage Application. Batteries and Supercaps, 2021, 4, 860-880.	2.4	35
159	Boosting the volumetric capacitance of MoO3-x free-standing films with Ti3C2 MXene. Electrochimica Acta, 2021, 370, 137665.	2.6	34
160	Progress in the Regulation of Electrode/Electrolyte Interfacial Reactions toward Highâ€voltage Aqueous Hybrid Capacitors. Batteries and Supercaps, 2021, 4, 717-732.	2.4	2
161	Supercapacitor electrode materials: addressing challenges in mechanism and charge storage. Reviews in Inorganic Chemistry, 2022, 42, 53-88.	1.8	66
162	Lithiumâ€lon and Sodiumâ€lon Hybrid Capacitors: From Insertionâ€Type Materials Design to Devices Construction. Advanced Functional Materials, 2021, 31, 2100455.	7.8	87
163	Renewable biomassâ€derived carbons for electrochemical capacitor applications. SusMat, 2021, 1, 211-240.	7.8	98
164	A Review of Compact Carbon Design for Supercapacitors with High Volumetric Performance. Small, 2021, 17, e2007548.	5.2	47

#	Article	IF	CITATIONS
165	A green and economical approach to derive biomass porous carbon from freely available feather finger grass flower for advanced symmetric supercapacitors. Journal of Energy Storage, 2021, 35, 102287.	3.9	93
166	In-situ carbon encapsulation of ultrafine VN in yolk-shell nanospheres for highly reversible sodium storage. Carbon, 2021, 175, 289-298.	5.4	27
167	Reinforced polyaniline-dodecyl benzene sulfonate hydrogel with well-aligned fibrous morphology as durable electrode materials for Zn-ion battery. Synthetic Metals, 2021, 274, 116721.	2.1	13
168	Cooperative Conformational Change of a Single Organic Molecule for Ultrafast Rechargeable Batteries. ACS Energy Letters, 2021, 6, 1659-1669.	8.8	15
169	Porosity Engineering of MOFâ€Based Materials for Electrochemical Energy Storage. Advanced Energy Materials, 2021, 11, 2100154.	10.2	75
170	Pomelo peel-derived lamellar carbon with surface oxygen functional groups for high-performance supercapacitors. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	1.1	9
171	High-performance organic pseudocapacitors via molecular contortion. Nature Materials, 2021, 20, 1136-1141.	13.3	103
172	Thick electrode with thickness-independent capacity enabled by assembled two-dimensional porous nanosheets. Energy Storage Materials, 2021, 36, 265-271.	9.5	30
173	3D flower-like MOF-derived NiCo-LDH integrated with Ti3C2Tx for high-performance pseudosupercapacitors. Electrochimica Acta, 2021, 376, 138040.	2.6	48
174	Solid-State Precursor Impregnation for Enhanced Capacitance in Hierarchical Flexible Poly(3,4-Ethylenedioxythiophene) Supercapacitors. ACS Nano, 2021, 15, 7799-7810.	7.3	27
175	Structural Tuning of a Flexible and Porous Polypyrrole Film by a Template-Assisted Method for Enhanced Capacitance for Supercapacitor Applications. ACS Applied Materials & Interfaces, 2021, 13, 17726-17735.	4.0	43
176	Synergetic Advantages of Atomically Coupled 2D Inorganic and Graphene Nanosheets as Versatile Building Blocks for Diverse Functional Nanohybrids. Advanced Materials, 2021, 33, e2005922.	11.1	49
177	Emergence of melanin-inspired supercapacitors. Nano Today, 2021, 37, 101075.	6.2	121
178	Single-Crystal Lattice Filling in Connected Spaces inside 3D Networks. Journal of the American Chemical Society, 2021, 143, 6447-6459.	6.6	12
179	Achieving better aqueous rechargeable zinc ion batteries with heterostructure electrodes. Nano Research, 2021, 14, 3174-3187.	5.8	40
180	Novel hierarchical yolk-shell α-Ni(OH)2/Mn2O3 microspheres as high specific capacitance electrode materials for supercapacitors. Frontiers of Chemical Science and Engineering, 2021, 15, 1322-1331.	2.3	2
181	Salty Ice Electrolyte with Superior Ionic Conductivity Towards Lowâ€Temperature Aqueous Zinc Ion Hybrid Capacitors. Advanced Functional Materials, 2021, 31, 2101277.	7.8	81
182	Conductive Hydrogelâ€Based Electrodes and Electrolytes for Stretchable and Selfâ€Healable Supercapacitors. Advanced Functional Materials, 2021, 31, 2101303.	7.8	178

#	Article	IF	CITATIONS
183	Anticatalytic Strategies to Suppress Water Electrolysis in Aqueous Batteries. Chemical Reviews, 2021, 121, 6654-6695.	23.0	175
184	Pseudocapacitive Anode Materials toward Highâ€Power Sodiumâ€Ion Capacitors. Batteries and Supercaps, 2021, 4, 1567-1587.	2.4	31
185	Engineering zinc ferrite nanoparticles in a hierarchical graphene and carbon nanotube framework for improved lithium-ion storage. Journal of Colloid and Interface Science, 2021, 588, 346-356.	5.0	9
186	Improvement of Mesoporosity on Supercapacitive Performance of Activated Carbons Derived From Coffee Grounds. Bulletin of the Korean Chemical Society, 2021, 42, 748-755.	1.0	7
187	Electrocatalysis for the Oxygen Evolution Reaction in Acidic Media: Progress and Challenges. Applied Sciences (Switzerland), 2021, 11, 4320.	1.3	41
188	Electrode thickness design toward bulk energy storage devices with high areal/volumetric energy density. Applied Energy, 2021, 289, 116734.	5.1	57
189	Tuning growth of MoS2 nanowires over NiTiCu nanostructured array for flexible supercapacitive electrodes with enhanced Li-ion storage. Applied Physics Letters, 2021, 118, .	1.5	29
190	The ordered mesoporous carbon nitride-graphene aerogel nanocomposite for high-performance supercapacitors. Journal of Power Sources, 2021, 494, 229741.	4.0	34
191	A hierarchical Ti2Nb10O29 composite electrode for high-power lithium-ion batteries and capacitors. Materials Today, 2021, 45, 8-19.	8.3	61
192	Oxygen-vacancy-rich TiO2-coated carbon nanofibers for fast sodium storage in high-performance sodium-ion hybrid capacitors. Journal of Power Sources, 2021, 493, 229678.	4.0	34
193	Vacant Manganeseâ€Based Perovskite Fluorides@Reduced Graphene Oxides for Naâ€Ion Storage with Pseudocapacitive Conversion/Insertion Dual Mechanisms. Chemistry - A European Journal, 2021, 27, 9954-9960.	1.7	7
194	Fundamentals, advances and challenges of transition metal compounds-based supercapacitors. Chemical Engineering Journal, 2021, 412, 128611.	6.6	221
195	A review on recent advances in hierarchically porous metal and metal oxide nanostructures as electrode materials for supercapacitors and non-enzymatic glucose sensors. Journal of Saudi Chemical Society, 2021, 25, 101228.	2.4	42
196	Fe3C encapsulated in N-doped carbon shell grown on reduced graphene oxide as a high-performance negative material for electrochemical energy storage. Chemical Engineering Journal, 2021, 412, 128720.	6.6	23
197	Strategies for Fabricating Highâ€Performance Electrochemical Energyâ€ S torage Devices by MXenes. ChemElectroChem, 2021, 8, 1948-1987.	1.7	16
198	Nickel/Cobalt Molybdate Hollow Rods Induced by Structure and Defect Engineering as Exceptional Electrode Materials for Hybrid Supercapacitor. Chemistry - A European Journal, 2021, 27, 8337-8343.	1.7	20
199	Pseudocapacitance multiporous vanadyl phosphate/graphene thin film electrode for high performance electrochemical capacitors. Journal of Colloid and Interface Science, 2021, 590, 341-351.	5.0	14
200	Two dimensional layered nickel cobaltite nanosheets as an efficient electrode material for highâ€performance hybrid supercapacitor. International Journal of Energy Research, 2021, 45, 16134-16144.	2.2	9

#	Article	IF	CITATIONS
201	2D/2D NiCo-MOFs/GO hybrid nanosheets for high-performance asymmetrical supercapacitor. Diamond and Related Materials, 2021, 115, 108358.	1.8	31
202	In situ and operando forceâ€based atomic force microscopy for probing local functionality in energy storage materials. Electrochemical Science Advances, 2022, 2, e2100038.	1.2	12
203	Anchoring nitrogen-doped carbon quantum dots on nickel carbonate hydroxide nanosheets for hybrid supercapacitor applications. Journal of Colloid and Interface Science, 2021, 590, 614-621.	5.0	30
204	Interfacial charge transfer and interaction in the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mi>MXene</mml:mi><mr mathvariant="normal">O<mml:mn>2</mml:mn></mr </mml:mrow> heterostructures. Physical Review Materials. 2021. 5.</mml:mrow></mml:math 	nl:mo>/ <td>nml:mo> « 14</td>	nml:mo> « 14
205	Nanosheet-assembled 3D flower-like MoS2/NiCo(OH)2CO3 composite for enhanced supercapacitor performance. Journal of Alloys and Compounds, 2021, 864, 158144.	2.8	24
206	The Advance and Perspective on Electrode Materials for Metal–Ion Hybrid Capacitors. Advanced Energy and Sustainability Research, 2021, 2, 2100022.	2.8	13
207	Wearable technologies enable high-performance textile supercapacitors with flexible, breathable and wearable characteristics for future energy storage. Energy Storage Materials, 2021, 37, 94-122.	9.5	80
208	Subâ€Thick Electrodes with Enhanced Transport Kinetics via In Situ Epitaxial Heterogeneous Interfaces for High Arealâ€Capacity Lithium Ion Batteries. Small, 2021, 17, e2100778.	5.2	141
209	Metal-organic frameworks as highly efficient electrodes for long cycling stability supercapacitors. International Journal of Hydrogen Energy, 2021, 46, 18179-18206.	3.8	55
210	Nanowire architectured porous bimetallic transition metal oxides for high performance hybrid supercapacitor applications. International Journal of Energy Research, 2021, 45, 18091-18102.	2.2	16
211	Tailoring nanostructured transition metal phosphides for high-performance hybrid supercapacitors. Nano Today, 2021, 38, 101201.	6.2	86
212	Copper ion chemistry in a new rechargeable all-solid-state copper-ion battery. Journal of Solid State Chemistry, 2021, 298, 122112.	1.4	2
213	Recent Development of Transition Metal Oxide Based Aqueous Supercapacitor Electrode Materials. Ceramist, 2021, 24, 145-156.	0.0	3
214	Sulfideâ€Based Nickelâ€Plated Fabrics for Foldable Quasiâ€5olidâ€5tate Supercapacitors. Energy and Environmental Materials, 2022, 5, 883-891.	7.3	19
215	Solid-state synthesis and superior electrochemical performance of MnMoO4 nanorods for asymmetric supercapacitor. Ceramics International, 2021, 47, 16316-16323.	2.3	21
216	Molybdenum dioxide supported carbon nanotubes@carbon constructs disordered nanocluster particles as anodes for lithium-ion capacitors with long-term cycling stability. Journal of Materials Science: Materials in Electronics, 2021, 32, 18912-18930.	1.1	5
217	Highly Sensitive Ultrastable Electrochemical Sensor Enabled by Proton-Coupled Electron Transfer. Nano Letters, 2021, 21, 5369-5376.	4.5	19
218	Dual-Redox-Sites Enable Two-Dimensional Conjugated Metal–Organic Frameworks with Large Pseudocapacitance and Wide Potential Window. Journal of the American Chemical Society, 2021, 143, 10168-10176.	6.6	75

		N REPORT	
#	ARTICLE Enhanced specific energy of silver-doped MnO2/graphene oxide electrodes as facile fabrication	IF	CITATIONS
219	symmetric supercapacitor device. Materials Today Chemistry, 2021, 20, 100473.	1.7	24
220	Extraction of cellulose to progress in cellulosic nanocomposites for their potential applications in supercapacitors and energy storage devices. Journal of Materials Science, 2021, 56, 14448-14486.	1.7	21
221	One-step electrodeposition strategy for growing nickel cobalt hydroxysulfide nanosheets for supercapacitor application. Journal of Alloys and Compounds, 2021, 865, 158736.	2.8	27
222	Fabrication of Flexible Ionic-Liquid Thin Film Battery Matrix on FlexTrateâ,,¢ for Powering Wearable Devices. , 2021, , .		4
223	Design of honeycomb-like hierarchically porous carbons with engineered mesoporosity for aqueous zinc-ion hybrid supercapacitors applications. Journal of Energy Storage, 2021, 38, 102534.	3.9	23
224	Energy Storage Mechanism, Challenge and Design Strategies of Metal Sulfides for Rechargeable Sodium/Potassiumâ€Ion Batteries. Advanced Functional Materials, 2021, 31, 2103912.	7.8	108
225	Graphitic Carbon with MnO/Mn ₇ C ₃ Prepared by Laserâ€Scribing of MOF for Versatile Supercapacitor Electrodes. Small, 2021, 17, e2100670.	5.2	27
226	Effective Combination of rGO and CuO Nanomaterials through Poly(<i>p</i> -phenylenediamine) Texture: Utilizing It as an Excellent Supercapacitor. Energy & Fuels, 2021, 35, 10869-10877.	2.5	49
227	Accelerating Ion Dynamics Under Cryogenic Conditions by the Amorphization of Crystalline Cathodes. Advanced Materials, 2021, 33, e2102634.	11.1	46
228	FeCoP nanosheets@Ni-Co carbonate hydroxide nanoneedles as free-standing electrode material for hybrid supercapacitors. Chemical Engineering Journal, 2021, 415, 128995.	6.6	50
229	Advances in Si and SiC Materials for Highâ€Performance Supercapacitors toward Integrated Energy Storage Systems. Small, 2021, 17, e2101775.	5.2	30
230	Flexible polytriphenylamine-based cathodes with reinforced energy-storage capacity for high-performance sodium-ion batteries. Science China Materials, 2022, 65, 32-42.	3.5	4
231	Review—Clay Mineral Materials for Electrochemical Capacitance Application. Journal of the Electrochemical Society, 2021, 168, 070558.	1.3	27
232	Engineering Architecture of 3D-Urchin-like Structure and 2D-Nanosheets of Bi ₂ S ₃ @g-C ₃ N ₄ as the Electrode Material for a Solid-State Symmetric Supercapacitor. Energy & Fuels, 2021, 35, 12569-12580.	2.5	56
233	Controlled synthesis of pure-phase metastable tetragonal Nb2O5 anode material for high-performance lithium batteries. Journal of Solid State Chemistry, 2021, 299, 122136.	1.4	11
234	Vanadium silicon-oxyfluoride nanowires for lithium storage systems: A perfect synergy for dynamic simple spot synthesis. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2021, 269, 115164.	1.7	3
235	Fe-Substituted Sodium β″-Al ₂ O ₃ as a High-Rate Na-Ion Electrode. Chemistry of Materials, 2021, 33, 6136-6145.	3.2	6
236	Woodâ€Đerived, Conductivity and Hierarchical Pore Integrated Thick Electrode Enabling High Areal/Volumetric Energy Density for Hybrid Capacitors. Small, 2021, 17, e2102532.	5.2	49

#	Article	IF	CITATIONS
237	Electrodeposition of the MnO2 on the Ag/Au Core–Shell Nanowire and Its Application to the Flexible Supercapacitor. Materials, 2021, 14, 3934.	1.3	5
238	Hierarchical <scp>NiCo</scp> / <scp>NiO</scp> / <scp> NiCo ₂ O ₄ </scp> composite formation by solvothermal reaction as a potential electrode material for hydrogen evolutions and asymmetric supercapacitors. International Journal of Energy Research, 2021, 45, 19947-19961.	2.2	33
239	Atomically dispersed Ni induced by ultrahigh N-doped carbon enables stable sodium storage. CheM, 2021, 7, 2684-2694.	5.8	77
240	Reassembly of MXene Hydrogels into Flexible Films towards Compact and Ultrafast Supercapacitors. Advanced Functional Materials, 2021, 31, 2102874.	7.8	57
241	Construction of triple-shelled hollow nanostructure by confining amorphous Ni-Co-S/crystalline MnS on/in hollow carbon nanospheres for all-solid-state hybrid supercapacitors. Chemical Engineering Journal, 2021, 416, 129500.	6.6	60
242	Coupling electrode-redox electrolyte within carbon nanotube arrays for supercapacitors with suppressed self-discharge. Sustainable Materials and Technologies, 2021, 28, e00284.	1.7	3
243	Disordered carbon anodes for Na-ion batteries—quo vadis?. Science China Chemistry, 2021, 64, 1679-1692.	4.2	44
244	Redox Active Organic-Carbon Composites for Capacitive Electrodes: A Review. Sustainable Chemistry, 2021, 2, 407-440.	2.2	23
245	Prussian Blue Cathode with Intercalation Pseudocapacitive Behavior for Lowâ€Temperature Batteries. Advanced Energy and Sustainability Research, 2021, 2, 2100105.	2.8	11
246	Recent Development of Flexible and Stretchable Supercapacitors Using Transition Metal Compounds as Electrode Materials. Small, 2021, 17, e2101974.	5.2	19
247	Integrated hybrid of graphitic carbon-encapsulated CuxO on multilayered mesoporous carbon from copper MOFs and polyaniline for asymmetric supercapacitor and oxygen reduction reactions. Carbon, 2021, 179, 89-99.	5.4	110
248	Construction of core-shell Ni@Ni3S2@NiCo2O4 nanoflakes as advanced electrodes for high-performance hybrid supercapacitors. Journal of Physics and Chemistry of Solids, 2021, 155, 110110.	1.9	7
249	Diffusionless‣ike Transformation Unlocks Pseudocapacitance with Bulk Utilization: Reinventing Fe ₂ O ₃ in Alkaline Electrolyte. Energy and Environmental Materials, 2023, 6, .	7.3	20
250	Potential-Dependent Electrochemical Impedance Spectroscopy as a Powerful Tool for Evaluating Supercapacitor Electrode Performance. Journal of the Electrochemical Society, 2021, 168, 080525.	1.3	9
251	Heterostructural conductive polymer with multi-dimensional carbon materials for capacitive energy storage. Applied Surface Science, 2021, 558, 149910.	3.1	16
252	Structural Evaluation of Coal-Tar-Pitch-Based Carbon Materials and Their Na+ Storage Properties. Coatings, 2021, 11, 948.	1.2	9
253	Design rules of pseudocapacitive electrode materials: ion adsorption, diffusion, and electron transmission over prototype TiO2. Science China Materials, 2022, 65, 391-399.	3.5	6
254	Probing the <i>In Situ</i> Pseudocapacitive Charge Storage in Ti ₃ C ₂ MXene Thin Films with X-ray Reflectivity. ACS Applied Materials & Interfaces, 2021, 13, 43597-43605.	4.0	8

#	Article	IF	CITATIONS
255	Synergistic effects of nanoarchitecture and oxygen vacancy in nickel molybdate hollow sphere towards a highâ€performance hybrid supercapacitor. International Journal of Energy Research, 0, , .	2.2	6
256	A carbon dotâ€based total green and selfâ€recoverable solidâ€state electrochemical cell fully utilizing O ₂ /H ₂ O redox couple. SusMat, 2021, 1, 448-457.	7.8	12
257	Precious potential regulation of carbon cathode enabling high-performance lithium-ion capacitors. Carbon, 2021, 180, 110-117.	5.4	19
258	Nanoflaky nickel-hydroxide-decorated phase-change microcapsules as smart electrode materials with thermal self-regulation function for supercapacitor application. Renewable Energy, 2021, 174, 557-572.	4.3	32
259	MOF derived TiO2 with reversible magnesium pseudocapacitance for ultralong-life Mg metal batteries. Chemical Engineering Journal, 2021, 418, 128491.	6.6	28
260	Efficient stress alleviation and interface regulation in Cu4SiP8-CNT hybrid for ultra-durable Li and Na storage. Nano Energy, 2021, 86, 106134.	8.2	14
261	A durable P2-type layered oxide cathode with superior low-temperature performance for sodium-ion batteries. Science China Materials, 2022, 65, 328-336.	3.5	22
262	Mapping (Pseudo)Capacitive Charge Storage Dynamics in Titanium Carbide MXene Electrodes in Aqueous Electrolytes Using 3D Bode Analysis. Energy Storage Materials, 2021, 39, 347-353.	9.5	44
263	In-situ sputtered 2D-MoS ₂ nanoworms reinforced with molybdenum nitride towards enhanced Na-ion based supercapacitive electrodes. Nanotechnology, 2021, 32, 455402.	1.3	14
264	Synergistic integration of threeâ€dimensional architecture composed of twoâ€dimensional nanostructure ternary metal oxide for highâ€performance hybrid supercapacitors. International Journal of Energy Research, 2021, 45, 21170-21181.	2.2	9
265	Binary Network of Conductive Elastic Polymer Constraining Nanosilicon for a High-Performance Lithium-Ion Battery. ACS Nano, 2021, 15, 14570-14579.	7.3	39
266	Capacitive charge storage of tetraphenylporphyrin sulfonate-CNT composite electrodes. Electrochimica Acta, 2021, 389, 138593.	2.6	22
267	Operando leaching of pre-incorporated Al and mechanism in transition-metal hybrids on carbon substrates for enhanced charge storage. Matter, 2021, 4, 2902-2918.	5.0	22
268	All-solid-state asymmetric supercapacitors based on VS4 nano-bundles and MXene nanosheets. Journal of Materials Science, 2021, 56, 20008-20025.	1.7	16
269	Agar-based porous electrode and electrolyte for flexible symmetric supercapacitors with ultrahigh energy density. Journal of Power Sources, 2021, 507, 230252.	4.0	44
270	Studies on electrochemical mechanism of nanostructured cobalt vanadate electrode material for pseudocapacitors. Journal of Energy Storage, 2021, 41, 102986.	3.9	17
271	Design strategies and research progress for Water-in-Salt electrolytes. Energy Storage Materials, 2022, 44, 10-28.	9.5	35
272	High-rate and ultralong-life Mg–Li hybrid batteries based on highly pseudocapacitive dual-phase TiO2 nanosheet cathodes. Journal of Power Sources, 2021, 506, 230118.	4.0	15

#	Article	IF	Citations
# 273	Mixed mathematical and experimental modeling of electrospun metal oxide supercapacitor electrodes. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2021, 39, 052401.	0.6	1
274	Chargeâ€Transfer Effects of Organic Ligands on Energy Storage Performance of Oxide Nanoparticleâ€Based Electrodes. Advanced Functional Materials, 2022, 32, 2106438.	7.8	9
275	Molecular Engineering of Polyaniline with Ultrathin Polydopamine and Monolayer Graphene for All-Solid-State Flexible Microsupercapacitors. ACS Applied Energy Materials, 2021, 4, 10069-10080.	2.5	5
276	A Cascade Battery: Coupling Two Sequential Electrochemical Reactions in a Single Battery. Advanced Materials, 2021, 33, e2105480.	11.1	25
277	One-step sonochemical synthesis of NiMn-LDH for supercapacitors and overall water splitting. Journal of Materials Science, 2021, 56, 18636-18649.	1.7	36
278	Conversion/insertion pseudocapacitance-driven vacancy defective perovskite fluorides K0.82Co0.43Mn0.57F2.66@reduced graphene oxide anode for powerful Na-based dual-ion batteries and capacitors. Electrochimica Acta, 2021, 389, 138713.	2.6	5
279	Simultaneously achieving high energy and power density for ultrafast-charging supercapacitor built by a semi-graphitic hierarchical porous carbon nanosheet and a high-voltage alkaline aqueous electrolyte. Journal of Power Sources, 2021, 506, 230103.	4.0	31
280	A review of technologies and applications on versatile energy storage systems. Renewable and Sustainable Energy Reviews, 2021, 148, 111263.	8.2	192
281	Hybrid Li-Ion Capacitor Operated within an All-Climate Temperature Range from â^'60 to +55 °C. ACS Applied Materials & Interfaces, 2021, 13, 45630-45638.	4.0	6
282	Photopatternable hydroxide ion electrolyte for solid-state micro-supercapacitors. Joule, 2021, 5, 2466-2478.	11.7	30
283	In Situ Growth and Electrochemical Activation of Copper-Based Nickel–Cobalt Hydroxide for High-Performance Energy Storage Devices. ACS Applied Energy Materials, 2021, 4, 9460-9469.	2.5	2
284	Novel Nanostructured Nd(OH) ₃ /g-C ₃ N ₄ Nanocomposites (Nanorolls Anchored on Nanosheets) as Reliable Electrode Material for Supercapacitors. Energy & Fuels, 2021, 35, 15205-15212.	2.5	7
285	Anthraquinone-modified nitrogen-doped graphene aerogel for boosting energy density of supercapacitors by self-matching of capacity. Electrochimica Acta, 2021, 393, 139057.	2.6	21
286	Novel Mo-doped nickel sulfide thin sheets decorated with Ni–Co layered double hydroxide sheets as an advanced electrode for aqueous asymmetric super-capacitor battery. Journal of Power Sources, 2021, 509, 230333.	4.0	54
287	Confining self-standing CoSe2 nanostructures and Fe3C wrapped N-doped carbon frameworks with enhanced energy storage performances. Applied Surface Science, 2021, 564, 150449.	3.1	21
288	Hybrid cathode composed of pyrite-structure CoS2 hollow polyhedron and Ketjen black@sulfur materials propelling polysulfide conversion in lithium sulfur batteries. Ceramics International, 2021, 47, 27122-27131.	2.3	33
289	Electrochemically-assisted removal of cadmium ions by redox active Cu-based metal-organic framework. Chemical Engineering Journal, 2021, 421, 129765.	6.6	18
290	Host–Guest Intercalation Chemistry in MXenes and Its Implications for Practical Applications. ACS Nano, 2021, 15, 15502-15537.	7.3	38

#	Article	IF	CITATIONS
291	Dualâ€lon Intercalation and High Volumetric Capacitance in a Twoâ€Dimensional Nonâ€Porous Coordination Polymer. Angewandte Chemie - International Edition, 2021, 60, 27119-27125.	7.2	17
292	Investigation of the high-rate Na ion storage property in bulk Cu2â^'xSe plates. Journal of Alloys and Compounds, 2021, 879, 160485.	2.8	8
293	Electrochemically constructing V-doped BiFeO3 nanoflake network anodes for flexible asymmetric micro-supercapacitors. Electrochimica Acta, 2021, 393, 139079.	2.6	13
294	Dualâ€lon Intercalation and High Volumetric Capacitance in a Twoâ€Dimensional Nonâ€Porous Coordination Polymer. Angewandte Chemie, 2021, 133, 27325-27331.	1.6	2
295	Nanoplatelets ammonium nickel-cobalt phosphate graphene foam composite as novel electrode material for hybrid supercapacitors. Journal of Alloys and Compounds, 2021, 883, 160897.	2.8	22
296	Comprehensive study and improvement of experimental methods for obtaining referenced battery state-of-power. Journal of Power Sources, 2021, 512, 230462.	4.0	14
297	Radical polymer grafted graphene for high-performance Li+/Na+ organic cathodes. Journal of Power Sources, 2021, 511, 230363.	4.0	12
298	Surface modification of manganese monoxide through chemical vapor deposition to attain high energy storage performance for aqueous zinc–ion batteries. Journal of Colloid and Interface Science, 2021, 601, 617-625.	5.0	13
299	Porous N-doped carbon nanofibers assembled with nickel ferrite nanoparticles as efficient chemical anchors and polysulfide conversion catalyst for lithium-sulfur batteries. Journal of Colloid and Interface Science, 2021, 601, 209-219.	5.0	123
300	Zn2+ storage performance and structural change of orthorhombic V2O5 nanowires as the cathode material for rechargeable aqueous zinc-ion batteries. Electrochimica Acta, 2021, 397, 139255.	2.6	34
301	An ultrahigh-energy-density lithium metal capacitor. Energy Storage Materials, 2021, 42, 154-163.	9.5	13
302	Simultaneously high mass-loading and volumetric energy density in Ag2O-intercalated MnO2-based supercapacitor with rapid electron/ion transport channels. Chemical Engineering Journal, 2021, 426, 131188.	6.6	12
303	High-performance asymmetric supercapacitor based on Ni3S2 nanoparticles immobilized on carbon nanosheets from sodium alginate. Journal of Alloys and Compounds, 2021, 885, 161194.	2.8	12
304	Heterostructured NiSe2/CoSe2 hollow microspheres as battery-type cathode for hybrid supercapacitors: Electrochemical kinetics and energy storage mechanism. Chemical Engineering Journal, 2021, 426, 131328.	6.6	109
305	Lower-voltage plateau Zn-substituted Co3O4 submicron spheres anode for Li-ion half and full batteries. Journal of Alloys and Compounds, 2022, 890, 161888.	2.8	7
306	Rational design of honeycomb Ni-Co LDH/graphene composite for remarkable supercapacitor via ultrafast microwave synthesis. Applied Surface Science, 2022, 571, 151322.	3.1	62
307	Enhanced pseudocapacitive behaviors of Sb-based anodes for lithium ion batteries via dual modification approach of Fe doping combined with double carbon coatings. Journal of Alloys and Compounds, 2021, 889, 161658.	2.8	6
308	Urea-assisted hydrothermal synthesis of MnMoO4/MnCO3 hybrid electrochemical electrode and fabrication of high-performance asymmetric supercapacitor. Journal of Materials Science and Technology, 2022, 96, 332-344.	5.6	32

#	Article	IF	CITATIONS
309	Shell-strengthened hollow architecture of NiCo2S4 carved through an in-situ reaction Ostwald Ripening mechanism with significantly enhanced electrochemical performance. Journal of Alloys and Compounds, 2021, 889, 161632.	2.8	12
310	Porphyrin-assisted synthesis of hierarchical flower-like polypyrrole arrays based flexible electrode with high areal capacitance. Chemical Engineering Journal, 2022, 428, 131089.	6.6	8
311	High-Energy and High-Power Pseudocapacitor–Battery Hybrid Sodium-Ion Capacitor with Na+ Intercalation Pseudocapacitance Anode. Nano-Micro Letters, 2021, 13, 55.	14.4	58
312	Energy storage electrochromic devices in the era of intelligent automation. Physical Chemistry Chemical Physics, 2021, 23, 14126-14145.	1.3	26
313	Minimization of ion transport resistance: diblock copolymer micelle derived nitrogen-doped hierarchically porous carbon spheres for superior rate and power Zn-ion capacitors. Journal of Materials Chemistry A, 2021, 9, 8435-8443.	5.2	45
314	Enhancing Li-ion capacity and rate capability in cation-defective vanadium ferrite aerogels via aluminum substitution. RSC Advances, 2021, 11, 14495-14503.	1.7	1
315	The mechanism of bulky imidazolium cation storage in dual graphite batteries: a spectroscopic and theoretical investigation. Journal of Materials Chemistry A, 2021, 9, 11595-11603.	5.2	8
316	ZIF-67 derived tricobalt tetroxide induced synthesis of a sandwich layered Co ₃ O ₄ /NiNH electrode material for high performance supercapacitors. Materials Chemistry Frontiers, 2021, 5, 1438-1447.	3.2	6
317	A cation selective separator induced cathode protective layer and regulated zinc deposition for zinc ion batteries. Journal of Materials Chemistry A, 2021, 9, 4734-4743.	5.2	97
318	Covalent functionalization of carbon materials with redox-active organic molecules for energy storage. Nanoscale, 2021, 13, 36-50.	2.8	37
319	Defect Induced in 3D-Rhombohedral MnCO ₃ Microcrystals by Substitution of Transition Metals for Aqueous and Solid-State Hybrid Supercapacitors. ACS Sustainable Chemistry and Engineering, 2021, 9, 1656-1668.	3.2	21
320	Microbe-Assisted Assembly of Ti ₃ C ₂ T _{<i>x</i>} MXene on Fungi-Derived Nanoribbon Heterostructures for Ultrastable Sodium and Potassium Ion Storage. ACS Nano, 2021, 15, 3423-3433.	7.3	158
321	XRD/Raman spectroscopy studies of the mechanism of (de)intercalation of Na ⁺ from/into highly crystalline birnessite. Materials Advances, 2021, 2, 3940-3953.	2.6	13
322	Flexible Free‣tanding MoO ₃ /Ti ₃ C ₂ T <i>_z</i> MXene Composite Films with High Gravimetric and Volumetric Capacities. Advanced Science, 2021, 8, 2003656.	5.6	59
323	Full Activation of Mn ⁴⁺ /Mn ³⁺ Redox in Na ₄ MnCr(PO ₄) ₃ as a Highâ€Voltage and Highâ€Rate Cathode Material for Sodiumâ€Ion Batteries. Small, 2020, 16, e2001524.	5.2	98
324	Defect-rich Ni3Sn4 quantum dots anchored on graphene sheets exhibiting unexpected reversible conversion reactions with exceptional lithium and sodium storage performance. Applied Surface Science, 2020, 526, 146756.	3.1	12
325	Recent progress in aqueous based flexible energy storage devices. Energy Storage Materials, 2020, 30, 260-286.	9.5	87
326	Quantum prediction of ultra-low thermal conductivity in lithium intercalation materials. Nano Energy, 2020, 75, 104916.	8.2	24

#	Article	IF	CITATIONS
327	Surface Redox-Active Organosulfur-Tethered Carbon Nanotubes for High Power and Long Cyclability of Na–Organosulfur Hybrid Energy Storage. ACS Energy Letters, 2021, 6, 280-289.	8.8	20
328	A high operating voltage micro-supercapacitor based on the interlamellar modulation type Ti ₃ C ₂ T _x MXene. Nanotechnology, 2021, 32, 035402.	1.3	11
329	Operando surface science methodology reveals surface effect in charge storage electrodes. National Science Review, 2021, 8, nwaa289.	4.6	13
330	An Overview on the Development of Electrochemical Capacitors and Batteries – Part I. Anais Da Academia Brasileira De Ciencias, 2020, 92, e20200796.	0.3	5
331	MoTe2 on Metal-Organic Framework Derived MoO2/N-Doped Carbon Rods for Enhanced Sodium-Ion Storage Properties. SSRN Electronic Journal, 0, , .	0.4	0
332	Electrochemical properties of an activated carbon xerogel monolith from resorcinol–formaldehyde for supercapacitor electrode applications. RSC Advances, 2021, 11, 33192-33201.	1.7	11
333	Wide Voltage Aqueous Asymmetric Supercapacitors: Advances, Strategies, and Challenges. Advanced Functional Materials, 2022, 32, 2108107.	7.8	90
334	Postâ€llumination Photoconductivity Enables Extension of Photo atalysis after Sunset. Advanced Energy Materials, 2021, 11, 2101566.	10.2	20
335	In-situ deposition of amorphous Tungsten(VI) oxide thin-film for solid-state symmetric supercapacitor. Ceramics International, 2022, 48, 2510-2521.	2.3	9
336	Subâ€Nanometer Confined Ions and Solvent Molecules Intercalation Capacitance in Microslits of 2D Materials. Small, 2021, 17, e2104649.	5.2	9
337	Mn _{0.26} V ₂ O ₅ · <i>n</i> H ₂ O Nanoribbons with Fast Ion Diffusion Channels and High Electrical Conductivity for Intercalation Pseudocapacitive Zn ²⁺ Storage. Energy & Fuels, 2021, 35, 17948-17955.	2.5	7
338	Aqueous Electrolytes, MXeneâ€Based Supercapacitors and Their Selfâ€Discharge. Advanced Energy and Sustainability Research, 2022, 3, 2100147.	2.8	11
339	Formation, lithium storage properties and mechanism of nanoporous germanium fabricated by dealloying. Journal of Chemical Physics, 2021, 155, 184702.	1.2	2
340	2D Silicene Nanosheets for High-Performance Zinc-Ion Hybrid Capacitor Application. ACS Nano, 2021, 15, 16533-16541.	7.3	26
341	Insights into Redox Processes and Correlated Performance of Organic Carbonyl Electrode Materials in Rechargeable Batteries. Advanced Materials, 2022, 34, e2104150.	11.1	69
342	{BW ₁₂ O ₄₀ } Hybrids Modified by in Situ Synthesized Rigid Ligand with Supercapacitance and Photocatalytic Properties. Inorganic Chemistry, 2021, 60, 16357-16369.	1.9	15
343	Substrate Dependent Charge Transfer Kinetics at the Solid/Liquid Interface of Carbonâ€Based Electrodes with Potential Application for Organic Naâ€lon Batteries. Israel Journal of Chemistry, 2022, 62, .	1.0	4
344	Conjugated Polyelectrolytes: Underexplored Materials for Pseudocapacitive Energy Storage. Advanced Materials, 2022, 34, e2104206.	11.1	25

#	Article	IF	Citations
345	Corrosion assisted the formation of unique structure transition metal oxides/carbon nanofibers with fast and high lithium storage. Electrochimica Acta, 2021, 400, 139373.	2.6	5
346	Gradient architecture to boost the electrochemical capacitance of hard carbon. Journal of Power Sources, 2021, 515, 230621.	4.0	8
347	A presodiation strategy with high efficiency by utilizing low-price and eco-friendly Na2CO3 as the sacrificial salt towards high-performance pouch sodium-ion capacitors. Journal of Power Sources, 2021, 515, 230628.	4.0	13
349	In Situ Binder-Free and Hydrothermal Growth of Nanostructured NiCo2S4/Ni Electrodes for Solid-State Hybrid Supercapacitors. Energies, 2021, 14, 7114.	1.6	8
350	Electrochemically Induced Deformation Determines the Rate of Lithium Intercalation in Bulk TiS ₂ . ACS Energy Letters, 2021, 6, 4173-4178.	8.8	11
351	Nickel-based bimetallic battery-type materials for asymmetric supercapacitors. Coordination Chemistry Reviews, 2022, 451, 214242.	9.5	86
352	Origination of forced particle-void networks for superior electron and mass transfer in binder-free supercapacitors. Scripta Materialia, 2022, 208, 114317.	2.6	1
353	Chemically coupled 0D-3D hetero-structure of Co9S8-Ni3S4 hollow spheres for Zn-based supercapacitors. Chemical Engineering Journal, 2022, 430, 132836.	6.6	23
354	Anions influence on the electrochemical performance of Co3X4 (XÂ=ÂO, Se) for supercapacitor: Experiments and theoretical calculations. Applied Surface Science, 2022, 574, 151646.	3.1	12
355	ZnCl ₂ regulated flax-based porous carbon fibers for supercapacitors with good cycling stability. New Journal of Chemistry, 2021, 45, 22602-22609.	1.4	48
356	Rapid Carbothermal Shock Enhances the Double-Layer Response of Graphene Oxide–Carbon Nanotube Electrodes. Energy & Fuels, 2021, 35, 17919-17929.	2.5	2
357	Epitaxial oxide thin films for oxygen electrocatalysis: A tutorial review. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2022, 40, 010801.	0.9	12
358	Hierarchical porous carbon obtained by Mg–Al double hydroxide templates with high volumetric capacitance and rate performance. Microporous and Mesoporous Materials, 2022, 330, 111593.	2.2	8
359	Hierarchical flower-like architecture of nickel phosphide anchored with nitrogen-doped carbon quantum dots and cobalt oxide for advanced hybrid supercapacitors. Journal of Colloid and Interface Science, 2022, 609, 503-512.	5.0	17
360	Bismuth-based materials for rechargeable aqueous batteries and water desalination. Rare Metals, 2022, 41, 287-303.	3.6	24
361	Sparse data machine learning for battery health estimation and optimal design incorporating material characteristics. Applied Energy, 2022, 307, 118165.	5.1	1
362	Î ³ -Mo ₂ N Nanobelts with Controlled Grain and Mesopore Sizes as High-Performance Anodes for Lithium-Ion Capacitors. ACS Applied Nano Materials, 2021, 4, 12514-12526.	2.4	4
363	Nitrogen-doped activated porous carbon for 4.5ÂV lithium-ion capacitor with high energy and power density. Journal of Energy Storage, 2022, 47, 103675.	3.9	18

ARTICLE IF CITATIONS Fast-charging and long-lasting Mg-Na hybrid batteries based on extremely pseudocapacitive bronze 6.6 9 364 TiO2 nanosheet cathodes. Chemical Engineering Journal, 2022, 433, 133810. Future Directions for Electrochemical Capacitors. ACS Energy Letters, 2021, 6, 4311-4316. 8.8 Intercalation-deintercalation design in MXenes for high-performance supercapacitors. Nano Research, 366 5.8 17 2022, 15, 3213-3221. An Ultrahighâ€Power Mesocarbon Microbeads | Na⁺â€Diglyme | Na₃V₂(PO₄)₃ Sodiumâ€Ion Battery. Advanced Materials, 2022, 34, e2108304. 11.1 Realizing Superior Redox Kinetics of Hollow Bimetallic Sulfide Nanoarchitectures by Defectâ€Induced 368 5.2 85 Manipulation toward Flexible Solidâ€State Supercapacitors. Small, 2022, 18, e2104507. Coaxial cable-like dual conductive channel strategy in polypyrrole coated perovskite lanthanum manganite for high-performance asymmetric supercapacitors. Journal of Colloid and Interface 5.0 Science, 2022, 610, 601-609. Two-dimensional quantum-sheet films with sub-1.2 nm channels for ultrahigh-rate electrochemical 370 15.6 55 capacitance. Nature Nanotechnology, 2022, 17, 153-158. Reviewâ€"Pseudocapacitive Energy Storage Materials from HÃgg-Phase Compounds to High-Entropy 371 1.3 Ceramics. Journal of the Electrochemical Society, 2021, 168, 120521. <i>In Situ</i> Synthesis of a Si/CNTs/C Composite by Directly Reacting Magnesium Silicide with Lithium 372 2.5 7 Carbonate for Enhanced Lithium Storage Capability. Energy & amp; Fuels, 2021, 35, 20386-20393. All-climate and air-stable NASICON-Na2TiV(PO4)3 cathode with three-electron reaction toward 6.6 high-performance sodium-ion batteries. Chemical Engineering Journal, 2022, 433, 133542. Controllable synthesis of hierarchical nanoporous carbon@Ni(OH)2 rambutan-like composite microspheres for high-performance hybrid supercapacitor. Arabian Journal of Chemistry, 2022, 15, 374 10 2.3103580. Linear and non-linear pseudocapacitances with or without diffusion control. Progress in Natural 1.8 Science: Materials International, 2021, 31, 792-800. Cyclodextrin-Integrated PEO-Based Composite Solid Electrolytes for High-Rate and Ultrastable 376 4.0 29 All-Solid-State Lithium Batteries. ACS Applied Materials & amp; Interfaces, 2021, 13, 57380-57391. Facile synthesis of NiCo2O4 nanosheets with oxygen vacancies for aqueous zinc-ion supercapacitors. 2.8 Journal of Alloys and Compounds, 2022, 896, 162925. Rapid microwave-assisted synthesis of MnCo2O4 nanoflakes as a cathode for battery-supercapacitor 378 3.9 30 hybrid. Journal of Energy Storage, 2021, 44, 103566. Symmetric/asymmetric energy storage device of reduced graphene oxide assisted LaNi0.9Co0.1O3 379 perovskite nanomaterials. Applied Physics A: Materials Science and Processing, 2021, 127, 1. Catalytic graphitization of anthracite-derived carbon as the anode for Li/K-ion batteries. Journal of 380 1.1 3 Materials Science: Materials in Electronics, 2022, 33, 4862-4868. Screening Heteroatom Configurations for Reversible Sloping Capacity Promises Highâ€Power Naâ€Ion 58 Batteries. Angewandte Chemie - International Edition, 2022, 61, .

#	Article	IF	Citations
382	Nano Carbon/Vertical Graphene/MnO ₂ Nanosheets Composite Particles for Highâ€Performance Supercapacitors. Energy Technology, 2022, 10, 2100884.	1.8	13
383	Metastable FeCN ₂ @nitrogen-doped carbon with high pseudocapacitance as an anode material for sodium ion batteries. Nanoscale, 2022, 14, 780-789.	2.8	7
384	V-doped T-Nb ₂ O ₅ toward high-performance Mg ²⁺ /Li ⁺ hybrid ion batteries. Journal of Materials Chemistry A, 2022, 10, 577-584.	5.2	6
385	Interfacial Engineered Vanadium Oxide Nanoheterostructures Synchronizing High-Energy and Long-Term Potassium-Ion Storage. ACS Nano, 2022, 16, 1502-1510.	7.3	35
386	A bubble-templated approach to holey N/S-codoped carbon nanosheet aerogels with honeycomb-like structure for supercapacitors. Electrochimica Acta, 2022, 404, 139741.	2.6	13
387	MoTe2 on metal-organic framework derived MoO2/N-doped carbon rods for enhanced sodium-ion storage properties. Energy, 2022, 243, 123043.	4.5	10
388	Photoelectrocatalytic mechanism of PEDOT modified filtration membrane. Science of the Total Environment, 2022, 813, 152397.	3.9	5
389	Construction of interconnected NiCo layered double hydroxides/metal-organic frameworks hybrid nanosheets for high-performance supercapacitor. Journal of Energy Storage, 2022, 48, 103961.	3.9	40
390	Construction of Co3O4-Ni3S4-rGO ternary hybrid as an efficient nanoelectrocatalyst for methanol and ethanol oxidation in alkaline media. Journal of Alloys and Compounds, 2022, 900, 163408.	2.8	33
391	Engineering hierarchical porous ternary Co-Mn-Cu-S nanodisk arrays for ultra-high-capacity hybrid supercapacitors. Journal of Colloid and Interface Science, 2022, 612, 298-307.	5.0	26
392	Highâ€Throughput Production of Cheap Mineralâ€Based Heterostructures for High Power Sodium Ion Capacitors. Advanced Functional Materials, 2022, 32, .	7.8	75
393	MXene-based symmetric supercapacitors with high voltage and high energy density. Materials Reports Energy, 2022, 2, 100078.	1.7	10
394	Boron-doping-induced defect engineering enables high performance of a graphene cathode for aluminum batteries. Inorganic Chemistry Frontiers, 2022, 9, 925-934.	3.0	16
395	Novel Electrode Materials and Redoxâ€Active Electrolyte for Highâ€Performance Supercapacitor. ChemElectroChem, 2022, 9, .	1.7	3
396	Solid-State Fabrication of Co3V2O8@C Anode Materials with Outstanding Rate Performance and Cycling Stability by Synergistic Effects of Pseudocapacity and Carbon Coating. Journal of Physical Chemistry C, 2022, 126, 903-911.	1.5	5
397	Pseudocapacitive Conjugated Polyelectrolyte/2D Electrolyte Hydrogels with Enhanced Physicoâ€Electrochemical Properties. Advanced Electronic Materials, 2022, 8, .	2.6	13
398	Allâ€Solidâ€State Flexible Symmetric Supercapacitor Based on Morphology Oriented Amorphous Cuâ^'Coâ^'B Alloy Nanosheets for Energy Storage. Batteries and Supercaps, 2022, 5, .	2.4	11
399	Progress and Perspective of Metallic Glasses for Energy Conversion and Storage. Advanced Energy Materials, 2022, 12, .	10.2	19

#	Article	IF	CITATIONS
400	Ion Intercalation Process in MXene Pseudocapacitors With Aqueous and Non-Aqueous Electrolytes. , 2022, , .		0
401	Screening Heteroatom Configurations for Reversible Sloping Capacity Promises Highâ€Power Naâ€lon Batteries. Angewandte Chemie, 0, , .	1.6	23
402	PERFORMANCE EVALUATION OF ADVANCED ENERGY STORAGE SYSTEMS: A REVIEW. Energy and Environment, 2023, 34, 1094-1141.	2.7	11
403	Engineered perovskite LaCoO3/rGO nanocomposites for asymmetrical electrochemical supercapacitor application. Journal of Materials Science: Materials in Electronics, 2022, 33, 2590-2606.	1.1	14
404	Ultrathick MoS ₂ Films with Exceptionally High Volumetric Capacitance. Advanced Energy Materials, 2022, 12, .	10.2	44
405	Nanostructured materials for electrochromic energy storage systems. Journal of Materials Chemistry A, 2022, 10, 1179-1226.	5.2	25
406	In situ formation of Co3O4 nanocrystals embedded in laser-induced graphene foam for high-energy flexible micro-supercapacitors. Dalton Transactions, 2022, , .	1.6	2
407	Bichannel design inspired by membrane pump: a rate booster for the conversion-type anode of sodium-ion battery. Journal of Materials Chemistry A, 2022, 10, 3373-3381.	5.2	2
408	Supercapacitors. , 2022, , 383-417.		7
409	Insights into the sodium storage mechanism of Bi ₂ Te ₃ nanosheets as superior anodes for sodium-ion batteries. Nanoscale, 2022, 14, 1755-1766.	2.8	18
410	Highâ€Performance Mgâ^'Li Hybrid Batteries Based on Pseudocapacitive Anatase Ti _{1â€<i>x</i>} Co _{<i>x</i>} O _{2â€<i>y</i>} Nanosheet Cathodes. ChemSusChem, 2022, 15, .	3.6	8
411	Timeâ€Đependent Cation Selectivity of Titanium Carbide MXene in Aqueous Solution. Advanced Sustainable Systems, 2022, 6, .	2.7	4
412	Elucidating the pseudocapacitive mechanism of ternary Co-Ni-B electrodes–Towards miniaturization and superior electrochemical performance for building outmatched supercapacitors. Electrochimica Acta, 2022, 409, 140003.	2.6	9
413	Recent advances on fiber-reinforced multifunctional composites for structural supercapacitors. Functional Composites and Structures, 2022, 4, 012001.	1.6	13
414	Hierarchical sandwich NiFe layered double hydroxide/reduced graphene oxide for high energy density asymmetric supercapacitors. Journal of Electroanalytical Chemistry, 2022, 907, 116065.	1.9	10
415	Regulating the electrolyte ion types and exposed crystal facets for pseudocapacitive energy storage of transition metal nitrides. Energy Storage Materials, 2022, 46, 278-288.	9.5	15
416	Photoelectrochemical energy storage materials: design principles and functional devices towards direct solar to electrochemical energy storage. Chemical Society Reviews, 2022, 51, 1511-1528.	18.7	113
417	Selective Center Charge Density Enables Conductive 2D Metalâ^'Organic Frameworks with Exceptionally High Pseudocapacitance and Energy Density for Energy Storage Devices. Advanced Materials, 2022, 34, e2109870.	11.1	18

#	Article	IF	CITATIONS
418	N/S co-doped interconnected 3D carbon frameworks for aqueous and high voltage flexible quasi-solid-state supercapacitors. Ionics, 2022, 28, 2377.	1.2	1
419	Lignin-Based/Polypyrrole Carbon Nanofiber Electrode With Enhanced Electrochemical Properties by Electrospun Method. Frontiers in Chemistry, 2022, 10, 841956.	1.8	18
420	Selenium-Doped Amorphous Black Phosphorus@TiO ₂ /C Heterostructures for High-Performance Li/Na/K Ion Batteries. Inorganic Chemistry, 2022, 61, 3121-3131.	1.9	17
421	An ultrahighâ€energy density and wide potential window aqueous electrolyte supercapacitor built by polypyrrole/aniline 2â€sulfonic acid modified carbon felt electrode. International Journal of Energy Research, 2022, 46, 8042-8060.	2.2	26
422	Designing Strong Interface of Cubicâ€like Sn–Co–S@carbon with SnO 2 as Catalyst for Enhanced Li/Naâ€lon Storage Abilities. Advanced Materials Interfaces, 0, , 2102474.	1.9	0
423	Unleashing energy storage ability of aqueous battery electrolytes. Materials Futures, 2022, 1, 022001.	3.1	17
424	Halogen-based functionalized chemistry engineering for high-performance supercapacitors. Chinese Chemical Letters, 2023, 34, 107198.	4.8	4
425	Effect of vacancies on the electrochemical behavior of Mo-based MXenes in aqueous supercapacitors. Journal of Power Sources, 2022, 525, 231064.	4.0	13
426	Three dimensional Co3S4 nanowires as multifunctional electrode for supercapacitor and urea electrolysis. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2022, 278, 115654.	1.7	3
427	WO3-x@W2N heterogeneous nanorods cross-linked in carbon nanosheets for electrochemical potassium storage. Chemical Engineering Journal, 2022, 435, 135188.	6.6	10
428	Bio-Derived Carbon with Tailored Hierarchical Pore Structures and Ultra-High Specific Surface Area for Superior and Advanced Supercapacitors. Nanomaterials, 2022, 12, 27.	1.9	11
429	Engineering hierarchical Sb ₂ S ₃ /N–C from natural minerals with stable phase-change towards all-climate energy storage. Journal of Materials Chemistry A, 2022, 10, 5488-5504.	5.2	12
430	Synergistically modified WS ₂ @PANI binary nanocomposite-based all-solid-state symmetric supercapacitor with high energy density. New Journal of Chemistry, 2022, 46, 7043-7054.	1.4	15
431	NanostructuredÂZn3v3o8@N-Doped GrapheneÂWith High-Rate and Ultra-Stable Storage as Anode of Lithium-IonÂBatteries. SSRN Electronic Journal, 0, , .	0.4	Ο
432	Three-Dimensional Ordered and Porous Ti3c2tx@Chitosan Film Enabled by Self-Assembly Strategy for High-Rate Pseudocapacitive Energy Storage. SSRN Electronic Journal, 0, , .	0.4	0
433	Inexpensive and Eco-Friendly Nanostructured Birnessite-Type Δ-Mno2: A Design Strategy from Oxygen Defect Engineering and K+ Pre-Intercalation. SSRN Electronic Journal, 0, , .	0.4	Ο
434	Adjusting the Affinity between Electrode and Electrolyte by Loading Cobalt Boride on Vermiculite for Supercapacitor Electrode Application. SSRN Electronic Journal, 0, , .	0.4	0
435	Uniform Bi-Bi2o3 Nanoparticles/Reduced Graphene Oxide Composites for High-Performance Aqueous Alkaline Battery. SSRN Electronic Journal, 0, , .	0.4	Ο

#	Article	IF	CITATIONS
436	Pseudocapacitive storage in cathode materials of aqueous zinc ion batteries toward high power and energy density. Journal of Materials Chemistry A, 2022, 10, 9773-9787.	5.2	30
437	Rational design and microwave-assisted synthesis of a novel terthiophene derivative for facile preparation of binder-free polymer/metal oxide-based binary composite electrodes with high electrochemical performance. New Journal of Chemistry, 2022, 46, 6134-6149.	1.4	4
438	Hierarchical Sb2S3/SnS2/C heterostructure with improved performance for sodium-ion batteries. Science China Materials, 2022, 65, 1443-1452.	3.5	14
439	Elucidating Curvature-Capacitance Relationships in Carbon-Based Supercapacitors. Physical Review Letters, 2022, 128, 086001.	2.9	14
440	Recent advances and future perspectives for aqueous zinc-ion capacitors. Materials Futures, 2022, 1, 022101.	3.1	34
441	Vertically Aligned Micropillar Arrays Coated with a Conductive Polymer for Advanced Pseudocapacitance Energy Storage. ACS Applied Materials & Interfaces, 2022, 14, 10805-10814.	4.0	20
442	Interlayerâ€Expanded Titanate Hierarchical Hollow Spheres Embedded in Carbon Nanofibers for Enhanced Na Storage. Small, 2022, 18, e2107890.	5.2	8
443	Introducing a Pseudocapacitive Lithium Storage Mechanism into Graphite by Defect Engineering for Fast-Charging Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2022, 14, 16279-16288.	4.0	21
444	Polydopamineâ€derived carbon layer anchoring NiCoâ€P nanowire arrays for highâ€performance binderâ€free supercapacitor and electrocatalytic hydrogen evolution. SusMat, 2022, 2, 646-657.	7.8	19
445	Superior Volumetric Capability Dualâ€ion Batteries Enabled by A Microsize Niobium Tungsten Oxide Anode. Advanced Functional Materials, 2022, 32, .	7.8	14
446	Hierarchical Nanocapsules of Cu-Doped MoS ₂ @H-Substituted Graphdiyne for Magnesium Storage. ACS Nano, 2022, 16, 3955-3964.	7.3	28
447	Nanostructure and Advanced Energy Storage: Elaborate Material Designs Lead to High-Rate Pseudocapacitive Ion Storage. ACS Nano, 2022, 16, 5131-5152.	7.3	73
448	Enhancing the Ionic Conductivity of Poly(3,4-propylenedioxythiophenes) with Oligoether Side Chains for Use as Conductive Cathode Binders in Lithium-Ion Batteries. Chemistry of Materials, 2022, 34, 2672-2686.	3.2	23
449	Mismatching integration-enabled strains and defects engineering in LDH microstructure for high-rate and long-life charge storage. Nature Communications, 2022, 13, 1409.	5.8	42
450	TiO ₂ (B) nanosheets modified Li ₄ Ti ₅ O ₁₂ microsphere anode for high-rate lithium-ion batteries. Nanotechnology, 2022, 33, 245404.	1.3	6
451	In-situ electrochemical synthesis of high-performance S/VOx composite for aqueous zinc ion battery. Journal Physics D: Applied Physics, 0, , .	1.3	2
452	Evolution of nanoporosity and electrochemical behavior in organosilicon polymer derived carbon hybrids. Ceramics International, 2022, 48, 8216-8227.	2.3	2
453	Advances in microâ€supercapacitors (MSCs) with high energy density and fast chargeâ€discharge capabilities for flexible bioelectronic devices—A review. Electrochemical Science Advances, 2023, 3, .	1.2	15

#	Article	IF	CITATIONS
454	Review—Influencing Factors and Suppressing Strategies of the Self-Discharge for Carbon Electrode Materials in Supercapacitors. Journal of the Electrochemical Society, 2022, 169, 030504.	1.3	10
455	Strategies to Improve the Synaptic Characteristics of Oxygen-Based Electrochemical Random-Access Memory Based on Material Parameters Optimization. ACS Applied Materials & Interfaces, 2022, 14, 13450-13457.	4.0	14
456	Redox-Active Water-in-Salt Electrolyte for High-Energy-Density Supercapacitors. ACS Energy Letters, 2022, 7, 1266-1273.	8.8	33
457	Free-Standing Titanium Nitride Films as Carbon-Free Sulfur Hosts for Flexible Lithium–Sulfur Batteries. ACS Applied Nano Materials, 2022, 5, 3531-3540.	2.4	10
458	Semi-Polycrystalline–Polyaniline Empowered Electrochemical Capacitor. Energies, 2022, 15, 2001.	1.6	10
459	Ultrafast high-energy micro-supercapacitors based on open-shell polymer-graphene composites. Cell Reports Physical Science, 2022, 3, 100792.	2.8	12
460	Amorphization of Pseudocapacitive Tâ^'Nb ₂ O ₅ Accelerates Lithium Diffusivity as Revealed Using Tunable Isomorphic Architectures. Batteries and Supercaps, 0, , .	2.4	3
461	Facile fabrication of flower-like binary metal oxide as a potential electrode material for high-performance hybrid supercapacitors. Ceramics International, 2022, 48, 9459-9467.	2.3	28
462	Electrochemical behavior of polydiphenylamine-2-carboxylic acid and its hybrid nanocomposites with single-walled carbon nanotubes on anodized graphite foil in lithium aprotic electrolyte. Reactive and Functional Polymers, 2022, 173, 105225.	2.0	7
463	Faster Intercalation Pseudocapacitance Enabled by Adjustable Amorphous Titania where Tunable Isomorphic Architectures Reveal Accelerated Lithium Diffusivity. Batteries and Supercaps, 0, , .	2.4	4
464	Tuning the Porous Structure in PMMA-Templated Mesoporous MoO ₂ for Pseudocapacitive Li-Ion Electrodes. Journal of the Electrochemical Society, 2022, 169, 040545.	1.3	4
465	Hierarchical nanospheres of Fe2O3-Fe2N anchored on reduced graphene oxide as a high-performance anode for lithium-ion batteries. Surfaces and Interfaces, 2022, 30, 101959.	1.5	3
466	Predelithiation-driven ultrastable Na-ion battery performance using Si,P-rich ternary M-Si-P anodes. Energy Storage Materials, 2022, 49, 421-432.	9.5	4
467	Three-dimensional ordered and porous Ti3C2Tx@Chitosan film enabled by self-assembly strategy for high-rate pseudocapacitive energy storage. Chemical Engineering Journal, 2022, 442, 136255.	6.6	12
468	Hierarchical ZnCo2O4-ZnO/ZnCo2O4 core-shell microarchitecture as pseudocapacitive material with ultra-high rate capability and enhanced cyclic stability for asymmetric supercapacitors. Applied Surface Science, 2022, 592, 153202.	3.1	11
469	Revisiting Rb2TiNb6O18 as electrode materials for energy storage devices. Electrochemistry Communications, 2022, 137, 107249.	2.3	4
470	Interpenetrating network structures assembled by "string of candied haws―like PPY nanotube-interweaved NiCo-MOF-74 polyhedrons for high-performance supercapacitors. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 646, 128954.	2.3	16
471	Hierarchical structure Ni3S2/Ni(OH)2 nanoarrays towards high-performance supercapacitors. Journal of Solid State Chemistry, 2022, 309, 122974.	1.4	8

#	Article	IF	Citations
472	Surface modification of Na0.44MnO2 via a nonaqueous solution-assisted coating for ultra-Stable and High-Rate sodium-ion batteries. Chemical Engineering Journal Advances, 2022, 10, 100292.	2.4	7
473	A highly compressible, nitrogen doped carbon foam based all pseudo-capacitance asymmetric supercapacitors. Journal of Power Sources, 2022, 530, 231307.	4.0	26
474	Rationally synthesized Mo2N nanopyramids for high-performance flexible supercapacitive electrodes with deep insight into the Na-ion storage mechanism. Applied Surface Science, 2022, 588, 152925.	3.1	13
475	Self-supported electrode based on two-dimensional NiPS3 for supercapacitor application. Journal of Colloid and Interface Science, 2022, 616, 401-412.	5.0	13
476	Correlation between redox active sites and sodium storage behavior in dye/graphene nanohybrids. Applied Surface Science, 2022, 587, 152859.	3.1	2
477	Every bite of Supercap: A brief review on construction and enhancement of supercapacitor. Journal of Energy Storage, 2022, 50, 104599.	3.9	97
478	Pillaring of a conductive polymer in layered V2O5 boosting ultra-fast Zn2+/H+ storage in aqueous media. Electrochimica Acta, 2022, 416, 140270.	2.6	8
479	NiSe2 nanoparticles encapsulated in CNTs covered and N-doped TiN/carbon nanofibers as a binder-free anode for advanced sodium-ion batteries. Materials Today Chemistry, 2022, 24, 100849.	1.7	6
480	Controllable electrochemical activation of Mn3O4: Anion effect on phase transition, morphology and capacitive performance. Electrochimica Acta, 2022, 416, 140281.	2.6	1
481	Samarium hydroxide nanorolls anchored graphitic carbon nitride nanosheets: An active electrode material for supercapacitors. Journal of Alloys and Compounds, 2022, 908, 164541.	2.8	5
482	MXene based emerging materials for supercapacitor applications: Recent advances, challenges, and future perspectives. Coordination Chemistry Reviews, 2022, 462, 214518.	9.5	148
483	Ultrathin microporous carbon/few-layer graphene heterostructure for supercapacitor application. Applied Surface Science, 2022, 590, 153156.	3.1	7
484	Synthesis of hydrous RuO2 anchored on seaweed-derived porous carbon for high-performance electrochemical capacitors. Materials Letters, 2022, 318, 132182.	1.3	0
485	Nitrogen and sulfur co-doped carbon sub-micrometer sphere-based electrodes toward high-performance hybrid supercapacitors. Applied Surface Science, 2022, 590, 153121.	3.1	15
486	Ordered Macroporous MoS ₂ â€Carbon Composite with Fast and Robust Sodium Storage Properties to Solve the Issue of Kinetics Mismatch of Sodiumâ€ion Capacitors. Energy and Environmental Materials, 2023, 6, .	7.3	10
487	Bioinspired Catecholâ€Grafting PEDOT Cathode for an Allâ€Polymer Aqueous Proton Battery with High Voltage and Outstanding Rate Capacity. Advanced Science, 2022, 9, e2103896.	5.6	32
488	Oxygen Vacancies Enhanced NiCo ₂ O ₄ Nanoarrays on Carbon Cloth as Cathode for Flexible Supercapacitors with Excellent Cycling Stability. Batteries and Supercaps, 2022, 5,	2.4	7
489	Exploring Binder and Solvent for Depositing Activated Carbon Electrode on Indium–Tin-Oxide Substrate to Prepare Supercapacitors. Journal of Korean Institute of Metals and Materials, 2021, 59, 911-920.	0.4	2

#	Article	IF	CITATIONS
490	Compacted Laserâ€Induced Graphene with Bambooâ€Like Carbon Nanotubes for Transformable Capacitive Energy Storage Electrodes. Advanced Materials Technologies, 2022, 7, .	3.0	10
491	Electrochemically induced surface reconstruction of Niâ€Co oxide nanosheet arrays for hybrid supercapacitors. Exploration, 2021, 1, .	5.4	49
492	Defect Engineering of Carbons for Energy Conversion and Storage Applications. Energy and Environmental Materials, 2023, 6, .	7.3	28
493	Coupling High Rate Capability and High Capacity in an Intercalation-Type Sodium-Ion Hybrid Capacitor Anode Material of Hydrated Vanadate via Interlayer-Cation Engineering. ACS Applied Materials & Interfaces, 2022, 14, 17547-17559.	4.0	4
494	Carbon-confined Mo3Nb2O14 porous microspheres for high-performance lithium storage. lonics, 2022, 28, 3197-3205.	1.2	2
495	MXene chemistry, electrochemistry and energy storage applications. Nature Reviews Chemistry, 2022, 6, 389-404.	13.8	429
496	A novel Li-ion supercapattery by K-ion vacant ternary perovskite fluoride anode with pseudocapacitive conversion/insertion dual mechanisms. Rare Metals, 2022, 41, 2491-2504.	3.6	7
497	Fast response supercapacitor based on carbon-VS2 electrodes with a wide operating voltage range. Energy Storage Materials, 2022, 49, 255-267.	9.5	10
498	Quasi-two-dimensional topological Co3Sn2S2 composite toward high rate sodium ion storage. Chemical Engineering Journal, 2022, 443, 136420.	6.6	4
499	Phosphorus/sulfur co-doped hard carbon with a well-designed porous bowl-like structure and enhanced initial coulombic efficiency for high-performance sodium storage. Journal of Alloys and Compounds, 2022, 911, 164979.	2.8	9
500	Inexpensive and eco-friendly nanostructured birnessite-type δ-MnO2: A design strategy from oxygen defect engineering and K+ pre-intercalation. Nano Energy, 2022, 98, 107274.	8.2	25
501	Facile and controllable in-situ nitridation of polyaniline electrode for high-performance flexible all-solid-state supercapacitors. Journal of Colloid and Interface Science, 2022, 620, 399-406.	5.0	9
503	Microwave heating followed by a solvothermal method to synthesize nickel–cobalt selenide/rGO for high-performance supercapacitors. New Journal of Chemistry, 2022, 46, 10328-10338.	1.4	5
504	Electrode materials for reversible sodium ions de/intercalation. , 2022, , .		1
505	What About Electrochemical Behaviors for Aurivillius-Phase Bismuth Tungstate? Capacitive or Pseudocapacitive. SSRN Electronic Journal, 0, , .	0.4	0
506	Bi2o2s Nanosheets Decorated Reduced Graphene Oxides as High-Performance Anodes in Aqueous Rechargeable Alkaline Batteries. SSRN Electronic Journal, 0, , .	0.4	0
507	Actual pseudocapacity for Li ion storage in tunable coreâ€shell electrode architectures. EcoMat, 2022, 4, .	6.8	8
508	Review on Microfluidic Construction of Advanced Nanomaterials for High-Performance Energy Storage Applications. Energy & Fuels, 2022, 36, 4708-4727.	2.5	10

#	Article	IF	CITATIONS
509	Determining the depth of surface charging layer of single Prussian blue nanoparticles with pseudocapacitive behaviors. Nature Communications, 2022, 13, 2316.	5.8	14
510	Advanced Anode Materials for Sodium-Ion Batteries: Confining Polyoxometalates in Flexible Metal–Organic Frameworks by the "Breathing Effectâ€, ACS Applied Materials & Interfaces, 2022, 14, 22186-22196.	4.0	22
511	Synthesis and electrochemical performance of V2O5 nanosheets for supercapacitor. AIP Advances, 2022, 12, .	0.6	10
512	Solid‣tate Iontronic Devices: Mechanisms and Applications. Advanced Materials Technologies, 2022, 7,	3.0	17
513	Branch-cell shape liked nickel-cobalt layer double hydroxides composite polypyrrole for high performance supercapacitor. Journal of Materials Science: Materials in Electronics, 0, , .	1.1	0
514	Holey reduced graphene oxide nanosheets wrapped hollow FeS2@C spheres as a high-performance anode material for sodium-ion batteries. Journal of Power Sources, 2022, 536, 231438.	4.0	15
515	Rational nanostructured FeSe2 wrapped in nitrogen-doped carbon shell for high-rate capability and long cycling sodium-ion storage. Journal of Colloid and Interface Science, 2022, 622, 840-848.	5.0	19
516	Cation and anion (de)intercalation into MXene/Perovskite oxides for high-rate intercalation pseudocapacitance. Energy Storage Materials, 2022, 50, 86-95.	9.5	28
517	3d Porous Carbon Networks Reinforced Defective Cofeox@C as a High-Rate Electrode for Lithium Ion Batteries. SSRN Electronic Journal, 0, , .	0.4	0
518	Predominant intercalation of H+ enables ultrahigh rate capability of oxygen deficient MoO3 for aqueous Al-ion batteries. Energy Storage Materials, 2022, 50, 152-160.	9.5	23
519	Investigating the Perovskite Ag1-3xLaxNbO3 as a High-Rate Negative Electrode for Li-Ion Batteries. Frontiers in Chemistry, 2022, 10, 873783.	1.8	2
520	Vanadium nitride nanoparticle decorated N-doped carbon nanotube/N-doped carbon nanosheet hybrids <i>via</i> a C ₃ N ₄ self-sacrificing method for electrochemical capacitors. RSC Advances, 2022, 12, 15354-15360.	1.7	10
521	Designing kinetics of graphene composited multiscale porous carbon for advancing energy storage performance of supercapacitors. Journal of Industrial and Engineering Chemistry, 2022, 112, 430-439.	2.9	5
522	Dual Modified Morphology and Restrained Overpotential of Manganese Dioxide by Iron Doping for Boosting Aqueous Zinc Storage. SSRN Electronic Journal, 0, , .	0.4	0
523	Pseudocapacitance-Rich Carbon Nanospheres with Graphene Protective Shield Achieving Favorable Capacity-Cyclability Combinations of K-Ion Storage. SSRN Electronic Journal, 0, , .	0.4	0
524	Design Rationale and Device Configuration of Lithiumâ€lon Capacitors. Advanced Energy Materials, 2022, 12, .	10.2	40
525	Facile preparation of Nb2O5 microspheres and their excellent electrochemical performance in aqueous zinc-ion hybrid supercapacitors. Rare Metals, 2022, 41, 3129-3141.	3.6	13
526	Inkjet printing of 2D polyaniline for fabricating flexible and patterned electrochromic devices. Science China Materials, 2022, 65, 2217-2226.	3.5	10

#	Article	IF	CITATIONS
527	Unraveling the Design Principles of Batteryâ€Supercapacitor Hybrid Devices: From Fundamental Mechanisms to Microstructure Engineering and Challenging Perspectives. Advanced Energy Materials, 2022, 12, .	10.2	49
528	Structural regulation of vanadium oxide by poly(3,4-ethylenedioxithiophene) intercalation for ammonium-ion supercapacitors. , 2022, 1, 100013.		11
529	Comparison of the Properties of Ni–Mn Hydroxides/Oxides with Ni–Mn Phosphates for the Purpose of Hybrid Supercapacitors. Batteries, 2022, 8, 51.	2.1	7
530	Highâ€energyâ€density supercapacitors using supersonically sprayed waterâ€based precursors comprising cobalt iron oxide and reduced graphene oxide nanosheets. International Journal of Energy Research, 2022, 46, 14305-14317.	2.2	6
531	Understanding Rapid Intercalation Materials One Parameter at a Time. Advanced Functional Materials, 2022, 32, .	7.8	10
532	Enhanced electrochemical performance of vanadium carbide MXene composites for supercapacitors. APL Materials, 2022, 10, .	2.2	32
533	Metal sulfide (Cu-Mn-S) loaded-gel like carbon matrix as the electrode material for coin cell supercapacitors. Materials Today: Proceedings, 2022, , .	0.9	1
534	Quadrupling the stored charge by extending the accessible density of states. CheM, 2022, 8, 2410-2418.	5.8	4
535	Regulation Preferred Crystal Plane and Oxygen Vacancy of Cowo4 with Morphology Remolding to Boost Electrochemical Performances for Battery-Supercapacitor Hybrid Device Electrode. SSRN Electronic Journal, 0, , .	0.4	0
536	Advances in pseudocapacitive and battery-like electrode materials for high performance supercapacitors. Journal of Materials Chemistry A, 2022, 10, 13190-13240.	5.2	137
537	Dual Carbon Design Strategy for Anodes of Sodium-Ion Battery: Mesoporous CoS ₂ /CoO on Open Framework Carbon-Spheres with rGO Encapsulating. ACS Applied Materials & Interfaces, 2022, 14, 28004-28013.	4.0	18
538	Highly Deformable Graphene/Poly(3,4-ethylenedioxythiophene):Poly(styrene Sulfonate) Hydrogel Composite Film for Stretchable Supercapacitors. ACS Applied Energy Materials, 2022, 5, 7277-7286.	2.5	13
539	Graphene Hydrogels Implanted onto Carbon Cloth for Polypyrrole Electrodeposition toward High-Performance Supercapacitor Electrodes. ACS Sustainable Chemistry and Engineering, 2022, 10, 8495-8505.	3.2	8
540	ZnWO4-CNT as a superior electrode material for ultra-high capacitance supercapacitor. Surfaces and Interfaces, 2022, 32, 102134.	1.5	10
541	Impedance Analysis of Electrochemical Systems. Chemical Reviews, 2022, 122, 11131-11168.	23.0	161
542	Revealing Kinetics Process of Fast Chargeâ€Storage Behavior Associated with Potential in 2D Polyaniline. Energy Technology, 2022, 10, .	1.8	2
543	Electrochemical Proton Storage: From Fundamental Understanding to Materials to Devices. Nano-Micro Letters, 2022, 14, .	14.4	24
544	Electrochemical Behavior of Nanoporous Gold/Polypyrrole Supercapacitor under Deformation. Nanomaterials, 2022, 12, 2149.	1.9	2

#	Article	IF	CITATIONS
545	Ti ₃ C ₂ T _{<i>x</i>} MXenes-based flexible materials for electrochemical energy storage and solar energy conversion. Nanophotonics, 2022, 11, 3215-3245.	2.9	13
546	Unprecedented Superhighâ€Rate and Ultrastable Anode for Highâ€Power Battery via Cationic Disordering. Advanced Energy Materials, 2022, 12, .	10.2	22
547	Unraveling Synergistic Redox Interactions in Tetraphenylporphyrin–Polyluminol–Carbon Nanotube Composite for Capacitive Charge Storage. ACS Applied Materials & Interfaces, 2022, 14, 28359-28369.	4.0	17
548	Enhancing Potassium Storage Performance in VO ₂ /V ₂ O ₃ @C Nanosheets by Synergistic Effect of Oxygen Vacancy and Câ€Oâ€V Bond. ChemElectroChem, 2022, 9, .	1.7	6
549	A multifunctional potassium peroxodisulfate activation strategy to construction of N, S co-doped carbon nanosheets for high-performance Zn-ion hybrid supercapacitors. Biomass Conversion and Biorefinery, 2024, 14, 7031-7043.	2.9	0
550	Boosting electrochemical kinetics by loading CoB on vermiculite for supercapacitor application. Journal of Electroanalytical Chemistry, 2022, 918, 116523.	1.9	7
551	Growth of uniform CuCo2O4 porous nanosheets and nanowires for high-performance hybrid supercapacitors. Journal of Energy Storage, 2022, 52, 105048.	3.9	64
552	Flower-like g-C3N4 nanosheets decorated hollow Co2NiO4 cube derived from ZIF-67 for excellent performance supercapacitors. Journal of Alloys and Compounds, 2022, 918, 165769.	2.8	5
553	Laser-radiated tellurium vacancies enable high-performance telluride molybdenum anode for aqueous zinc-ion batteries. Energy Storage Materials, 2022, 51, 29-37.	9.5	22
555	ZnO/ZnS heterostructure with enhanced interfacial lithium absorption for robust and large-capacity energy storage. Energy and Environmental Science, 2022, 15, 4738-4747.	15.6	25
556	Graphene oxide-based modified electrodes for high-performance supercapacitors. , 2022, , 239-266.		0
557	Solvothermally Prepared Vo2(B) for Aqueous Zinc Ion Batteries with High Capacity and Excellent Rate Capability. SSRN Electronic Journal, 0, , .	0.4	0
558	Highly Graphitized Lignin Derived Porous Carbon with Hierarchical N/O Co-Doping "Core-Shell― Superstructure Supported by Metal-Organic Frameworks for Advanced Supercapacitor Performance. SSRN Electronic Journal, 0, , .	0.4	0
559	Defect engineering of electrode materials towards superior reaction kinetics for high-performance supercapacitors. Journal of Materials Chemistry A, 2022, 10, 15267-15296.	5.2	38
560	Fabrication of three-dimensional WO ₃ nanotube bundles on carbon cloth as a binder-free electrode for high-performance supercapacitors. New Journal of Chemistry, 2022, 46, 13861-13865.	1.4	1
561	A biocompatible open system Na-doped IrO _{<i>x</i>} (OH) _{<i>y</i>} energy storage device with enhanced charge storage properties and long lifetime. Journal of Materials Chemistry A, 2022, 10, 14479-14487.	5.2	4
562	Practical Graphene Technologies for Electrochemical Energy Storage. Advanced Functional Materials, 2022, 32, .	7.8	32
563	Rational Design of Nature Molybdenite with La ₂ O ₃ Catalysts for Improved Energyâ€5torage Behaviors. Advanced Materials Interfaces, 2022, 9, .	1.9	1

#	Article	IF	CITATIONS
564	Anomalous Selfâ€Optimizing Microporous Grapheneâ€Based Lithiumâ€ion Battery Anode from Laser Activation of Small Organic Molecules. Small Methods, 0, , 2200280.	4.6	2
565	Decoupled aqueous batteries using pH-decoupling electrolytes. Nature Reviews Chemistry, 2022, 6, 505-517.	13.8	44
566	Chemical cross-linking and mechanically reinforced carbon network constructed by graphene boosts potassium ion storage. Nano Research, 2022, 15, 9019-9025.	5.8	9
567	Surface Redox Pseudocapacitance Boosting Vanadium Nitride for Highâ€Power and Ultraâ€Stable Potassiumâ€lon Capacitors. Advanced Functional Materials, 2022, 32, .	7.8	15
568	Laser Processing of Flexible In-Plane Micro-supercapacitors: Progresses in Advanced Manufacturing of Nanostructured Electrodes. ACS Nano, 2022, 16, 10088-10129.	7.3	31
569	Recent advances in transition metal chalcogenides for lithium-ion capacitors. Rare Metals, 2022, 41, 2971-2984.	3.6	46
570	Coal-based ultrathin N-doped carbon nanosheets synthesized by molten-salt method for high-performance lithium-ion batteries. Nanotechnology, 2022, 33, 425401.	1.3	5
571	Metalâ€organic chemical vapor deposition of anatase titania on multiwalled carbon nanotubes for electrochemical capacitors. Energy Science and Engineering, 2022, 10, 3493-3506.	1.9	7
572	Deepening into the charge storage mechanisms and electrochemical performance of TiO2 hollandite for sodium-ion batteries. Electrochimica Acta, 2022, 427, 140872.	2.6	0
573	Bi2O2S nanosheets anchored on reduced graphene oxides as superior anodes for aqueous rechargeable alkaline batteries. Electrochimica Acta, 2022, 427, 140833.	2.6	9
574	A high-performance pseudocapacitive negatrode for lithium-ion capacitor based on a tetrathiafulvalene-cobalt metal–organic framework. Electrochimica Acta, 2022, 426, 140828.	2.6	3
575	Fabricating alveolate poly(8-hydroxyquinoline) nanosheets to achieving high energy density for pseudo-capacitor. Journal of Energy Storage, 2022, 54, 105092.	3.9	1
576	Ultra-high capacity and ultra-long cyclability anode materials of non-layered vanadium carbide(V8C7)@carbon microspheres for biapplications in Li-ion battery and Li-ion capacitor. Journal of Alloys and Compounds, 2022, 921, 166138.	2.8	4
577	Dual functionalized Fe2O3 nanosheets and Co9S8 nanoflowers with phosphate and nitrogen-doped carbon dots for advanced hybrid supercapacitors. Chemical Engineering Journal, 2022, 450, 137942.	6.6	24
578	Nano-Graphite Prepared by Rapid Pulverization as Anode for Lithium-Ion Batteries. Materials, 2022, 15, 5148.	1.3	6
579	Carbon cloth coated with NiO nanoparticles and graphene for flexible asymmetric supercapacitors. Journal of Materials Research, 0, , .	1.2	0
580	The synthesis of nickel sulfide deposited with nitrogen-doped carbon quantum dots as advanced electrode materials for supercapacitors. Journal of Materials Science, 2022, 57, 14052-14064.	1.7	2
581	Joule heating-induced faradaic electrode-decorated graphene fibers for flexible fiber-shaped hybrid supercapacitor with high volumetric energy density. Carbon, 2022, 198, 252-263.	5.4	7

#	Article	IF	CITATIONS
582	Surplus Charge Injection Enables High-Voltage Stable 2d Polyaniline Supercapacitors. SSRN Electronic Journal, 0, , .	0.4	0
583	Unleash Sodium Storage Potential of Mos2ÂNanosheets: Generating Favorable Kinetics from Optimal Crystallinity and Elaborate Structure. SSRN Electronic Journal, 0, , .	0.4	0
584	Could Capacitive Behavior be Triggered in Inorganic Electrolyteâ€Based Allâ€Solidâ€State Batteries?. Advanced Functional Materials, 0, , 2205667.	7.8	0
585	Recent Developments and Future Prospects of Transition Metal Compounds as Electrode Materials for Potassium″on Hybrid Capacitors. Advanced Materials Technologies, 2023, 8, .	3.0	11
586	Oxide-on-Oxide Porous Electrodes Revealing Superior Reversible Li ⁺ -Coupled Electron-Transfer Properties by Unconventional Heterojunction Effects. ACS Applied Materials & Interfaces, 2022, 14, 35883-35893.	4.0	0
587	Sodium Pre-Intercalation-Based Na3-Î-MnO2@CC for High-Performance Aqueous Asymmetric Supercapacitor: Joint Experimental and DFT Study. Nanomaterials, 2022, 12, 2856.	1.9	5
588	Kinetic Analysis of Bio-oil Derived Hierarchically Porous Carbon for Superior Li ⁺ /Na ⁺ Storage. Journal of Physical Chemistry Letters, 2022, 13, 7273-7279.	2.1	8
589	Phosphorusâ€Based Materials for Highâ€Performance Alkaline Metal Ion Batteries: Progress and Prospect. Small, 2022, 18, .	5.2	16
590	Structure and surface modification of MXene for efficient Li/K-ion storage. Journal of Energy Chemistry, 2022, 75, 330-339.	7.1	15
591	Formation of monoclinic α-Bi2O3 nanosheet-assembled hollow spheres as a high-performance electrode for supercapacitor. Ionics, 2022, 28, 4769-4777.	1.2	3
592	Low-tortuosity, hierarchical porous structure Co ₃ O ₄ @carbonized wood integrated electrode for lithium-ion battery. Applied Physics Letters, 2022, 121, 063901.	1.5	3
593	Understanding Synthesis–Structure–Performance Correlations of Nanoarchitectured Activated Carbons for Electrochemical Applications and Carbon Capture. Advanced Functional Materials, 2022, 32, .	7.8	32
594	Recent advances and perspectives on prelithiation strategies for lithium-ion capacitors. Rare Metals, 2022, 41, 3322-3335.	3.6	21
595	Boosting Highâ€Voltage Dynamics Towards Highâ€Energyâ€Density Lithiumâ€Ion Capacitors. Energy and Environmental Materials, 2023, 6, .	7.3	6
596	Nickel-based materials: Toward practical application of the aqueous hybrid supercapacitors. Sustainable Materials and Technologies, 2022, , e00479.	1.7	4
597	Carbon-α-Fe2O3 Composite Active Material for High-Capacity Electrodes with High Mass Loading and Flat Current Collector for Quasi-Symmetric Supercapacitors. Electrochem, 2022, 3, 463-478.	1.7	7
598	Eliminating the Micropore Confinement Effect of Carbonaceous Electrodes for Promoting Znâ€lon Storage Capability. Advanced Materials, 2022, 34, .	11.1	61
599	In Situ Conformal Carbon Coating for Constructing Hierarchical Mesoporous Titania/Carbon Spheres as High-Rate Lithium-Ion Battery Anodes. ACS Sustainable Chemistry and Engineering, 2022, 10, 10955-10965.	3.2	6

#	Article	IF	CITATIONS
600	Dimensional engineering of anode materials for high performance potassium ion hybrid capacitor—A review. International Journal of Energy Research, 2022, 46, 17976-17998.	2.2	3
601	Eutectic salt induced self-activation technique for porous graphene-like carbon nanosheets as the high-capacity cathodes for Zn-ion hybrid supercapacitors. Journal of Electroanalytical Chemistry, 2022, 921, 116673.	1.9	4
602	Regulation preferred crystal plane and oxygen vacancy of CoWO4 with morphology remolding to boost electrochemical performances for battery-supercapacitor hybrid device electrode. Journal of Power Sources, 2022, 545, 231911.	4.0	12
603	VN nanocrystals on N, S co-doped carbon framework: Topochemical self-nitridation and superior performance for lithium-ion battery. Electrochimica Acta, 2022, 429, 140982.	2.6	4
604	3D porous carbon network-reinforced defective CoFeOx@C as a high-rate electrode for lithium-ion batteries. Electrochimica Acta, 2022, 428, 140950.	2.6	4
605	Electrochemical energy storage behavior of hydrothermally synthesized Y2ZnCoO6/rGO nanocomposite. Materials Science in Semiconductor Processing, 2022, 151, 106980.	1.9	5
606	Review on 2D MXene and graphene electrodes in capacitive deionization. Environmental Technology and Innovation, 2022, 28, 102858.	3.0	10
607	In-situ induced self-solidification and activation of ultra-high energy density organic cathode. Energy Storage Materials, 2022, 52, 465-472.	9.5	5
608	Decoration of carbon encapsulated nitrogen-rich Mo N with few-layered MoSe2 nanosheets for high-performance sodium-ion storage. Journal of Energy Chemistry, 2022, 74, 332-340.	7.1	13
609	Modified morphology and restrained overpotential of manganese dioxide by iron doping for boosting aqueous zinc storage. Journal of Alloys and Compounds, 2022, 925, 166682.	2.8	2
610	Pseudocapacitance-rich carbon nanospheres with graphene protective shield achieving favorable capacity-cyclability combinations of K-ion storage. Chemical Engineering Journal, 2023, 451, 138452.	6.6	5
611	2D Bismuthene as a Functional Interlayer between BiVO ₄ and NiFeOOH for Enhanced Oxygenâ€Evolution Photoanodes. Advanced Functional Materials, 2022, 32, .	7.8	30
612	Surface Engineering of Ni wires and Rapid Growth Strategy of Niâ€MOF Synergistically Contribute to Highâ€Performance Fiber‣haped Aqueous Battery. Small, 2022, 18, .	5.2	50
613	Step-by-step desolvation enables high-rate and ultra-stable sodium storage in hard carbon anodes. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	35
614	High compact mechanical adhesion enables interfacial lithium-ion storage in cobalt phthalocyanine decorated tin oxide nanotubes. Journal of Electroanalytical Chemistry, 2022, 922, 116792.	1.9	5
615	Pyrolysis of zinc salt-treated flax fiber: Hierarchically porous carbon electrode for supercapacitor. Diamond and Related Materials, 2022, 129, 109339.	1.8	14
616	Micro-electrochemical capacitors: Progress and future status. Journal of Energy Storage, 2022, 55, 105702.	3.9	7
617	Comprehensive study on improving the sodium storage performance of low-defect biomass-derived carbon through S or N doping. Diamond and Related Materials, 2022, 129, 109382.	1.8	1

#	Article	IF	CITATIONS
618	Investigation of protic ionic liquid electrolytes for porous RuO2 micro-supercapacitors. Journal of Power Sources, 2022, 548, 232040.	4.0	13
619	Metal–organic framework-derived heteroatom-doped nanoarchitectures for electrochemical energy storage: Recent advances and future perspectives. Energy Storage Materials, 2022, 52, 685-735.	9.5	38
620	A carbon dot based metal-free photoelectrochemical cell using O2/H2O redox couple in real seawater. Applied Catalysis B: Environmental, 2022, 319, 121914.	10.8	2
621	An ultra-thin interlayer bimetallic sulfide for enhancing electrons transport of supercapacitor electrode. Journal of Energy Storage, 2022, 55, 105528.	3.9	7
622	Controllable synthesis of hierarchically porous polyaniline/MnO2 composite with wide potential window towards symmetric supercapacitor. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 654, 130199.	2.3	8
623	Decoupling reaction rate and diffusion limitation to fast-charging electrodes by extended modeling of cyclic voltammetry data. Energy Storage Materials, 2022, 53, 381-390.	9.5	8
624	MoS2 nanosheets on plasma-nitrogen-doped carbon cloth for high-performance flexible supercapacitors. Journal of Colloid and Interface Science, 2023, 629, 227-237.	5.0	23
625	Highly graphitized lignin-derived porous carbon with hierarchical N/O co-doping "core-shell― superstructure supported by metal-organic frameworks for advanced supercapacitor performance. Chemical Engineering Journal, 2023, 451, 138877.	6.6	34
626	Oxygen vacancy-mediated amorphous GeOx assisted polysulfide redox kinetics for room-temperature sodium-sulfur batteries. Journal of Colloid and Interface Science, 2023, 629, 76-86.	5.0	3
627	Bimetallic CoSe ₂ /FeSe ₂ hollow nanocuboids assembled by nanoparticles as a positive electrode material for a high-performance hybrid supercapacitor. Dalton Transactions, 2022, 51, 13405-13418.	1.6	11
628	<i>In situ</i> fabrication of MXene/CuS hybrids with interfacial covalent bonding <i>via</i> Lewis acidic etching route for efficient sodium storage. Journal of Materials Chemistry A, 2022, 10, 22135-22144.	5.2	22
629	Uniform Bi–Bi ₂ O ₃ nanoparticles/reduced graphene oxide composites for high-performance aqueous alkaline batteries. Dalton Transactions, 2022, 51, 12114-12124.	1.6	14
630	Dual-Activity Hyper-Conjugated Polymers Delivering Extraordinary Electrical and Electrochemical Properties. SSRN Electronic Journal, 0, , .	0.4	0
631	Increasing the molecular weight of conjugated polyelectrolytes improves the electrochemical stability of their pseudocapacitor gels. Journal of Materials Chemistry A, 2022, 10, 21642-21649.	5.2	6
632	Solvothermally Prepared Vo2(B) for Aqueous Zinc Ion Batteries with High Capacity and Excellent Rate Capability. SSRN Electronic Journal, 0, , .	0.4	0
633	Practical conversion-type titanium telluride anodes for high-capacity long-lifespan rechargeable aqueous zinc batteries. Journal of Materials Chemistry A, 2022, 10, 16976-16985.	5.2	9
634	The sequential structural transformation of a heptanuclear zinc cluster towards hierarchical porous carbon for supercapacitor applications. Chemical Science, 2022, 13, 10786-10791.	3.7	7
635	Metal–organic frameworks and their derivatives for metal-ion (Li, Na, K and Zn) hybrid capacitors. Chemical Science, 2022, 13, 11981-12015.	3.7	31

#	Article	IF	CITATIONS
636	Synthesis of manganese molybdate/MWCNT nanostructure composite with a simple approach for supercapacitor applications. RSC Advances, 2022, 12, 27868-27876.	1.7	11
637	Decoupled Measurement and Modeling of Interface Reaction Kinetics of Ion-Intercalation Battery Electrodes. SSRN Electronic Journal, 0, , .	0.4	0
638	Hybridization of Porous Vanadium Nitride Nanosheets with Cobalt-Encapsulated Nitrogen-Doped Carbon Nanotubes on Carbon Cloth as an Advanced Monolithic Negative Electrode for Boosting Asymmetric Supercapacitors. SSRN Electronic Journal, 0, , .	0.4	0
639	Excellent performance supercapacitors with the compounding of Ni(OH) ₂ and ZIF-67 derived Co–C–N nanosheets as flexible electrode materials. Nanoscale Advances, 2022, 4, 4381-4390.	2.2	3
640	Capacitive Charge Storage Mechanism in Sanmartinite to Be Determined by Qualitative and Quantitative Electrochemical Analysis. SSRN Electronic Journal, 0, , .	0.4	0
641	One-step synthesis of CoSe modified ZnSe hybrid as a battery-type cathode material for supercapacitors with improved electrochemical performance. Journal of Materials Science: Materials in Electronics, 2022, 33, 21075-21090.	1.1	1
642	Ultrahigh-power iron oxysulfide thin films for microbatteries. Science China Materials, 2023, 66, 118-126.	3.5	31
643	An Ultralow Power Li <i> _x </i> TiO ₂ â€Based Synaptic Transistor for Scalable Neuromorphic Computing. Advanced Electronic Materials, 0, , 2200607.	2.6	3
644	A review on the advances in electrochemical capacitive charge storage in transition metal oxide electrodes for pseudocapacitors. International Journal of Energy Research, 2022, 46, 21757-21796.	2.2	14
645	The Debut and Spreading the Landscape for Excellent Vacancies-promoted Electrochemical Energy Storage of Nano-architected Molybdenum Oxides. Materials Today Energy, 2022, , 101154.	2.5	3
646	Mechanically Induced Nanoscale Architecture Endows a Titanium Carbide MXene Electrode with Integrated High Areal and Volumetric Capacitance. Advanced Materials, 2022, 34, .	11.1	15
647	Amorphous MoO ₂ /C Nanospheres–Porous Graphene Composites for Pseudocapacitive Li Storage. ACS Applied Nano Materials, 2022, 5, 13463-13472.	2.4	4
648	Fibrilâ€Type Textile Electrodes Enabling Extremely High Areal Capacity through Pseudocapacitive Electroplating onto Chalcogenide Nanoparticleâ€Encapsulated Fibrils. Advanced Science, 2022, 9, .	5.6	7
649	Balanced Crystallinity and Nanostructure for SnS ₂ Nanosheets through Optimized Calcination Temperature toward Enhanced Pseudocapacitive Na ⁺ Storage. ACS Nano, 2022, 16, 14745-14753.	7.3	21
650	Oxygen Vacanciesâ€Rich TiO ₂ /C Nanofibers with Boron, Nitrogen Dualâ€Đoping for Ultrafast Sodium Storage. Advanced Materials Interfaces, 2022, 9, .	1.9	1
651	Designing Hollow Carbon Sphere with Hierarchal Porous for Na-S Systems with Ultra-Long Cycling Stabilities. Molecules, 2022, 27, 5880.	1.7	3
652	Sodiumâ€Intercalated Manganese Oxides for Achieving Ultraâ€Stable and Fast Charge Storage Kinetics in Wideâ€Voltage Aqueous Supercapacitors. Advanced Functional Materials, 2022, 32, .	7.8	17
653	Revealing An Intercalationâ€Conversionâ€Heterogeneity Hybrid Lithiumâ€Ion Storage Mechanism in Transition Metal Nitrides Electrodes with Jointly Fast Charging Capability and High Energy Output. Advanced Science, 2022, 9, .	5.6	17

#	Article	IF	CITATIONS
654	Enhanced electrochemical performance of Na4MnCr(PO4)3@C cathode by multi-walled carbon nanotubes interconnection for Na-ion batteries. Journal of Electroanalytical Chemistry, 2022, 924, 116873.	1.9	3
655	Smart Electronic Textile $\hat{a} {\in} B$ ased Wearable Supercapacitors. Advanced Science, 2022, 9, .	5.6	59
656	Anionic Activity in Fast-Charging Batteries: Recent Advances, Prospects, and Challenges. , 2022, 4, 2195-2209.		8
657	Electrostatic self-assembly of MXene and carbon nanotube@MnO ₂ multilevel hybrids for achieving fast charge storage kinetics in aqueous asymmetric supercapacitors. Journal of Materials Chemistry A, 2022, 10, 23886-23895.	5.2	4
658	Hierarchical porous metal–organic gels and derived materials: from fundamentals to potential applications. Chemical Society Reviews, 2022, 51, 9068-9126.	18.7	30
659	Molten salt electrolytes for electrochemical capacitors with energy densities exceeding 50 W h kg ^{â^'1} . Energy and Environmental Science, 2022, 15, 5229-5239.	15.6	3
660	Advanced aqueous sodium-ion capacitors based on Ni _{0.25} Mn _{0.75} O nanoparticles encapsulated in electrospinning carbon nanofibers. Dalton Transactions, 2022, 51, 16236-16242.	1.6	1
661	Towards fast-charging high-energy lithium-ion batteries: From nano- to micro-structuring perspectives. Chemical Engineering Journal, 2023, 454, 140003.	6.6	14
662	Exploring 2D Energy Storage Materials: Advances in Structure, Synthesis, Optimization Strategies, and Applications for Monovalent and Multivalent Metalâ€Ion Hybrid Capacitors. Small, 2022, 18, .	5.2	29
663	Unlocking the Potential of Vanadium Oxide for Ultrafast and Stable Zn ²⁺ Storage Through Optimized Stress Distribution: From Engineering Simulation to Elaborate Structure Design. Small Methods, 2022, 6, .	4.6	9
664	Effects of Methoxy Substituents in Contorted Polycyclic Aromatic Hydrocarbons for Pseudocapacitive Charge Storage. ACS Energy Letters, 2022, 7, 4142-4149.	8.8	3
665	Substitution-triggered broken symmetry of cobalt tungstate boosts redox kinetics in pseudocapacitive storage. Cell Reports Physical Science, 2022, , 101115.	2.8	5
666	Flexible Carbon Dotsâ€Intercalated MXene Film Electrode with Outstanding Volumetric Performance for Supercapacitors. Advanced Functional Materials, 2023, 33, .	7.8	49
667	A medium-entropy transition metal oxide cathode for high-capacity lithium metal batteries. Nature Communications, 2022, 13, .	5.8	15
668	Unlocking the High Capacity Ammoniumâ€ion Storage in Defective Vanadium Dioxide. Small, 2022, 18, .	5.2	19
669	Efficient preparation of graphene/ruthenium oxide micro-supercapacitors using spatially shaped femtosecond laser method. , 2022, , .		0
670	Characterizing Electron Flow through Catecholâ€Graphene Composite Hydrogels. Advanced Materials Interfaces, 2022, 9, .	1.9	4
671	Hierarchical multiphase (Ni, Co)-Se with adjustable interlayer distance derived from reconstructed ZIF-L for enhanced hybrid-supercapacitors. Chemical Engineering Journal, 2023, 454, 140088.	6.6	8

#	Article	IF	CITATIONS
672	Diffusion mechanism and electrochemical investigation of 1T phase Al–MoS2@rGO nano-composite as a high-performance anode for sodium-ion batteries. Chemical Engineering Journal, 2023, 454, 140140.	6.6	14
673	Phase-Dependent Energy Storage Performance of the Ni _{<i>x</i>} Se _{<i>y</i>} Polymorphs for Supercapacitor-Battery Hybrid Devices. ACS Applied Materials & Interfaces, 2022, 14, 50900-50912.	4.0	8
674	Heterogeneous Mn-Ni(OH)2/NiO@C hierarchical porous nanosheets for high energy density hybrid supercapacitors. Journal of Alloys and Compounds, 2023, 934, 167790.	2.8	13
675	Interface-engineered molybdenum disulfide/porous graphene microfiber for high electrochemical energy storage. Energy Storage Materials, 2023, 54, 30-39.	9.5	16
676	Kinetics-favorable heterojunctional CNTs@CuCo-LDH/BPQD electrode with boosted charge storage capability for supercapacitor. Applied Surface Science, 2023, 609, 155287.	3.1	33
677	Supercapacitive study for the electrode materials around the framework-collapsed point of Ni-based coordination polymer. CrystEngComm, 0, , .	1.3	0
678	Enabling rapid pseudocapacitive multi-electron reactions by heterostructure engineering of vanadium oxide for high-energy and high-power lithium storage. Energy and Environmental Science, 2023, 16, 222-230.	15.6	24
679	Enhanced energy-storage density of BaTi0.95Zr0.05O3 via generation of defect dipoles upon lithium-doping. Materials Chemistry and Physics, 2023, 294, 127032.	2.0	6
680	Unique hierarchical porous carbon nanosheet network for supercapacitors: Ultra-long cycling stability and enhanced electroactivity of oxygen at high temperature. Electrochimica Acta, 2023, 437, 141522.	2.6	5
681	Pomegranate-like gallium oxide nanospheres coated with nitrogen-doped carbon as an anode for lithium-ion batteries with an ultra-long cycle life. Journal of Alloys and Compounds, 2023, 934, 168038.	2.8	5
682	All-in-one structured textile energy storage electrodes prepared via Janus bond assembly-induced electrodeposition. Chemical Engineering Journal, 2023, 454, 140150.	6.6	2
683	Inverse spinel cobalt manganese oxide nanosphere materials as an electrode for high-performance asymmetric supercapacitor. Journal of Alloys and Compounds, 2023, 933, 167645.	2.8	6
684	Facile Synthesis of Sustainable Activated Biochars with Different Pore Structures as Efficient Additive-Carbon-Free Anodes for Lithium- and Sodium-Ion Batteries. ACS Omega, 2022, 7, 42570-42581.	1.6	13
685	Decoupled measurement and modeling of interface reaction kinetics of ion-intercalation battery electrodes. Energy Storage Materials, 2023, 54, 836-844.	9.5	5
686	Plasma-based synthesis of graphene and applications: a focused review. Reviews of Modern Plasma Physics, 2022, 6, .	2.2	9
687	Ultrathin Smart Energy-Storage Devices for Skin-Interfaced Wearable Electronics. ACS Energy Letters, 2023, 8, 1-8.	8.8	36
688	Activation of 2D MoS2 electrodes induced by high-rate lithiation processes. Journal of Energy Chemistry, 2023, 78, 56-70.	7.1	7
689	Organic Small-Molecule Electrodes: Emerging Organic Composite Materials in Supercapacitors for Efficient Energy Storage. Molecules, 2022, 27, 7692.	1.7	9

#	Article	IF	Citations
690	Three-dimensional binder-free electrodes with high loading of electroactive material for high performance asymmetric supercapacitors. Journal of Electroanalytical Chemistry, 2022, 927, 116988.	1.9	3
691	3D printing structure -based Cu&Bi2O3 anode toward high-performance rechargeable alkaline battery and photodetector. Ceramics International, 2023, 49, 1605-1614.	2.3	1
692	Highly Stable Two-Dimensional Cluster-Based Ni/Co–Organic Layers for High-Performance Supercapacitors. Inorganic Chemistry, 2022, 61, 18743-18751.	1.9	5
693	Doping sites modulation of T-Nb2O5 to achieve ultrafast lithium storage. Journal of Energy Chemistry, 2023, 77, 280-289.	7.1	29
694	Imine-linked triazine-based conjugated microporous polymers/carbon nanotube composites as organic anode materials for lithium-ion batteries. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 657, 130496.	2.3	2
695	Fabrication, properties, and performance of graphene-based textile fabrics for supercapacitor applications: A review. Journal of Energy Storage, 2022, 56, 105988.	3.9	12
696	Surface-controlled sodium-ion storage mechanism of Li4Ti5O12 anode. Energy Storage Materials, 2023, 54, 724-731.	9.5	13
697	Covalently Interlayerâ€Confined Organic–Inorganic Heterostructures for Aqueous Potassium Ion Supercapacitors. Small, 2023, 19, .	5.2	19
698	Zn substituted hydroxide/oxyhydroxide heterostructure activates proton conduction. Energy Storage Materials, 2023, 55, 84-93.	9.5	9
699	Capacitive charge storage mechanism in sanmartinite to be determined by qualitative and quantitative electrochemical analysis. Electrochimica Acta, 2023, 439, 141692.	2.6	2
700	Single crystal H-Nb ₂ O ₅ growing along the [001] crystal direction for ultrafast lithium storage. Journal of Materials Chemistry A, 2023, 11, 642-648.	5.2	7
701	Biomass-derived two-dimensional carbon materials: Synthetic strategies and electrochemical energy storage applications. FlatChem, 2023, 37, 100467.	2.8	9
702	Electrospun Fe1-xS@nitrogen-doped carbon fibers as anode material for sodium-ion batteries. Journal of Electroanalytical Chemistry, 2023, 929, 117095.	1.9	7
703	Revealing the accelerated reaction kinetic of Ni-rich cathodes by activated carbons for high performance lithium-ion batteries. Carbon, 2023, 203, 445-454.	5.4	2
704	Recent advances in polyaniline-based micro-supercapacitors. Materials Horizons, 2023, 10, 670-697.	6.4	13
705	Pre-zeolite framework super-MIEC anodes for high-rate lithium-ion batteries. Energy and Environmental Science, 2023, 16, 241-251.	15.6	12
706	Insights into the regulation of energy storage behaviors of antimonene in aqueous electrolytes. Electrochimica Acta, 2023, 439, 141585.	2.6	2
707	Coal-derived N,O co-doped mesoporous carbon as electrode material for high performance aqueous electric-double layer capacitors and zinc-ion hybrid supercapacitors. Electrochimica Acta, 2023, 439, 141576.	2.6	6

#	Article	IF	CITATIONS
708	Phosphate functionalized CoS nanoparticles coupled with Fe ₂ O ₃ nanocrystals decorated on N,S co-doped porous carbon spheres for advanced hybrid supercapacitors. Inorganic Chemistry Frontiers, 2023, 10, 406-416.	3.0	4
709	Construction of a LiVO ₃ /C core–shell structure for high-rate lithium storage. New Journal of Chemistry, 2023, 47, 1508-1516.	1.4	3
710	Spray-drying synthesis and vanadium-catalyzed graphitization of a nanocrystalline γ-Li _{3.2} V _{0.8} Si _{0.2} O ₄ /C anode material with a unique double capsule structure. Journal of Materials Chemistry A, 2023, 11, 1841-1855.	5.2	3
711	Design of in-situ grown copper-based bimetallic phosphide electrode materials for efficient energy storage, 2023, 59, 106398.	3.9	2
712	Facile synthesis of layered 2H-WSe2 nanosheets for asymmetric supercapacitor device application. Synthetic Metals, 2023, 293, 117263.	2.1	4
713	Pseudocapacitive performance of phenothiazine functionalized graphene aerogel. Applied Surface Science, 2023, 613, 156069.	3.1	4
714	A 3D nano-sandwich structure constructed by intercalation of aramid nanofibers preventing re-stack of graphene for high surface area electrode materials. Applied Surface Science, 2023, 612, 155903.	3.1	7
715	A comprehensive review on novel quaternary metal oxide and sulphide electrode materials for supercapacitor: Origin, fundamentals, present perspectives and future aspects. Renewable and Sustainable Energy Reviews, 2023, 173, 113106.	8.2	22
716	Solvothermally prepared hydrated VO2(B) for aqueous zinc ion batteries with high capacity and excellent rate capability. Journal of Alloys and Compounds, 2023, 936, 168218.	2.8	4
717	One-step simple calcination of Ni@C(N) core-shell microspheres: Catalytic reduction of 4-nitrophenol, supercapacitor and electrocatalytic hydrogen production. Journal of Alloys and Compounds, 2023, 937, 168467.	2.8	4
718	WS ₂ -Based Nanomaterials for Visible-Light Photocatalytic Degradation of Organic Pollutants. ACS Symposium Series, 0, , 185-205.	0.5	0
719	Interactive Nanomaterials for Energy Storage and Conversion. ACS Symposium Series, 0, , 27-81.	0.5	0
720	Efficient Design Paradigm for Harvesting Solar Energy: Dynamic Tunability of Heating/Cooling Mode Using Advanced Nanotechnology. ACS Symposium Series, 0, , 233-261.	0.5	2
721	Mgâ€Ðoped Na ₄ Fe ₃ (PO ₄) ₂ (P ₂ O ₇)/C Composite with Enhanced Intercalation Pseudocapacitance for Ultraâ€Stable and Highâ€Rate Sodiumâ€Ion Storage. Advanced Functional Materials, 2023, 33, .	7.8	23
722	Influence of the Molar Ratio of Co and V in Bimetallic Oxides on Their Pseudocapacitive Properties. ACS Omega, 2022, 7, 43522-43530.	1.6	7
723	Effect of Alcohol Tail Length on Aggregate Behavior of Alcohol and AOT at the Water-scCO ₂ Interface: MD Simulation Study. ACS Symposium Series, 0, , 263-288.	0.5	0
725	Substantial Na-Ion Storage at High Current Rates: Redox-Pseudocapacitance through Sodium Oxide Formation. Nanomaterials, 2022, 12, 4264.	1.9	0
727	Green Electrocatalytical Synthesis of Ammonia Using Solid Oxide Electrolysis Cells. ACS Symposium Series, 0, , 155-184.	0.5	0

#	Article	IF	CITATIONS
728	Atomic Layer Deposition Synthesis of Iron, Cobalt, and Nickel Chalcogenides for Electrocatalysis Applications. ACS Symposium Series, 0, , 117-135.	0.5	0
729	Kinetic and Thermodynamic Insights into Advanced Energy Storage Mechanisms of Battery-Type Bimetallic Metal–Organic Frameworks. Chemistry of Materials, 2022, 34, 10338-10346.	3.2	4
730	Calix[n]arene-Based Coordination Cage and Its Application to Electrocatalysis. ACS Symposium Series, 0, , 137-154.	0.5	0
733	Two-Dimensional Metal Phosphorus Trichalcogenide Nanostructure for Sustainable Energy Conversion. ACS Symposium Series, 0, , 1-25.	0.5	3
734	Bonding Heterogeneity Leads to Hierarchical and Ultralow Lattice Thermal Conductivity in Sodium Metavanadate. Journal of Physical Chemistry Letters, 2022, 13, 11160-11168.	2.1	2
736	Solar-Driven Photothermocatalytic Dry Reforming of Methane for Syngas Production. ACS Symposium Series, 0, , 207-232.	0.5	0
737	Organic-Carbon Composites for Next Generation Capacitive Electrodes. ACS Symposium Series, 0, , 83-115.	0.5	0
738	Interlayer Modulation of Layered Transition Metal Compounds for Energy Storage. ACS Applied Materials & Interfaces, 2022, 14, 54369-54388.	4.0	4
739	Advanced Nb2O5 Anode towards Fast Pseudocapacitive Sodium Storage. Coatings, 2022, 12, 1873.	1.2	1
740	A Pseudocapacitor Diode Based on Ionâ€Selective Surface Redox Effect. Advanced Materials, 2023, 35, .	11.1	15
741	Fundamentals and Scientific Challenges in Structural Design of Cathode Materials for Zincâ€ion Hybrid Supercapacitors. Advanced Energy Materials, 2023, 13, .	10.2	56
742	Improving capacity of nickel phosphate Versailles Santa Barbara-5 with calcination for high-performance asymmetric supercapacitors. Journal of Energy Storage, 2022, 56, 106109.	3.9	4
743	Redox-active ligand-mediated assembly for high-performance transition metal oxide nanoparticle-based pseudocapacitors. Chemical Engineering Journal, 2023, 455, 140742.	6.6	13
744	Ultrafast PEDOT:PSS/H ₂ SO ₄ Electrical Double Layer Capacitors: Comparison with Polyaniline Pseudocapacitors. ChemSusChem, 2023, 16, .	3.6	10
745	Double-Carbon Matrix-Supported MnO ₂ for High-Voltage Supercapacitors in a Neutral Aqueous System. ACS Applied Energy Materials, 2022, 5, 15874-15880.	2.5	5
746	Towards Greener and More Sustainable Synthesis of MXenes: A Review. Nanomaterials, 2022, 12, 4280.	1.9	35
747	Facile Access to Fabricate Carbon Dots and Perspective of Largeâ€Scale Applications. Small, 2023, 19, .	5.2	21
748	Beyond Polypyrrole: Pencil-Drawn Paper-Based Supercapacitors with High Energy Density. Journal of the Electrochemical Society, 2022, 169, 120517.	1.3	0

#	Article	IF	CITATIONS
749	Flexible, ultrathin, and multifunctional polypyrrole/cellulose nanofiber composite films with outstanding photothermal effect, excellent mechanical and electrochemical properties. Frontiers of Chemical Science and Engineering, 2023, 17, 1028-1037.	2.3	5
750	Green Preparation of Fe ₂ O ₃ Doped Gum Acacia Derived Porous Carbon/Graphene Ternary Nanocomposite as a Supercapacitor Electrode. , 0, , .		0
751	Electrochemical Performance and Hydrogen Storage of Ni–Pd–P–B Glassy Alloy. Nanomaterials, 2022, 12, 4310.	1.9	3
752	Rechargeable Seawater Batteries Based on Polyimide Anodes. ACS Sustainable Chemistry and Engineering, 2023, 11, 1428-1433.	3.2	4
753	Role of biochar toward carbon neutrality. , 2023, 2, .		37
754	Perspective on ultrathin layered Ni-doped MoS2 hybrid nanostructures for the enhancement of electrochemical properties in supercapacitors. Journal of Energy Chemistry, 2023, 80, 335-349.	7.1	21
755	Novel Random Forest Ensemble Modeling Strategy Combined with Quantitative Structure–Property Relationship for Density Prediction of Energetic Materials. ACS Omega, 2023, 8, 2752-2759.	1.6	2
756	Zero-strain strategy incorporating TaC with Ta ₂ O ₅ to enhance its rate capacity for long-term lithium storage. Nanoscale Advances, 2023, 5, 970-979.	2.2	6
757	A Novel Layered WO ₃ Derived from An Ion Etching Engineering for Ultrafast Proton Storage in Frozen Electrolyte. Advanced Functional Materials, 2023, 33, .	7.8	9
758	Recent advances in and perspectives on pseudocapacitive materials for Supercapacitors–A review. Journal of Power Sources, 2023, 557, 232558.	4.0	32
759	Reversible multi-electron redox chemistry of organic salt as anode for high-performance Li-ion/dual-ion batteries. Chemical Engineering Journal, 2023, 457, 141335.	6.6	7
760	Amino-functionalization-assisted construction of CoP/N, P co-doped graphene to enhance stable lithium storage via electrostatic interaction and strong bonds. Electrochimica Acta, 2023, 442, 141910.	2.6	2
761	A new strategy for the preparation of multi-walled carbon nanotubes/NiMoO4 nanostructures for high-performance asymmetric supercapacitors. Journal of Energy Storage, 2023, 59, 106438.	3.9	24
762	Sub-nanometric amorphous V–O clusters without grain boundaries bonded in yolk-shell carbon nanospheres for superior sodium-ion storage. Composites Part B: Engineering, 2023, 252, 110532.	5.9	6
763	Facile synthesis of mesoporous MnCo2O4@MoS2 nanocomposites for asymmetric supercapacitor application with excellent prolonged cycling stability. Journal of Energy Storage, 2023, 59, 106580.	3.9	10
764	Nano-flower-like porous carbon derived from soybean straw for efficient N-S co-doped supercapacitors by coupling in-situ heteroatom doping with green activation method. Applied Surface Science, 2023, 615, 156365.	3.1	21
765	Co-substitution Strategy for Boosting Rate-Capability of Lithium-Superionic-Conductor (LISICON)-Type Anode Materials in γ-Li ₃ VO ₄ –Li ₄ GeO ₄ –Li ₃ PO ₄ Quasi-Ternary-System. Journal of the Electrochemical Society, 2023, 170, 010524.	1.3	1
766	Rational Design of Electrode Materials for Advanced Supercapacitors: From Lab Research to Commercialization. Advanced Functional Materials, 2023, 33, .	7.8	66

#	Article	IF	CITATIONS
767	Performance and application of Si/Ti ₃ C ₂ T _x (MXene) composites in lithium ion battery. JPhys Energy, 2023, 5, 014020.	2.3	1
768	An Ultrafast, High‣oading, and Durable Poly(pâ€aminoazobenzene)/Reduced Graphene Oxide Composite Electrode for Supercapacitors. Advanced Functional Materials, 2023, 33, .	7.8	6
769	Surface-redox sodium-ion storage in anatase titanium oxide. Nature Communications, 2023, 14, .	5.8	43
770	Intercalation Engineering of 2D Materials at Macroscale for Smart Human–Machine Interface and Double‣ayer to Faradaic Charge Storage for Ions Separation. Advanced Materials Interfaces, 2023, 10, .	1.9	4
771	The rise of 2D conductive metal-organic framework: Cu3(HHTP)2 d- <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:mrow><mml:mi mathvariant="bold">ï€</mml:mi </mml:mrow> MOF for integrated battery-supercapacitor hybrids. Materials Today Sustainability, 2023, 22, 100331.</mml:math 	1.9	4
772	Surface redox pseudocapacitance boosting Fe/Fe3C nanoparticles-encapsulated N-doped graphene-like carbon for high-performance capacitive deionization. Journal of Colloid and Interface Science, 2023, 638, 252-262.	5.0	23
773	Polypyrrole-decorated hierarchical carbon aerogel from liquefied wood enabling high energy density and capacitance supercapacitor. Energy, 2023, 270, 126830.	4.5	19
774	Fabrication of NiPS3 coupled with hollow porous nitrogen-doped carbon capsules for high-performance asymmetric supercapacitor. Journal of Energy Storage, 2023, 61, 106805.	3.9	9
775	Preparation and characterization of binder-free electrodes based on PEDOT and perovskites type La(1-x)SrxMnO3 for use in supercapacitors. Journal of Solid State Electrochemistry, 2023, 27, 3149-3162.	1.2	1
776	Synergy of VN and Fe ₂ O ₃ Enables High Performance Anodes for Asymmetric Supercapacitors. ACS Applied Materials & Interfaces, 2023, 15, 18819-18827.	4.0	13
777	Effect of lattice water on the proton diffusion mechanism in hydrated tungsten trioxide nanostructures. Physica Scripta, 2023, 98, 055918.	1.2	0
778	Anionâ€Dependent Redox Chemistry of p‶ype Poly(vinyldimethylphenazine) Cathode Materials. Angewandte Chemie - International Edition, 2023, 62, .	7.2	9
779	Facile three-step strategy to design CdS@Bi2Se3 core-shell nanostructure: An efficient electrode for supercapacitor application. Ceramics International, 2023, 49, 21978-21987.	2.3	7
780	High nitrogen-oxygen dual-doped three-dimensional hierarchical porous carbon network derived from Eriocheir sinensis for advanced supercapacitors. Energy, 2023, 270, 126942.	4.5	10
781	Boosting the lithium storage property of nickel-zinc layered double hydroxides by intercalation with dodecyl sulfate anions. Applied Surface Science, 2023, 620, 156850.	3.1	8
782	Ultrafast flexible PEDOT:PSS supercapacitor with outstanding volumetric capacitance for AC line filtering. Chemical Engineering Journal, 2023, 463, 142377.	6.6	10
783	Design of ultra-thin nanosheet bimetallic NiCo MOF with binary ligand via solvent-assisted ligand exchange (SALE) reaction for high performance supercapacitors. Electrochimica Acta, 2023, 451, 142291.	2.6	4
784	High-entropy NaCl-type metal chalcogenides as K-ion storage materials: role of the cocktail effect. Energy Storage Materials, 2023, 59, 102770.	9.5	5

#	Article	IF	CITATIONS
785	Unleash sodium storage potential of MoS2 nanosheets: Generating favorable kinetics from optimal crystallinity and elaborate structure. Journal of Power Sources, 2023, 570, 233028.	4.0	1
786	Unveiling the role of strontium in 1D SrxRu1â^'xO2â^'x compound oxide nanofibers for high-performance supercapacitor. Journal of Alloys and Compounds, 2023, 945, 169111.	2.8	0
787	Role of precursor concentration in tuning the electrochemical performance of MoS2 nanoflowers. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2023, 292, 116436.	1.7	4
788	Zinc-iodine battery-capacitor hybrid device with excellent electrochemical performance enabled by a robust iodine host. Journal of Energy Storage, 2023, 62, 106857.	3.9	9
789	Heavily heteroatoms doped carbons with tunable microstructure as the iodine hosts for rechargeable zinc-iodine aqueous batteries. Journal of Alloys and Compounds, 2023, 947, 169696.	2.8	6
790	Recent electrochemical-energy-storage applications of metal–organic frameworks featuring iron-series elements (Fe, Co, and Ni). Journal of Energy Storage, 2023, 65, 107217.	3.9	5
791	3D Ti3C2TX@PANI-reduced graphene oxide hydrogel and defective reduced graphene oxide hydrogel as anode and cathode for high-energy asymmetric supercapacitor. Journal of Alloys and Compounds, 2023, 948, 169593.	2.8	3
792	Hybridization of Layered Titanium Oxides and Covalent Organic Nanosheets into Hollow Spheres for High-Performance Sodium-Ion Batteries with Boosted Electrical/Ionic Conductivity and Ultralong Cycle Life. ACS Nano, 2023, 17, 3019-3036.	7.3	20
793	Preparation and electrochemical application of melamine resin-based carbon materials. Journal of Porous Materials, 0, , .	1.3	0
794	CNT yarn based solid state linear supercapacitor with multi-featured capabilities for wearable and implantable devices. Energy Storage Materials, 2023, 57, 136-170.	9.5	24
795	Ion Coâ€storage in Porous Organic Frameworks through Onâ€site Coulomb Interactions for High Energy and Power Density Batteries. Angewandte Chemie, 2023, 135, .	1.6	1
796	Ion Coâ€storage in Porous Organic Frameworks through Onâ€site Coulomb Interactions for High Energy and Power Density Batteries. Angewandte Chemie - International Edition, 2023, 62, .	7.2	18
797	Semi-Polycrystalline Polyaniline-Activated Carbon Composite for Supercapacitor Application. Molecules, 2023, 28, 1520.	1.7	4
798	Freeing Fluoride Termination of Ti ₃ C ₂ T _{<i>x</i>} via Electrochemical Etching for High-Performance Capacitive Deionization. ACS Applied Materials & Interfaces, 2023, 15, 9203-9211.	4.0	8
799	Matching CP@NCOH/NF Cathode and GH/FNP/NF Anode for Highâ€Performance Asymmetric Supercapacitor. Small, 2023, 19, .	5.2	12
800	Overcoming the Tradeâ€Off between Optical Transmittance and Areal Capacitance of Transparent Supercapacitors for Practical Application. Small, 2023, 19, .	5.2	2
801	Surplus charge injection enables high-cell-potential stable 2D polyaniline supercapacitors. Electrochimica Acta, 2023, 445, 142052.	2.6	5
802	Guest Ionâ€Dependent Reaction Mechanisms of New Pseudocapacitive Mg ₃ V ₄ (PO ₄) ₆ /Carbon Composite as Negative Electrode for Monovalentâ€lon Batteries. Advanced Science, 2023, 10, .	5.6	3

#	Article	IF	CITATIONS
803	Thermopressure Coupling Effect Mimicking Natural Graphite Formation to Enhance the Storage K–Ion Performance of Carbonaceous Heterostructures. Research, 2023, 6, .	2.8	2
804	<i>In Situ</i> Growth of Mo ₂ C Crystals Stimulating Sodium-Ion Storage Properties of MoO ₂ Particles on N-Doped Carbon Nanobundles. Industrial & Engineering Chemistry Research, 2023, 62, 3602-3611.	1.8	0
805	The dispersion of iron nitride among porous carbon fibers to enhance redox conversion for high-performance zinc-iodine batteries. Chinese Chemical Letters, 2023, 34, 108232.	4.8	4
806	Recent Progress of Graphene Fiber/Fabric Supercapacitors: From Building Block Architecture, Fiber Assembly, and Fabric Construction to Wearable Applications. Advanced Fiber Materials, 2023, 5, 896-927.	7.9	22
807	A Safer Highâ€Energy Lithiumâ€lon Capacitor Using Fastâ€Charging and Stable <i>I‰</i> â€Li ₃ V ₂ O ₅ Anode. Small Methods, 2023, 7, .	4.6	2
808	Flexible Ammonium-Ion Pouch Cells Based on a Tunneled Manganese Dioxide Cathode. ACS Applied Materials & Interfaces, 2023, 15, 12434-12442.	4.0	5
809	Ultrathin Composite Li Electrode for Highâ€Performance Li Metal Batteries: A Review from Synthetic Chemistry. Advanced Functional Materials, 2023, 33, .	7.8	14
810	Ultrafast synthesis of battery grade graphite enabled by a multi-physics field carbonization. Chemical Engineering Journal, 2023, 461, 142128.	6.6	1
811	Recent Advances in Two-Dimensional MXene for Supercapacitor Applications: Progress, Challenges, and Perspectives. Nanomaterials, 2023, 13, 919.	1.9	10
812	Deformable moisture-activated all-solid-state planar microsupercapacitors. Applied Physics Letters, 2023, 122, .	1.5	5
813	Mg-doped NiCoP microflower grown on Ni foam for high-capacity supercapacitor electrode. EPJ Applied Physics, 2023, 98, 24.	0.3	0
814	Materials and structural design for preferable Zn deposition behavior towardÂstable Zn anodes. SmartMat, 2024, 5, .	6.4	7
815	Research Progress of Cathode Materials for Rechargeable Aluminum Batteries in AlCl ₃ /[EMIm]Cl and Other Electrolyte Systems. ChemistrySelect, 2023, 8, .	0.7	5
816	Largely Pseudocapacitive Two-Dimensional Conjugated Metal–Organic Framework Anodes with Lowest Unoccupied Molecular Orbital Localized in Nickel-bis(dithiolene) Linkages. Journal of the American Chemical Society, 2023, 145, 6247-6256.	6.6	14
817	Compacted mesoporous titania nanosheets anode for pseudocapacitanceâ€dominated, highâ€rate, and highâ€volumetric sodiumâ€ion storage. SmartMat, 2023, 4, .	6.4	2
818	Dynamic Morphological Evolution of Co-Based Layered Double Hydroxide Nanosheets Investigated by In Situ Electrochemical-Atomic Force Microscopy. Journal of Physical Chemistry C, 2023, 127, 5219-5229.	1.5	3
819	Nitrogenâ€Rich Wi£¿N Clusters with Atomic Disorders and Nonâ€Grain Boundaries Confined in Carbon Nanosheets Boosting Sodiumâ€lon Storage. Small, 2023, 19, .	5.2	4
820	Transforming the Electrochemical Behaviors of Cobalt Oxide from "Supercapacitator―to "Battery―by Atomicâ€Level Structure Engineering for Inspiring the Advance of Coâ€Based Batteries. Small, 2023, 19, .	5.2	5

#	Article	IF	Citations
821	Biomimetic Construction of Ferrite Quantum Dot/Graphene Heterostructure for Enhancing Ion/Charge Transfer in Supercapacitors. Advanced Materials, 2023, 35, .	11.1	59
822	Unlocking pseudocapacitors prolonged electrode fabrication via ultra-short laser pulses and machine learning. IScience, 2023, 26, 106438.	1.9	5
823	Tuning coordination environment of iron ions to ensure ultra-high pseudocapacitive capability in iron oxide. Nano Research, 0, , .	5.8	0
824	Understanding Pseudocapacitance Mechanisms by Synchrotron Xâ€ray Analytical Techniques. Energy and Environmental Materials, 2023, 6, .	7.3	5
825	Confined Assembly of Hydrated Vanadium Oxide into Hollow Mesoporous Carbon Nanospheres for Fast and Stable K ⁺ Storage Capability. Small, 2023, 19, .	5.2	2
826	Conjugated supercapacitor with suppressed selfâ€discharge constructed by pairs of prelithiated Nb ₂ O ₅ @C with optimized elemental and phase purity in the carbon shell. , 2023, 2, 300-309.		3
827	High-Performance Supercapacitors: A Comprehensive Review on Paradigm Shift of Conventional Energy Storage Devices. Batteries, 2023, 9, 202.	2.1	34
828	Synergistic effect of K ⁺ and PANI in vanadium oxide hydration by interlayer engineering boosts the ammonium ion storage. SusMat, 2023, 3, 263-275.	7.8	5
829	Structural Reconstruction Strategy Enables CoFe LDHs for Highâ€Capacity NH ₄ ⁺ Storage and Application in Highâ€Energy Density Ammoniumâ€Ion Hybrid Supercapacitors**. ChemSusChem, 2023, 16, .	3.6	4
830	Layered and honeycomb N-doped porous carbon for advanced Zn-ion hybrid supercapacitors and Li-ion batteries. Chemical Engineering Science, 2023, 276, 118702.	1.9	2
831	Covalent Organic Frameworks (COFs)/MXenes Heterostructures for Electrochemical Energy Storage. Crystal Growth and Design, 2023, 23, 3057-3078.	1.4	9
832	Surface redox pseudocapacitance-based vanadium nitride nanoparticles toward a long-cycling sodium-ion battery. Materials Today Energy, 2023, 34, 101300.	2.5	4
833	Decorating Phosphorus Anode with SnO ₂ Nanoparticles To Enhance Polyphosphides Chemisorption for High-Performance Lithium-Ion Batteries. Nano Letters, 2023, 23, 3507-3515.	4.5	5
834	Rational design of NiO/NiSe2@C heterostructure as high-performance anode for Li-ion battery. Journal of Colloid and Interface Science, 2023, 643, 437-446.	5.0	10
835	Highâ€rate sodiumâ€ion storage of vanadium nitride via surfaceâ€redox pseudocapacitance. , 2023, 2, 434-442.		14
836	Hexagonal Tungsten Bronze H _{0.25} Cs _{0.25} Nb _{2.5} W _{2.5} O ₁₄ as a Negative Electrode Material for Li-Ion Batteries. Chemistry of Materials, 0, , .	3.2	0
837	Intrinsic Self-Healing Chemistry for Next-Generation Flexible Energy Storage Devices. Nano-Micro Letters, 2023, 15, .	14.4	19
838	An Ultrahighly Pressure Sensitive Electronic Fish Skin for Underwater Wave Sensing. ACS Applied Materials & Interfaces, 2023, 15, 20421-20434.	4.0	8

#	Article	IF	CITATIONS
839	Anionâ€Dependent Redox Chemistry of pâ€Type Poly(vinyldimethylphenazine) Cathode Materials. Angewandte Chemie, 2023, 135, .	1.6	0
840	Enhanced Dielectric Properties of Polymer Composites with Polar Fe2TiO5 and Non-polar Diamond Nanofillers. Journal of Electronic Materials, 0, , .	1.0	1
841	Ti ₃ C ₂ T _{<i>x</i>} MXene with High Pseudocapacitive Activity and Large Potential Window in a Mild AlCl ₃ Aqueous Electrolyte. Small Methods, 2023, 7, .	4.6	3
842	Ultrasonically compactified thick MoS2 films with reduced nanosheet size for high performance compact energy storage. Journal of Power Sources, 2023, 571, 233060.	4.0	6
843	High-rate, high-capacity electrochemical energy storage in hydrogen-bonded fused aromatics. Joule, 2023, 7, 986-1002.	11.7	8
844	<i>In Situ</i> Raman Spectroscopy of Li ⁺ and Na ⁺ Storage in Anodic TiO ₂ Nanotubes: Implications for Battery Design. ACS Applied Nano Materials, 2023, 6, 6528-6537.	2.4	4
845	High Strain-rate Driven Nano-tubular Architecture in NiMn Alloy for Supercapacitor Electrodes. Chemical Engineering Journal, 2023, , 143008.	6.6	0
846	Effect of particle microstructure and the role of proton on the lithium insertion properties of HTiNbO5 electrode material. Electrochimica Acta, 2023, , 142432.	2.6	0
847	Proposal of a novel methodology for the electrochemical characterization of well-behaved redox-active materials used in supercapacitors. Electrochimica Acta, 2023, 457, 142458.	2.6	5
848	Mini Review of Technological Trends of Flexible Supercapacitors Using Carbon Nanotubes. Journal of Natural Fibers, 2023, 20, .	1.7	4
849	Strategies to enhance electrochemical performance of isoreticular 2d conjugated metal correlated organic frameworks via transition metals intercalation for battery-supercapacitor hybrids. Journal of Energy Storage, 2023, 66, 107361.	3.9	3
850	Electrolyteâ€Wettability Issues and Challenges of Electrode Materials in Electrochemical Energy Storage, Energy Conversion, and Beyond. Advanced Science, 2023, 10, .	5.6	16
851	Recent advances in porous carbon nanosheets for high-performance metal-ion capacitors. Chemical Engineering Journal, 2023, 466, 143077.	6.6	18
865	Organic materials as charge hosts for pseudocapacitive energy storage. Sustainable Energy and Fuels, 2023, 7, 2802-2818.	2.5	1
910	Nonporous, conducting bimetallic coordination polymers with an advantageous electronic structure for boosted faradaic capacitance. Materials Horizons, 2023, 10, 3821-3829.	6.4	1
914	A Review of Advanced Electrode Materials for Supercapacitors: Challenges and Opportunities. Journal of Electronic Materials, 2023, 52, 5775-5794.	1.0	7
940	Nanowires-assembled Co3S4/Cu2S@carbon binary metal sulfide hybrid as sodium-ion battery anode displaying high capacity and recoverable rate-performance. Chemical Communications, 0, , .	2.2	0
950	Pseudocapacitance of rutile nickel fluoride in alkaline solutionâ \in "a review. Ionics, 0, , .	1.2	0

#	Article	IF	CITATIONS
998	Accelerating ion/electron transport by engineering an indium-based heterostructure toward large and reversible lithium storage. Chemical Communications, 0, , .	2.2	0
1011	Ti ₃ C ₂ T _{<i>x</i>/i>} MXene-embedded MnO ₂ -based hydrophilic electrospun carbon nanofibers as a freestanding electrode for supercapacitors. Chemical Communications, 2023, 59, 14309-14312.	2.2	1
1015	Recent advances in the utilization of covalent organic frameworks (COFs) as electrode materials for supercapacitors. Chemical Science, 2023, 14, 13601-13628.	3.7	3
1020	Recent advances in biopolymers-based carbon materials for supercapacitors. RSC Advances, 2023, 13, 33318-33335.	1.7	2
1028	Potassium ion pre-intercalated MnO2 for aqueous multivalent ion batteries. Frontiers of Optoelectronics, 2023, 16, .	1.9	0
1045	Pseudocapacitance: Tuning Electrochemical Properties. Engineering Materials, 2024, , 75-93.	0.3	0
1054	3D grape string-like heterostructures enable high-efficiency sodium ion capture in Ti ₃ C ₂ T _{<i>x</i>} MXene/fungi-derived carbon nanoribbon hybrids. Materials Horizons, 2024, 11, 1223-1233.	6.4	0
1129	Electrochemical capacitors: basic concepts and emerging nanomaterials for electrodes. , 2024, , 83-118.		0