Carbon foam with microporous structure for high perfodual-ion capacitor

Journal of Energy Chemistry 43, 129-138

DOI: 10.1016/j.jechem.2019.08.013

Citation Report

#	Article	IF	CITATIONS
1	Rational Design of a Polyimide Cathode for a Stable and High-Rate Potassium-Ion Battery. ACS Applied Materials & Samp; Interfaces, 2019, 11, 42078-42085.	4.0	55
2	Accessible COF-Based Functional Materials for Potassium-Ion Batteries and Aluminum Batteries. ACS Applied Materials & Samp; Interfaces, 2019, 11, 44352-44359.	4.0	62
3	Novel One-Dimensional Hollow Carbon Nanotubes/Selenium Composite for High-Performance Al-Se Batteries. ACS Applied Materials & Samp; Interfaces, 2019, 11, 45709-45716.	4.0	35
4	Few-Layered Fluorinated Triazine-Based Covalent Organic Nanosheets for High-Performance Alkali Organic Batteries. ACS Nano, 2019, 13, 14252-14261.	7. 3	158
5	One-Step Synthesis of Self-Supported Ni3S2/NiS Composite Film on Ni Foam by Electrodeposition for High-Performance Supercapacitors. Nanomaterials, 2019, 9, 1718.	1.9	23
6	Superior wide-temperature lithium storage in a porous cobalt vanadate. Nano Research, 2020, 13, 1867-1874.	5.8	23
7	Synergetic restriction to polysulfides by hollow FePO4 nanospheres wrapped by reduced graphene oxide for lithium–sulfur battery. Electrochimica Acta, 2020, 329, 135135.	2.6	31
8	Dual-ion batteries: The emerging alternative rechargeable batteries. Energy Storage Materials, 2020, 25, 1-32.	9.5	160
9	Decoration of ultrathin porous zeolitic imidazolate frameworks on zinc–cobalt layered double hydroxide nanosheet arrays for ultrahigh-performance supercapacitors. Journal of Power Sources, 2020, 450, 227689.	4.0	19
10	Bismuthene from sonoelectrochemistry as a superior anode for potassium-ion batteries. Journal of Materials Chemistry A, 2020, 8, 453-460.	5.2	94
11	Hierarchical chrysanthemum-like MoS2/Sb heterostructure encapsulated into N-doped graphene framework for superior potassium-ion storage. Chemical Engineering Journal, 2020, 387, 124060.	6.6	71
12	Flexible 3D carbon cloth as a high-performing electrode for energy storage and conversion. Nanoscale, 2020, 12, 5261-5285.	2.8	81
13	Microsized Antimony as a Stable Anode in Fluoroethylene Carbonate Containing Electrolytes for Rechargeable Lithium-/Sodium-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2020, 12, 3554-3562.	4.0	36
14	Emerging polyanionic and organic compounds for high energy density, non-aqueous potassium-ion batteries. Journal of Materials Chemistry A, 2020, 8, 16061-16080.	5.2	37
15	Heteroatom-doped carbon inlaid with Sb2X3 (XÂ=ÂS, Se) nanodots for high-performance potassium-ion batteries. Chemical Engineering Journal, 2020, 385, 123838.	6.6	118
16	Urchin-like 3D NiFe2O4 with 1D radially oriented nanorods as anode for lithium-ion based dual-ion pseudocapacitor. Electrochimica Acta, 2020, 333, 135557.	2.6	18
17	Solution combustion synthesis of crystalline V ₂ O ₃ and amorphous V ₂ O ₃ /C as anode for lithiumâ€ion battery. Journal of the American Ceramic Society, 2020, 103, 2643-2652.	1.9	29
18	Tailored Redox Kinetics, Electronic Structures and Electrode/Electrolyte Interfaces for Fast and High Energyâ€Density Potassiumâ€Organic Battery. Advanced Functional Materials, 2020, 30, 1907656.	7.8	59

#	Article	IF	CITATIONS
19	Interlayer-expanded MoS2 assemblies for enhanced electrochemical storage of potassium ions. Nano Research, 2020, 13, 225-230.	5.8	47
20	Nature of FeSe ₂ /N Anode for High Performance Potassium Ion Hybrid Capacitor. Advanced Energy Materials, 2020, 10, 1903277.	10.2	225
21	Potassium-ion intercalation in anti-NASICON-type iron molybdate Fe2(MoO4)3. Electrochemistry Communications, 2020, 110, 106617.	2.3	12
22	TiNb2O7 nano-particle decorated carbon cloth as flexible self-support anode material in lithium-ion batteries. Electrochimica Acta, 2020, 332, 135469.	2.6	35
23	A Flexible Potassium-Ion Hybrid Capacitor with Superior Rate Performance and Long Cycling Life. ACS Applied Materials & Diterfaces, 2020, 12, 2424-2431.	4.0	59
24	High conductivity Ni12P5 nanowires as high-rate electrode material for battery-supercapacitor hybrid devices. Chemical Engineering Journal, 2020, 392, 123661.	6.6	78
25	SnSe2 nanocrystals coupled with hierarchical porous carbon microspheres for long-life sodium ion battery anode. Science China Materials, 2020, 63, 483-491.	3.5	30
26	Dual Carbon Potassium-lon Capacitors: Biomass-Derived Graphene-like Carbon Nanosheet Cathodes. ACS Applied Materials & Diterfaces, 2020, 12, 48518-48525.	4.0	47
27	Structural Engineering of SnS ₂ Encapsulated in Carbon Nanoboxes for Highâ€Performance Sodium/Potassiumâ€ion Batteries Anodes. Small, 2020, 16, e2005023.	5.2	120
28	In-situ reducing synthesis of MoP@nitrogen-doped carbon nanofibers as an anode material for lithium/sodium-ion batteries. Electrochimica Acta, 2020, 358, 136921.	2.6	20
29	A Superior Flameâ€Resistant and Wideâ€Temperature Adaptable Yarn Lithiumâ€Ion Battery with a Highly Conductive Ionogel Electrolyte. ChemElectroChem, 2020, 7, 3998-4002.	1.7	3
30	Influence of annealing process on the electrochemical properties of Ni3S2 electrode for stable supercapacitors. Journal of Energy Storage, 2020, 32, 101946.	3.9	16
31	Nitrogen-doped carbon nanotubes as an anode for a highly robust potassium-ion hybrid capacitor. Nanoscale Horizons, 2020, 5, 1586-1595.	4.1	45
32	The First Flexible Dual″on Microbattery Demonstrates Superior Capacity and Ultrahigh Energy Density: Small and Powerful. Advanced Functional Materials, 2020, 30, 2002086.	7.8	43
33	An Ultrahigh Rate Ionic Liquid Dual-Ion Battery Based on a Poly(anthraquinonyl sulfide) Anode. ACS Applied Energy Materials, 2020, 3, 12276-12283.	2.5	10
34	Metal–Organic Framework-Derived Nitrogen-Doped Cobalt Nanocluster Inlaid Porous Carbon as High-Efficiency Catalyst for Advanced Potassium–Sulfur Batteries. ACS Nano, 2020, 14, 16022-16035.	7. 3	50
35	Cell-like-carbon-micro-spheres for robust potassium anode. National Science Review, 2021, 8, nwaa276.	4.6	166
36	Synthesis of Porous Proton Ion Conducting Solid Polymer Blend Electrolytes Based on PVA: CS Polymers: Structural, Morphological and Electrochemical Properties. Materials, 2020, 13, 4890.	1.3	42

#	ARTICLE	IF	CITATIONS
37	Synergy of binders and electrolytes in enabling microsized alloy anodes for high performance potassium-ion batteries. Nano Energy, 2020, 77, 105118.	8.2	82
38	An Ultrastable Nonaqueous Potassium″on Hybrid Capacitor. Advanced Functional Materials, 2020, 30, 2004247.	7.8	100
39	Dual arbon Batteries: Materials and Mechanism. Small, 2020, 16, e2002803.	5 . 2	57
40	Recent advances in biomass derived activated carbon electrodes for hybrid electrochemical capacitor applications: Challenges and opportunities. Carbon, 2020, 170, 1-29.	5.4	132
41	Electrochemical Study of Poly(2,6â€Anthraquinonyl Sulfide) as Cathode for Alkaliâ€Metalâ€Ion Batteries. Advanced Energy Materials, 2020, 10, 2002780.	10.2	60
42	Carbon foams: 3D porous carbon materials holding immense potential. Journal of Materials Chemistry A, 2020, 8, 23699-23723.	5.2	86
43	Emerging Potassiumâ€ion Hybrid Capacitors. ChemSusChem, 2020, 13, 5837-5862.	3.6	65
44	Cucurbit[6]urilâ€Derived Nitrogenâ€Doped Hierarchical Porous Carbon Confined in Graphene Network for Potassiumâ€Ion Hybrid Capacitors. Advanced Science, 2020, 7, 2001681.	5.6	66
45	Controllable Phosphorylation Strategy for Free-Standing Phosphorus/Nitrogen Cofunctionalized Porous Carbon Monoliths as High-Performance Potassium Ion Battery Anodes. ACS Nano, 2020, 14, 14057-14069.	7.3	67
46	Organic phosphomolybdate: a high capacity cathode for potassium ion batteries. Chemical Communications, 2020, 56, 12753-12756.	2.2	11
47	Biomass derived anode for high-electrochemical performance potassium-ion capacitors. Materials Science for Energy Technologies, 2020, 3, 825-829.	1.0	2
48	Sn-Sb compounds with novel structure for stable potassium storage. Chemical Engineering Journal, 2020, 395, 125147.	6.6	41
49	Nature of Novel 2D van der Waals Heterostructures for Superior Potassium Ion Batteries. Advanced Energy Materials, 2020, 10, 2000884.	10.2	85
50	Achieving Fast and Stable Lithium/Potassium Storage by In Situ Decorating FeSe < sub > 2 < /sub > Nanodots into Three-Dimensional Hierarchical Porous Carbon Networks. Journal of Physical Chemistry C, 2020, 124, 12185-12194.	1.5	19
51	High performance aluminum foam-graphite dual-ion batteries and failure analysis. Journal of Alloys and Compounds, 2020, 838, 155640.	2.8	12
52	Direct Pyrolysis of Supermolecules: An Ultrahigh Edgeâ€Nitrogen Doping Strategy of Carbon Anodes for Potassiumâ€lon Batteries. Advanced Materials, 2020, 32, e2000732.	11.1	164
53	Large-scale carambola-like V2O5 nanoflowers arrays on microporous reed carbon as improved electrochemical performances lithium-ion batteries cathode. Journal of Energy Chemistry, 2020, 51, 388-395.	7.1	38
54	Bio-derived hierarchically porous heteroatoms doped‑carbon as anode for high performance potassium-ion batteries. Journal of Electroanalytical Chemistry, 2020, 871, 114272.	1.9	19

#	Article	IF	CITATIONS
55	Symmetric Sodium-Ion Battery Based on Dual-Electron Reactions of NASICON-Structured Na ₃ MnTi(PO ₄) ₃ Material. ACS Applied Materials & Interfaces, 2020, 12, 30328-30335.	4.0	65
56	Boosting Lithium Storage in Free-Standing Black Phosphorus Anode via Multifunction of Nanocellulose. ACS Applied Materials & Samp; Interfaces, 2020, 12, 31628-31636.	4.0	48
57	In-situ implanted carbon nanofilms into lithium titanate with 3D porous structure as fast kinetics anode for high-performance dual-ion battery. Chemical Engineering Journal, 2020, 401, 125834.	6.6	23
58	Nonaqueous Aluminum Ion Batteries: Recent Progress and Prospects. , 2020, 2, 887-904.		57
59	Ball-in-ball structured SnO2@FeOOH@C nanospheres toward advanced anode material for sodium ion batteries. Journal of Alloys and Compounds, 2020, 838, 155394.	2.8	21
60	Rational formation of solid electrolyte interface for high-rate potassium ion batteries. Nano Energy, 2020, 75, 104979.	8.2	55
61	Facile Ion-Exchange Strategy for Na ⁺ /K ⁺ Hybrid-Ion Batteries with Superior Rate Capability and Cycling Performance. ACS Applied Energy Materials, 2020, 3, 7030-7038.	2.5	13
62	Hierarchically Structured Nitrogen-Doped Carbon Microspheres for Advanced Potassium Ion Batteries. , 2020, 2, 853-860.		70
63	Highly Concentrated Electrolyte towards Enhanced Energy Density and Cycling Life of Dualâ€lon Battery. Angewandte Chemie - International Edition, 2020, 59, 17924-17930.	7.2	99
64	Self-assembly formation of hierarchical mixed spinel MnCo2O4 porous nanospheres confined by polypyrrole pyrolytic carbon for high-performance lithium storage. Materials Today Energy, 2020, 17, 100451.	2.5	15
65	Pitchâ€Derived Soft Carbon as Stable Anode Material for Potassium Ion Batteries. Advanced Materials, 2020, 32, e2000505.	11.1	216
66	Highly Concentrated Electrolyte towards Enhanced Energy Density and Cycling Life of Dualâ€lon Battery. Angewandte Chemie, 2020, 132, 18080-18086.	1.6	6
67	Design and synthesis of NiCo2O4/NiCoO2/graphene hybrid nanoarrays with enhanced capacitive performance. Ceramics International, 2020, 46, 20191-20200.	2.3	14
68	Role of nano-capacitor on dielectric constant enhancement in PEO:NH4SCN:xCeO2 polymer nano-composites: Electrical and electrochemical properties. Journal of Materials Research and Technology, 2020, 9, 9283-9294.	2.6	67
69	Natural N/O-doped hard carbon for high performance K-ion hybrid capacitors. Electrochimica Acta, 2020, 354, 136701.	2.6	27
70	Recent progress and perspective on electrolytes for sodium/potassium-based devices. Energy Storage Materials, 2020, 31, 328-343.	9.5	68
71	Amorphous Bimetallic Oxides Fe–V–O with Tunable Compositions toward Rechargeable Zn-Ion Batteries with Excellent Low-Temperature Performance. ACS Applied Materials & Diterfaces, 2020, 12, 11753-11760.	4.0	38
72	Wafer-like FeSe2-NiSe2/C nanosheets as efficient anode for high-performances lithium batteries. Chemical Physics Letters, 2020, 746, 137274.	1.2	18

#	Article	IF	CITATIONS
73	Effect of ohmic-drop on electrochemical performance of EDLC fabricated from PVA:dextran:NH4I based polymer blend electrolytes. Journal of Materials Research and Technology, 2020, 9, 3734-3745.	2.6	76
74	Boost Anion Storage Capacity Using Conductive Polymer as a Pseudocapacitive Cathode for High-Energy and Flexible Lithium Ion Capacitors. ACS Applied Materials & Interfaces, 2020, 12, 10479-10489.	4.0	57
75	Insight into pseudocapacitive-diffusion mixed kinetics and conversion-alloying hybrid mechanisms of low-cost Zn-Mn perovskite fluorides anodes for powerful Li-ion/dual-ion storage. Chemical Engineering Journal, 2020, 388, 124154.	6.6	22
76	Nitrogen-rich hierarchically porous carbon foams as high-performance electrodes for lithium-based dual-ion capacitor. Journal of Energy Chemistry, 2020, 48, 187-194.	7.1	34
77	Cation-exchange-assisted formation of NiS/SnS ₂ porous nanowalls with ultrahigh energy density for battery–supercapacitor hybrid devices. Journal of Materials Chemistry A, 2020, 8, 3300-3310.	5.2	63
78	Self-sacrificial template-directed ZnSe@C as high performance anode for potassium-ion batteries. Chemical Engineering Journal, 2020, 387, 124061.	6.6	55
79	Carbon-wrapped cobalt nanoparticles on graphene aerogel for solid-state room-temperature sodium-sulfur batteries. Chemical Engineering Journal, 2020, 388, 124210.	6.6	32
80	Nitrogen doping and graphitization tuning coupled hard carbon for superior potassium-ion storage. Journal of Energy Chemistry, 2020, 49, 327-334.	7.1	68
81	Modulating the Void Space of Nitrogenâ€Doped Hollow Mesoporous Carbon Spheres for Lithiumâ€Sulfur Batteries. ChemNanoMat, 2020, 6, 925-929.	1.5	7
82	Controlled fabrication and performances of single-core/dual-shell hierarchical structure m-TNO@TiC@NC anode composite for lithium-ion batteries. Electrochimica Acta, 2020, 341, 136072.	2.6	12
83	Porous N-doped carbon sheets wrapped MnO in 3D carbon networks as high-performance anode for Li-ion batteries. Electrochimica Acta, 2020, 342, 136115.	2.6	37
84	Heterostructures of 2D Molybdenum Dichalcogenide on 2D Nitrogenâ€Doped Carbon: Superior Potassiumâ€ion Storage and Insight into Potassium Storage Mechanism. Advanced Materials, 2020, 32, e2000958.	11.1	192
85	Boosting the potassium storage performance of carbon anode via integration of adsorption-intercalation hybrid mechanisms. Nano Energy, 2020, 73, 104807.	8.2	60
86	Flower-like ZnO modified with BiOI nanoparticles as adsorption/catalytic bifunctional hosts for lithium–sulfur batteries. Journal of Energy Chemistry, 2020, 51, 21-29.	7.1	30
87	Recent advances in carbon nanostructures prepared from carbon dioxide for high-performance supercapacitors. Journal of Energy Chemistry, 2021, 54, 352-367.	7.1	97
88	Reduced graphene oxide doping flower-like Fe7S8 nanosheets for high performance potassium ion storage. Journal of Energy Chemistry, 2021, 54, 604-611.	7.1	38
89	Synthesis of Co3O4/reduced graphene oxide by one step-hydrothermal and calcination method for high-performance supercapacitors. Ionics, 2021, 27, 339-349.	1.2	21
90	One produced three: A capacitor-battery integration strategy in a dual-carbon device. Energy Storage Materials, 2021, 34, 356-364.	9.5	7

#	Article	IF	CITATIONS
91	Rational design of carbon materials as anodes for potassium-ion batteries. Energy Storage Materials, 2021, 34, 483-507.	9.5	130
92	Wood-cellulose-fiber-based functional materials for triboelectric nanogenerators. Nano Energy, 2021, 81, 105637.	8.2	141
93	Surpassing the Organic Cathode Performance for Lithium-Ion Batteries with Robust Fluorinated Covalent Quinazoline Networks. ACS Energy Letters, 2021, 6, 41-51.	8.8	32
94	TiO2 microbox/carbon nanotube composite-modified separator for high-performance lithium-sulfur batteries. Journal of Solid State Electrochemistry, 2021, 25, 949-961.	1.2	5
95	Temperature adaptability issue of aqueous rechargeable batteries. Materials Today Energy, 2021, 19, 100577.	2.5	18
96	Atomic layer deposition regulating hydrated K2Ti6O13 nanobelts on graphene platform with accelerated solid solution potassiation for potassium ion capacitors. Chemical Engineering Journal, 2021, 417, 128048.	6.6	13
97	Tempura-like carbon/carbon composite as advanced anode materials for K-ion batteries. Journal of Energy Chemistry, 2021, 59, 589-598.	7.1	62
98	An all-organic aqueous potassium dual-ion battery. Journal of Energy Chemistry, 2021, 57, 28-33.	7.1	52
99	Phosphorus-doping-induced kinetics modulation for nitrogen-doped carbon mesoporous nanotubes as superior alkali metal anode beyond lithium for high-energy potassium-ion hybrid capacitors. Nanoscale, 2021, 13, 692-699.	2.8	46
100	Locally Ordered Graphitized Carbon Cathodes for Highâ€Capacity Dualâ€Ion Batteries. Angewandte Chemie - International Edition, 2021, 60, 6326-6332.	7.2	101
101	Crossâ€Linked Hollow Graphitic Carbon as Lowâ€Cost and Highâ€Performance Anode for Potassium Ion Batteries. Energy and Environmental Materials, 2021, 4, 451-457.	7. 3	39
102	A new strategy for achieving high K ⁺ storage capacity with fast kinetics: realizing covalent sulfur-rich carbon by phosphorous doping. Nanoscale, 2021, 13, 4911-4920.	2.8	17
103	Recent progress in electrochemical performance of binder-free anodes for potassium-ion batteries. Nanoscale, 2021, 13, 5965-5984.	2.8	15
104	Red phosphorus embedded in TiO ₂ /C nanofibers to enhance the potassium-ion storage performance. Nanoscale, 2021, 13, 6635-6643.	2.8	19
105	Fast and stable K-ion storage enabled by synergistic interlayer and pore-structure engineering. Nano Research, 2021, 14, 4502-4511.	5.8	36
106	Synthesis of porous Si nanoparticles for high performances anode material in lithium-ion batteries. Materials Research Express, 2021, 8, 025008.	0.8	1
107	Artificial SEI for Superhighâ€Performance Kâ€Graphite Anode. Advanced Science, 2021, 8, 2003639.	5 . 6	59
108	Locally Ordered Graphitized Carbon Cathodes for Highâ€Capacity Dualâ€lon Batteries. Angewandte Chemie, 2021, 133, 6396-6402.	1.6	26

#	Article	IF	CITATIONS
109	Synergistic effect of porous structure and heteroatoms in carbon materials to boost highâ€performance supercapacitor. International Journal of Energy Research, 2021, 45, 10963-10973.	2.2	10
110	Hierarchical Ni2P@Ni(OH)2 architectures supported on carbon cloth as battery-type electrodes for hybrid supercapacitors with boosting specific capacitance and cycle stability. Journal of Materials Science: Materials in Electronics, 2021, 32, 7973-7986.	1.1	4
111	Recent Progress and Challenges in Multivalent Metalâ€lon Hybrid Capacitors. Batteries and Supercaps, 2021, 4, 1201-1220.	2.4	14
112	Metal″on Capacitors with Anion Intercalation Process. Advanced Energy and Sustainability Research, 2021, 2, 2000069.	2.8	7
113	3D Holey Graphene/Polyacrylonitrile Sulfur Composite Architecture for High Loading Lithium Sulfur Batteries. Advanced Energy Materials, 2021, 11, 2100448.	10.2	131
114	Molecular Regulation on Carbonyl-Based Organic Cathodes: Toward High-Rate and Long-Lifespan Potassium–Organic Batteries. ACS Applied Materials & Interfaces, 2021, 13, 16396-16406.	4.0	26
115	Construction of Three-Dimensional Conductive Graphitic Architecture by Highly Efficient Electrochemical Exfoliation. Frontiers in Energy Research, 2021, 9, .	1.2	0
116	Nitrogenâ€Doped Accordionâ€Like Soft Carbon Anodes with Exposed Hierarchical Pores for Advanced Potassiumâ€Ion Hybrid Capacitors. Advanced Functional Materials, 2021, 31, 2101470.	7.8	51
117	Benzene Ring Knitting Achieved by Ambientâ€Temperature Dehalogenation via Mechanochemical Ullmannâ€Type Reductive Coupling. Advanced Materials, 2021, 33, e2008685.	11.1	27
118	Ultralong cycle life and high rate potassium ion batteries enabled by multi-level porous carbon. Journal of Power Sources, 2021, 492, 229614.	4.0	27
119	A novel method of preparing the silver chloride cathode for the magnesium seawater activated primary cell. Journal of Power Sources, 2021, 490, 229549.	4.0	8
120	Fe0.8CoSe2 nanosphere coated by N-doped carbon for ultra-high rate potassium selenium battery. Rare Metals, 2021, 40, 2455-2463.	3.6	26
121	The Recent Progress in Cellulose Paperâ€Based Triboelectric Nanogenerators. Advanced Sustainable Systems, 2021, 5, 2100034.	2.7	17
122	Na2Ti3O7 nanosheet arrays as anode for high performance dual ion batteries. Materials Letters, 2021, 291, 129602.	1.3	4
123	Hydrothermal "Disproportionation―of Biomass into Oriented Carbon Microsphere Anode and 3D Porous Carbon Cathode for Potassium Ion Hybrid Capacitor. Advanced Functional Materials, 2021, 31, 2103115.	7.8	49
124	Phosphate-Based Electrolyte and Pristine Graphite Cathode for a High-Voltage Rechargeable Dual-Ion Magnesium Battery. ACS Applied Energy Materials, 2021, 4, 5165-5174.	2.5	11
125	Microporous 3D Grapheneâ€Like Carbon as Iodine Host for Zincâ€Based Battery–Supercapacitor Hybrid Energy Storage with Ultrahigh Energy and Power Densities. Advanced Energy and Sustainability Research, 2021, 2, 2100076.	2.8	11
126	Fe1-xS/S-doped carbon nanosheets derived from iron organic framework for high performance potassium-ion batteries anode. Materials Letters, 2021, 291, 129419.	1.3	5

#	Article	IF	CITATIONS
127	<scp>Doubleâ€Coated Fe₂N</scp> @ <scp>TiO₂</scp> @C <scp>Yolkâ€6hell</scp> Submicrocubes as an Advanced Anode for <scp>Potassiumâ€ion</scp> Batteries ^{â€} . Chinese Journal of Chemistry, 2021, 39, 1878-1884.	2.6	15
128	Regulating Solvent Molecule Coordination with KPF ₆ for Superstable Graphite Potassium Anodes. ACS Nano, 2021, 15, 9167-9175.	7.3	89
129	Emerging of Heterostructure Materials in Energy Storage: A Review. Advanced Materials, 2021, 33, e2100855.	11.1	308
130	Status of rechargeable potassium batteries. Nano Energy, 2021, 83, 105792.	8.2	113
131	Controlling intercalation sites of hard carbon for enhancing Na and K storage performance. Chemical Engineering Journal, 2021, 411, 128490.	6.6	57
132	Recent Advances on Sodiumâ€lon Batteries and Sodium Dualâ€lon Batteries: Stateâ€ofâ€theâ€Art Na ^{++++++++++++++++++<td>up> .8</td><td>65</td>}	up> .8	65
133	Directionally Tailoring Macroporous Honeycomb-Like Structured Carbon Nanofibers toward High-Capacitive Potassium Storage. ACS Applied Materials & Samp; Interfaces, 2021, 13, 30693-30702.	4.0	25
134	Solid-state synthesis and superior electrochemical performance of MnMoO4 nanorods for asymmetric supercapacitor. Ceramics International, 2021, 47, 16316-16323.	2.3	21
135	Relationship between Multivalent Cation Charge Carriers and Organic Solvents on Nanoporous Carbons in 4ÂVâ€Window Magnesium Ion Supercapacitors. Advanced Energy Materials, 2021, 11, 2101054.	10.2	12
136	Flexible sodium-ion batteries using electrodes from <i>Samanea saman</i> tree leaf <i><i>derived carbon quantum dots decorated with SnO2 and NaVO3. Clean Energy, 2021, 5, 354-374.</i></i>	1.5	11
137	A novel aqueous dual-ion battery using concentrated bisalt electrolyte. Energy Storage Materials, 2021, 38, 454-461.	9.5	31
138	N-self-doped graphitic carbon aerogels derived from metal–organic frameworks as supercapacitor electrode materials with high-performance. Electrochimica Acta, 2021, 380, 138237.	2.6	78
139	Egg white derived carbon materials as an efficient sulfur host for high-performance lithium-sulfur batteries and its electrochemical properties. Materials Research Bulletin, 2021, 140, 111310.	2.7	11
140	Advanced cathode materials in dualâ€ion batteries: Progress and prospect. Electrochemical Science Advances, 2022, 2, e2100127.	1.2	9
141	Gas phase self-assembly of carbon confined Fe1â^'xS nanoparticles/exfoliated graphite composite with nano-/micro-structure for long-life anode of potassium-ion batteries. Journal of Alloys and Compounds, 2021, 871, 159522.	2.8	8
142	High-performance hard carbon anode prepared via an ingenious green-hydrothermal route. Applied Surface Science, 2021, 558, 149824.	3.1	15
143	Copper oxide@cobalt oxide core–shell nanostructure, as an efficient binder-free anode for lithium-ion batteries. Journal Physics D: Applied Physics, 2021, 54, 465501.	1.3	0
144	Design strategies and research progress for Water-in-Salt electrolytes. Energy Storage Materials, 2022, 44, 10-28.	9.5	35

#	Article	IF	CITATIONS
145	Fast potassium storage in porous CoV2O6 nanosphere@graphene oxide towards high-performance potassium-ion capacitors. Energy Storage Materials, 2021, 40, 250-258.	9.5	46
146	Sodium-Based Dual-Ion Battery Based on the Organic Anode and Ionic Liquid Electrolyte. ACS Applied Materials & Samp; Interfaces, 2021, 13, 44254-44265.	4.0	25
147	High capacitance for asymmetric supercapacitors based on one-step synthetic nanoflowers/nanocones arrays as cathode and pomelo peel as anode. Journal of Solid State Chemistry, 2021, 302, 122428.	1.4	2
148	Covalent sulfur as stable anode for potassium ion battery. Journal of Energy Chemistry, 2021, 62, 645-652.	7.1	44
149	Synthesis and electrochemical properties of nanoporous CrN thin film electrodes for supercapacitor applications. Materials and Design, 2021, 209, 109949.	3.3	11
150	A graphitized expanded graphite cathode for aluminum-ion battery with excellent rate capability. Journal of Energy Chemistry, 2022, 66, 38-44.	7.1	17
151	Cu3P nanoparticles confined in nitrogen/phosphorus dual-doped porous carbon nanosheets for efficient potassium storage. Journal of Energy Chemistry, 2022, 66, 339-347.	7.1	23
152	Three-dimensional microspheres constructed with MoS ₂ nanosheets supported on multiwalled carbon nanotubes for optimized sodium storage. Nanoscale, 2021, 13, 9328-9338.	2.8	15
153	UIO-66-NH ₂ -derived mesoporous carbon used as a high-performance anode for the potassium-ion battery. RSC Advances, 2021, 11, 1039-1049.	1.7	10
154	Intrinsic Structure Modification of Electrode Materials for Aqueous Metalâ€lon and Metalâ€Air Batteries. Advanced Functional Materials, 2021, 31, 2006855.	7.8	36
155	SbVO4 based high capacity potassium anode: a combination of conversion and alloying reactions. Science China Chemistry, 2021, 64, 238-244.	4.2	39
156	Cocoon Silk-Derived, Hierarchically Porous Carbon as Anode for Highly Robust Potassium-Ion Hybrid Capacitors. Nano-Micro Letters, 2020, 12, 113.	14.4	74
157	A metal–organic framework-derived pseudocapacitive titanium oxide/carbon core/shell heterostructure for high performance potassium ion hybrid capacitors. Journal of Materials Chemistry A, 2020, 8, 16302-16311.	5.2	40
158	Preparation and electrochemical performance of chemicalâ€activated carbon foam. Micro and Nano Letters, 2021, 16, 164-170.	0.6	2
159	Study on performance and charging dynamics of N/O codoped layered porous carbons derived from L-tyrosine for supercapacitors. Applied Surface Science, 2022, 578, 151888.	3.1	17
160	The Free-Standing Alloy Strategy to Improve the Electrochemical Performance of Potassium-Based Dual-Ion Batteries. ACS Energy Letters, 2021, 6, 4336-4344.	8.8	33
161	Zeroâ€Strain Structure for Efficient Potassium Storage: Nitrogenâ€Enriched Carbon Dualâ€Confinement CoP Composite. Advanced Energy Materials, 2022, 12, 2103341.	10.2	26
162	Contribution of nano-design approaches to future electrochemical energy storage systems. Frontiers of Nanoscience, 2021, 19, 273-325.	0.3	2

#	Article	IF	CITATIONS
163	Interfacial Engineered Vanadium Oxide Nanoheterostructures Synchronizing High-Energy and Long-Term Potassium-Ion Storage. ACS Nano, 2022, 16, 1502-1510.	7.3	35
164	Reversible anion intercalation into graphite from aluminum perchlorate "waterâ€inâ€salt―electrolyte. Electrochimica Acta, 2022, 404, 139754.	2.6	9
165	Hierarchical CoNb2O6@CoOOH core-shell composite on carbon fabric for aqueous supercapacitor anode with high capacitance and super-long life. Electrochimica Acta, 2022, 406, 139845.	2.6	12
166	Carbon hollow fibers with tunable hierarchical structure as self-standing supercapacitor electrode. Chemical Engineering Journal, 2022, 431, 134099.	6.6	22
167	Non-lithium-based metal ion capacitors: recent advances and perspectives. Journal of Materials Chemistry A, 2022, 10, 357-378.	5.2	34
168	Bendable Aqueous Zincâ€lon Hybrid Energy Storage Device Using Poly(4,4'â€ŧhiodianiline)â€Modified Nanoporous Carbon Cathode. Batteries and Supercaps, 0, , .	2.4	1
169	Recent Advances and Perspectives of Battery-Type Anode Materials for Potassium Ion Storage. ACS Nano, 2021, 15, 18931-18973.	7.3	160
170	Regulation of Dual-Ion Batteries Via the Defects Design in Carbon Electrode Based on the Different Storage Behaviors of Pf6- and Li+. SSRN Electronic Journal, 0, , .	0.4	0
171	MoS ₂ nanosheets with expanded interlayer spacing for ultra-stable aqueous Mg-ion hybrid supercapacitor. Inorganic Chemistry Frontiers, 2022, 9, 1666-1673.	3.0	16
172	Encapsulation of BiOCl nanoparticles in N-doped carbon nanotubes as a highly efficient anode for potassium ion batteries. Nanoscale, 2022, 14, 5814-5823.	2.8	18
173	High-Performance Dual-Ion Battery Based on a Layered Tin Disulfide Anode. ACS Omega, 2022, 7, 7616-7624.	1.6	5
174	Micrometer Carbon Ball-Decorated Nanowire-Structured SnO ₂ @C Composites as an Anode for Potassium-Ion Batteries with Enhanced Performance. Energy & Energy	2.5	4
175	Nitrogen-doped porous carbon nanosheets as both anode and cathode for advanced potassium-ion hybrid capacitors. Green Energy and Environment, 2023, 8, 579-588.	4.7	11
176	Beadâ€Like Coalâ€Derived Carbon Anodes for High Performance Potassiumâ€lon Hybrid Capacitors. ChemElectroChem, 0, , .	1.7	4
177	Regulation of dual-ion batteries via the defects design in carbon electrode based on the different storage behaviors of PF6â° and Li+. Journal of Power Sources, 2022, 527, 231169.	4.0	6
178	Iron Porphyrin Organic Frameworks Derived Bionic-Tree-Nodule-like Fe ₇ S ₈ with Ultralong Potassium Ion Storage. Energy & Samp; Fuels, 2022, 36, 694-702.	2.5	5
179	A Review on the Conventional Capacitors, Supercapacitors, and Emerging Hybrid Ion Capacitors: Past, Present, and Future. Advanced Energy and Sustainability Research, 2022, 3, .	2.8	74
180	Constructing ultrafine Cu nanoparticles encapsulated by N-doped carbon nanosheets with fast kinetics for high-performance lithium/sodium storage. Chemical Engineering Journal, 2022, 446, 136918.	6.6	8

#	ARTICLE	IF	CITATIONS
181	Petroleum pitch derived carbon as both cathode and anode materials for advanced potassium-ion hybrid capacitors. Carbon, 2022, 196, 727-735.	5.4	17
182	Structureâ€Optimized Phosphorene for Superâ€Stable Potassium Storage. Advanced Functional Materials, 2022, 32, .	7.8	23
183	DFT practice in MXene-based materials for electrocatalysis and energy storage: From basics to applications. Ceramics International, 2022, 48, 27217-27239.	2.3	8
184	Low-strain binary hexacyanoferrate nanocuboids with concentration-gradient structure towards fast and durable energy storage. Journal of Energy Chemistry, 2022, 74, 72-84.	7.1	4
185	An Integrated Design of Electrodes for Flexible Dualâ€lon Batteries. ChemSusChem, 2023, 16, .	3 . 6	6
186	Rechargeable Dual arbon Batteries: A Sustainable Battery Technology. Advanced Energy Materials, 2022, 12, .	10.2	19
187	Synthesis of Lightweight Metallic Foam and Their Applications in Various Engineering Sectors. Materials Horizons, 2023, , 51-74.	0.3	1
188	Hybrid solid electrolyte interphases formed in conventional carbonate electrolyte enable high-voltage and ultra-stable magnesium metal batteries. Journal of Energy Chemistry, 2023, 78, 315-324.	7.1	4
189	Manipulating Deposition Behavior by Polymer Hydrogel Electrolyte Enables Dendriteâ€Free Zinc Anode for Zincâ€ion Hybrid Capacitors. Small Methods, 2023, 7, .	4.6	6
190	Environmentally friendly natural materials for triboelectric nanogenerators: a review. Journal of Materials Chemistry A, 2023, 11, 9270-9299.	5.2	6
191	Room-temperature prepared MXene foam via chemical foaming methods for high-capacity supercapacitors. Journal of Alloys and Compounds, 2023, 945, 169279.	2.8	4
192	Ni ₂ P immobilized on N,P-codoped porous carbon sheets for alkali metal ion batteries and storage mechanism. Journal of Materials Chemistry A, 2023, 11, 8162-8172.	5.2	17
193	Confined Assembly of Hydrated Vanadium Oxide into Hollow Mesoporous Carbon Nanospheres for Fast and Stable K ⁺ Storage Capability. Small, 2023, 19, .	5.2	2
207	Dual carbon engineering enabling 1T/2H MoS ₂ with ultrastable potassium ion storage performance. Nanoscale Horizons, 2024, 9, 305-316.	4.1	3