The Giant Radio Array for Neutrino Detection (GRAND)

Science China: Physics, Mechanics and Astronomy 63, 1 DOI: 10.1007/s11433-018-9385-7

Citation Report

#	Article	IF	CITATIONS
1	Ultrahigh-energy cosmic-ray nuclei and neutrinos from engine-driven supernovae. Physical Review D, 2019, 100, .	1.6	20
2	Coherent Transition Radiation from the Geomagnetically Induced Current in Cosmic-Ray Air Showers: Implications for the Anomalous Events Observed by ANITA. Physical Review Letters, 2019, 123, 091102.	2.9	23
3	Cosmic tau neutrino detection via Cherenkov signals from air showers from Earth-emerging taus. Physical Review D, 2019, 100, .	1.6	21
4	Anomalous ANITA air shower events and tau decays. Physical Review D, 2019, 100, .	1.6	11
5	Progress towards characterizing ultrahigh energy cosmic ray sources. Physical Review D, 2019, 100, .	1.6	33
6	Systematic parameter space study for the UHECR origin from GRBs in models with multiple internal shocks. Monthly Notices of the Royal Astronomical Society, 2020, 498, 5990-6004.	1.6	22
7	Visible decay of astrophysical neutrinos at IceCube. Physical Review D, 2020, 102, .	1.6	28
8	Cosmogenic neutrino fluxes under the effect of active-sterile secret interactions. Physical Review D, 2020, 101, .	1.6	7
9	Ultra-high-energy cosmic rays and neutrinos from tidal disruptions by massive black holes (Corrigendum). Astronomy and Astrophysics, 2020, 636, C3.	2.1	8
10	Constraints on the diffuse flux of ultrahigh energy neutrinos from four years of Askaryan Radio Array data in two stations. Physical Review D, 2020, 102, .	1.6	29
11	Charm contribution to ultrahigh-energy neutrinos from newborn magnetars. Physical Review D, 2020, 102, .	1.6	3
12	POEMMA's target-of-opportunity sensitivity to cosmic neutrino transient sources. Physical Review D, 2020, 102, .	1.6	24
13	Grand unified neutrino spectrum at Earth: Sources and spectral components. Reviews of Modern Physics, 2020, 92, .	16.4	69
14	Observable features in ultrahigh energy neutrinos due to active-sterile secret interactions. Physical Review D, 2020, 102, .	1.6	6
15	Hunting the Glashow resonance with PeV neutrino telescopes. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 005-005.	1.9	12
16	Observation of Radar Echoes from High-Energy Particle Cascades. Physical Review Letters, 2020, 124, 091101.	2.9	19
17	Askaryan radiation from neutrino-induced showers in ice. Physical Review D, 2020, 101, .	1.6	10
18	Proton Synchrotron Gamma-Rays and the Energy Crisis in Blazars. Astrophysical Journal Letters, 2020, 893, L20.	3.0	23

#	Article	IF	CITATIONS
19	Simulation study on cosmic ray background at large zenith angle based on GRANDProto35 coincidence array experiment. Nuclear Science and Techniques/Hewuli, 2021, 32, 1.	1.3	1
20	Indirect Detection of Cosmic Rays. , 2021, , 1-49.		0
21	Radio-detection of neutrino-induced air showers: The influence of topography. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2021, 986, 164803.	0.7	6
22	Constraining the energy spectrum of neutral pions in ultra-high-energy proton-air interactions. Physical Review D, 2021, 103, .	1.6	5
23	Final results of the LOPES radio interferometer for cosmic-ray air showers. European Physical Journal C, 2021, 81, 1.	1.4	12
24	Neutrino production in Population III microquasars. Astroparticle Physics, 2021, 128, 102557.	1.9	3
25	IceCube-Gen2: the window to the extreme Universe. Journal of Physics G: Nuclear and Particle Physics, 2021, 48, 060501.	1.4	204
26	Characterization of the photomultiplier tubes for the scintillation detectors of GRANDProto35 experiment. Journal of Instrumentation, 2021, 16, P04008.	0.5	0
27	Heavy decaying dark matter at future neutrino radio telescopes. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 074.	1.9	14
28	Simulation study on performance optimization of a prototype scintillation detector for the GRANDProto35 experiment. Nuclear Science and Techniques/Hewuli, 2021, 32, 1.	1.3	6
29	Active Galactic Nuclei Jets as the Origin of Ultrahigh-Energy Cosmic Rays and Perspectives for the Detection of Astrophysical Source Neutrinos at EeV Energies. Physical Review Letters, 2021, 126, 191101.	2.9	37
30	The POEMMA (Probe of Extreme Multi-Messenger Astrophysics) observatory. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 007.	1.9	50
31	Astrophysical Neutrinos in Testing Lorentz Symmetry. Galaxies, 2021, 9, 47.	1.1	5
32	Probing new physics with high-multiplicity events: Ultrahigh-energy neutrinos at air-shower detector arrays. Physical Review D, 2021, 104, .	1.6	3
33	Expected performance of air-shower measurements with the radio-interferometric technique. Journal of Instrumentation, 2021, 16, P07048.	0.5	5
34	High-energy neutrino production in clusters of galaxies. Monthly Notices of the Royal Astronomical Society, 2021, 507, 1762-1774.	1.6	15
35	The Payload for Ultrahigh Energy Observations (PUEO): a white paper. Journal of Instrumentation, 2021, 16, P08035.	0.5	35
36	Energetics of ultrahigh-energy cosmic-ray nuclei. Physical Review D, 2021, 104, .	1.6	8

#	Article	IF	CITATIONS
37	Estimating the carbon footprint of the GRAND project, a multi-decade astrophysics experiment. Astroparticle Physics, 2021, 131, 102587.	1.9	17
38	Indirect dark matter searches at ultrahigh energy neutrino detectors. Physical Review D, 2021, 104, .	1.6	18
39	EeV astrophysical neutrinos from flat spectrum radio quasars. Astronomy and Astrophysics, 2020, 642, A92.	2.1	13
40	A search for cosmogenic neutrinos with the ARIANNA test bed using 4.5 years of data. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 053-053.	1.9	23
41	High-energy neutrinos from fallback accretion of binary neutron star merger remnants. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 045-045.	1.9	17
42	Complete predictions for high-energy neutrino propagation in matter. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 025-025.	1.9	43
43	Prospects for high-elevation radio detection of 0>10 PeV tau neutrinos. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 065-065.	1.9	22
44	Refractive displacement of the radio-emission footprint of inclined air showers simulated with CoREAS. European Physical Journal C, 2020, 80, 1.	1.4	6
46	Multi-messenger emission from the parsec-scale jet of the flat-spectrum radio quasar PKS 1502+106 coincident with high-energy neutrino IceCube-190730A. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 082.	1.9	16
47	Ultrahigh-energy tau neutrino cross sections with GRAND and POEMMA. Physical Review D, 2020, 102, .	1.6	20
48	Probing High-Energy Interactions of Atmospheric and Astrophysical Neutrinos. , 2020, , 75-107.		4
49	Signatures of secondary acceleration in neutrino flares. Astronomy and Astrophysics, 2020, 641, A29.	2.1	2
50	Constraints on heavy decaying dark matter with current gamma-ray measurements. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 035.	1.9	16
51	The Radar Echo Telescope for Cosmic Rays: Pathfinder experiment for a next-generation neutrino observatory. Physical Review D, 2021, 104, .	1.6	16
52	Indirect Detection of Cosmic Rays. , 2021, , 801-849.		0
53	Cosmogenic gamma-ray and neutrino fluxes from blazars associated with IceCube events. Astronomy and Astrophysics, 2022, 658, L6.	2.1	5
54	Nature of radio-wave radiation from particle cascades. Physical Review D, 2022, 105, .	1.6	5
55	Measurement of Energy Spectrum and Elemental Composition of PeV Cosmic Rays: Open Problems and Prospects. Applied Sciences (Switzerland), 2022, 12, 705.	1.3	2

	Стато	CITATION REPORT	
#	Article	IF	CITATIONS
56	Status and perspectives of neutrino physics. Progress in Particle and Nuclear Physics, 2022, 124, 103947.	5.6	31
57	Analysis of a tau neutrino origin for the near-horizon air shower events observed by the fourth flight of the Antarctic Impulsive Transient Antenna. Physical Review D, 2022, 105, .	1.6	4
58	Probing new physics at future tau neutrino telescopes. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 038.	1.9	15
59	Quantum gravity phenomenology at the dawn of the multi-messenger era—A review. Progress in Particle and Nuclear Physics, 2022, 125, 103948.	5.6	175
60	Improving sensitivity of the ARIANNA detector by rejecting thermal noise with deep learning. Journal of Instrumentation, 2022, 17, P03007.	0.5	3
61	Symmetries in the Superposition Model of Extensive Air Shower Development. Symmetry, 2022, 14, 559.	1.1	0
62	Ultra-high-energy neutrino scattering in an anomalous U(1) effective field theory. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2022, 827, 136988.	1.5	2
63	Polarisation signatures in radio for inclined cosmic-ray induced air-shower identification. Astroparticle Physics, 2022, 139, 102696.	1.9	0
64	Cosmic Ray Mass Composition Problem: Toward Model-Independent Evaluation Based on the Analysis of the Spatial Structure of EAS Charged Components. Physics of Atomic Nuclei, 2021, 84, 995-1006.	0.1	1
65	Radio interferometry applied to the observation of cosmic-ray induced extensive air showers. European Physical Journal C, 2021, 81, 1.	1.4	6
66	Lorentz Symmetry and High-Energy Neutrino Astronomy. Universe, 2021, 7, 490.	0.9	4
67	Tau Appearance from High-Energy Neutrino Interactions. Physical Review Letters, 2022, 128, 171101.	2.9	6
68	What can be learnt from UHECR anisotropies observations. Astronomy and Astrophysics, 2022, 664, A120.	2.1	7
69	Progress in the Simulation and Modelling of Coherent Radio Pulses from Ultra High-Energy Cosmic Particles. Universe, 2022, 8, 297.	0.9	1
70	New oscillation and scattering constraints on the tau row matrix elements without assuming unitarity. Journal of High Energy Physics, 2022, 2022, .	1.6	8
71	The PUMAS library. Computer Physics Communications, 2022, 279, 108438.	3.0	4
72	Probing neutrino mass models through resonances at neutrino telescopes. International Journal of Modern Physics A, 2022, 37, .	0.5	4
73	Multi-messenger detection prospects of gamma-ray burst afterglows with optical jumps. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 034.	1.9	7

#	Article	IF	CITATIONS
74	Beginning a Journey Across the Universe: The Discovery of Extragalactic Neutrino Factories. Astrophysical Journal Letters, 2022, 933, L43.	3.0	21
75	Acoustic neutrino detection in a Adriatic multidisciplinary observatory (ANDIAMO). Astroparticle Physics, 2022, , 102760.	1.9	2
76	Detector requirements for model-independent measurements of ultrahigh energy neutrino cross sections. Physical Review D, 2022, 106, .	1.6	13
77	Tau depolarization at very high energies for neutrino telescopes. Physical Review D, 2022, 106, .	1.6	1
78	Neutrino Emission from Luminous Fast Blue Optical Transients. Astrophysical Journal, 2022, 935, 157.	1.6	6
79	The Giant Radio Array for Neutrino Detection (GRAND) Project. SciPost Physics Proceedings, 2022, , .	0.2	1
80	High-energy and ultra-high-energy neutrinos: A Snowmass white paper. Journal of High Energy Astrophysics, 2022, 36, 55-110.	2.4	24
81	The ultra-high-energy neutrino-nucleon cross section: measurement forecasts for an era of cosmic EeV-neutrino discovery. Journal of High Energy Physics, 2022, 2022, .	1.6	19
82	Alouette: Yet another encapsulated TAUOLA, but revertible. Computer Physics Communications, 2023, 282, 108508.	3.0	0
83	Two-body decays in deformed relativity. Journal of High Energy Physics, 2022, 2022, .	1.6	3
84	High-energy neutrino transients and the future of multi-messenger astronomy. Nature Reviews Physics, 2022, 4, 697-712.	11.9	8
85	Radio wavefront of very inclined extensive air-showers: A simulation study for extended and sparse radio arrays. Astroparticle Physics, 2022, , 102779.	1.9	0
86	Tau neutrinos in the next decade: from GeV to EeV. Journal of Physics G: Nuclear and Particle Physics, 2022, 49, 110501.	1.4	16
87	Publisher's Note:. Astroparticle Physics, 2023, 147, 102794.	1.9	14
88	TAROGE-M: radio antenna array on antarctic high mountain for detecting near-horizontal ultra-high energy air showers. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 022.	1.9	2
89	Constraining ultra-high-energy cosmic ray composition through cross-correlations. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 003.	1.9	0
90	Ultrahigh energy neutrinos from high-redshift electromagnetic cascades. Physical Review D, 2022, 106,	1.6	2
91	Design and initial performance of the prototype for the BEACON instrument for detection of ultrahigh energy particles. Nuclear Instruments and Methods in Physics Research, Section A:	0.7	0

#	Article	IF	CITATIONS
92	High-energy Neutrino Emission from Espresso-reaccelerated Ions in Jets of Active Galactic Nuclei. Astrophysical Journal, 2023, 942, 37.	1.6	1
93	Signal model and event reconstruction for the radio detection of inclined air showers. Journal of Cosmology and Astroparticle Physics, 2023, 2023, 008.	1.9	1
94	Snowmass white paper: beyond the standard model effects on neutrino flavor. European Physical Journal C, 2023, 83, .	1.4	16
95	Neutrino propagation in the Earth and emerging charged leptons with nuPyProp. Journal of Cosmology and Astroparticle Physics, 2023, 2023, 041.	1.9	3
96	Near-future discovery of point sources of ultra-high-energy neutrinos. Journal of Cosmology and Astroparticle Physics, 2023, 2023, 026.	1.9	3
97	Ultra high energy cosmic rays The intersection of the Cosmic and Energy Frontiers. Astroparticle Physics, 2023, 149, 102819.	1.9	10
98	Near-future discovery of the diffuse flux of ultrahigh-energy cosmic neutrinos. Physical Review D, 2023, 107, .	1.6	4
99	Probing quantum gravity with elastic interactions of ultrahigh-energy neutrinos. Physical Review D, 2023, 107, .	1.6	3
100	Dark matter production through a non-thermal flavon portal. Journal of High Energy Physics, 2023, 2023, .	1.6	3
101	Testing hadronic and photohadronic interactions as responsible for ultrahigh energy cosmic rays and neutrino fluxes from starburst galaxies. Physical Review D, 2023, 107, .	1.6	7
102	Multistage FPGA Least Mean Squares Filters Suppressing Multiple Narrowband Radio-Frequency Interferences in the Radio Detection of Cosmic Rays. IEEE Transactions on Nuclear Science, 2023, 70, 757-767.	1.2	0