Atomically Precise Noble Metal Nanoclusters as Efficier Structure and Properties

Chemical Reviews 120, 526-622

DOI: 10.1021/acs.chemrev.8b00726

Citation Report

#	Article	IF	CITATIONS
1	Stabilization of a new nanocomposite family by reduction of gold nanoclusters with electron-reservoir complexes. Chemical Communications, 2019, 55, 10277-10280.	2.2	6
2	Understanding the Solubility Behavior of Atomically Precise Gold Nanoclusters. Journal of Physical Chemistry C, 2019, 123, 20006-20012.	1.5	13
3	Catalytic CO Oxidation by Gas-Phase Metal Oxide Clusters. Journal of Physical Chemistry A, 2019, 123, 9257-9267.	1.1	45
4	Step-by-Step and Competitive Assembly of Two Dy(III) Single-Molecule Magnets with Their Performance Tuned by Schiff Base Ligands. Crystal Growth and Design, 2019, 19, 5369-5375.	1.4	38
5	Determination of the Evolution of Heterogeneous Single Metal Atoms and Nanoclusters under Reaction Conditions: Which Are the Working Catalytic Sites?. ACS Catalysis, 2019, 9, 10626-10639.	5.5	197
6	Ultrasonic Activation of Water-Soluble Au ₂₅ (SR) ₁₈ Nanoclusters for Singlet Oxygen Production. Journal of Physical Chemistry C, 2019, 123, 26644-26652.	1.5	26
7	Interparticle Reactions between Silver Nanoclusters Leading to Product Cocrystals by Selective Cocrystallization. ACS Nano, 2019, 13, 13365-13373.	7.3	31
8	Au-Ag synergistic effect in CF3-ketone alkynylation catalyzed by precise nanoclusters. Journal of Catalysis, 2019, 378, 220-225.	3.1	13
9	New Advances in Atomically Precise Silver Nanoclusters. , 2019, 1, 482-489.		102
10	Light-Induced Size-Growth of Atomically Precise Nanoclusters. Langmuir, 2019, 35, 12350-12355.	1.6	25
11	Metal Doping of Au ₂₅ (SR) ₁₈ [–] Clusters: Insights and Hindsights. Journal of the American Chemical Society, 2019, 141, 16033-16045.	6.6	120
11		6.6 4.0	120 14
	Journal of the American Chemical Society, 2019, 141, 16033-16045. Electrochemical Growth of Metallic Nanoparticles onto Immobilized Polymer Brush Ionic Liquid as a Hybrid Electrocatalyst for the Hydrogen Evolution Reaction. ACS Applied Materials & Amp; Interfaces,		
12	Journal of the American Chemical Society, 2019, 141, 16033-16045. Electrochemical Growth of Metallic Nanoparticles onto Immobilized Polymer Brush Ionic Liquid as a Hybrid Electrocatalyst for the Hydrogen Evolution Reaction. ACS Applied Materials & amp; Interfaces, 2019, 11, 38265-38275. Capture of Cesium Ions with Nanoclusters: Effects on Inter- and Intramolecular Assembly. Chemistry	4.0	14
12 13	Journal of the American Chemical Society, 2019, 141, 16033-16045. Electrochemical Growth of Metallic Nanoparticles onto Immobilized Polymer Brush Ionic Liquid as a Hybrid Electrocatalyst for the Hydrogen Evolution Reaction. ACS Applied Materials & amp; Interfaces, 2019, 11, 38265-38275. Capture of Cesium Ions with Nanoclusters: Effects on Inter- and Intramolecular Assembly. Chemistry of Materials, 2019, 31, 4945-4952. Structures and evolution of metal oxide nanoclusters: Bottom-up genetic algorithm and fragment-based energy decomposition model. Annual Reports in Computational Chemistry, 2019, 15,	4.0 3.2	14 36
12 13 14	Journal of the American Chemical Society, 2019, 141, 16033-16045. Electrochemical Growth of Metallic Nanoparticles onto Immobilized Polymer Brush Ionic Liquid as a Hybrid Electrocatalyst for the Hydrogen Evolution Reaction. ACS Applied Materials & amp; Interfaces, 2019, 11, 38265-38275. Capture of Cesium Ions with Nanoclusters: Effects on Inter- and Intramolecular Assembly. Chemistry of Materials, 2019, 31, 4945-4952. Structures and evolution of metal oxide nanoclusters: Bottom-up genetic algorithm and fragment-based energy decomposition model. Annual Reports in Computational Chemistry, 2019, 15, 105-169. An overview on the current understanding of the photophysical properties of metal nanoclusters	4.0 3.2 0.9	14 36 1
12 13 14 15	Journal of the American Chemical Society, 2019, 141, 16033-16045. Electrochemical Growth of Metallic Nanoparticles onto Immobilized Polymer Brush Ionic Liquid as a Hybrid Electrocatalyst for the Hydrogen Evolution Reaction. ACS Applied Materials & amp; Interfaces, 2019, 11, 38265-38275. Capture of Cesium Ions with Nanoclusters: Effects on Inter- and Intramolecular Assembly. Chemistry of Materials, 2019, 31, 4945-4952. Structures and evolution of metal oxide nanoclusters: Bottom-up genetic algorithm and fragment-based energy decomposition model. Annual Reports in Computational Chemistry, 2019, 15, 105-169. An overview on the current understanding of the photophysical properties of metal nanoclusters and their potential applications. Nanoscale, 2019, 11, 22685-22723. Ligand functionalized copper nanoclusters for versatile applications in catalysis, sensing, bioimaging,	4.0 3.2 0.9 2.8	14 36 1 89

			2
#	ARTICLE	IF	CITATIONS
19	Controlled Assembly Synthesis of Atomically Precise Ultrastable Silver Nanoclusters with Polyoxometalates. Journal of the American Chemical Society, 2019, 141, 19550-19554.	6.6	121
20	Enhanced oxygen reduction activity of platinum subnanocluster catalysts through charge redistribution. Chemical Communications, 2019, 55, 12603-12606.	2.2	22
21	Cadmium selenide nanowires from growth to applications. Materials Research Express, 2019, 6, 122007.	0.8	8
22	Polynuclear organometallic clusters: synthesis, structure, and reactivity studies. Chemical Communications, 2020, 56, 1915-1925.	2.2	23
23	Formation of an Alkynylâ€Protected Ag ₁₁₂ Silver Nanocluster as Promoted by Chloride Released In Situ from CH ₂ Cl ₂ . Angewandte Chemie - International Edition, 2020, 59, 5312-5315.	7.2	82
24	Ligand-protected atomically precise gold nanoclusters as model catalysts for oxidation reactions. Chemical Communications, 2020, 56, 1163-1174.	2.2	52
25	Activation of atom-precise clusters for catalysis. Nanoscale Advances, 2020, 2, 55-69.	2.2	49
26	Photo/electrocatalysis and photosensitization using metal nanoclusters for green energy and medical applications. Nanoscale Advances, 2020, 2, 17-36.	2.2	79
27	Unravelling the formation mechanism of alkynyl protected gold clusters: a case study of phenylacetylene stabilized Au ₁₄₄ molecules. Nanoscale, 2020, 12, 2980-2986.	2.8	14
28	Plasmonic Nanomolecules: Electrochemical Resolution of 22 Electronic States in Au ₃₂₉ (SR) ₈₄ . ACS Energy Letters, 2020, 5, 207-214.	8.8	19
29	Effects of composition on catalytic activities of molybdenum doped platinum nanoparticles. Turkish Journal of Chemistry, 2020, 44, 1016-1030.	0.5	0
30	Ultrasmall Au and Ag Nanoclusters for Biomedical Applications: A Review. Frontiers in Bioengineering and Biotechnology, 2020, 8, 1019.	2.0	35
31	Dynamics of Pd Dopant Atoms inside Au Nanoclusters during Catalytic CO Oxidation. Journal of Physical Chemistry C, 2020, 124, 23626-23636.	1.5	28
32	Nanostructured surfaces from ligand-protected metal nanoparticles. Dalton Transactions, 2020, 49, 14314-14319.	1.6	3
33	Structurally accurate lipophilic Pt1Ag28 nanoclusters based cancer theranostic micelles for dual-targeting/aggregation enhanced fluorescence imaging and photothermal/photodynamic therapies. Colloids and Surfaces B: Biointerfaces, 2020, 196, 111346.	2.5	10
34	Toward the Formation of N-Heterocyclic-Carbene-Protected Gold Clusters of Various Nuclearities. A Comparison with Their Phosphine-Protected Analogues from Density Functional Theory Calculations. Inorganic Chemistry, 2020, 59, 15240-15249.	1.9	14
35	Ligand-protected Au ₄ Ru ₂ and Au ₅ Ru ₂ nanoclusters: distinct structures and implications for site-cooperation catalysis. Chemical Communications, 2020, 56, 12833-12836.	2.2	11
36	Cl@Ag 22 Au 6 (4â€TBBT) 28 (PPh 4): A Chlorideâ€Centered Agâ^'Au Bimetallic Cluster for Optics. Chemistry - an Asian Journal, 2020, 15, 4077-4081.	1.7	2

#	Article	IF	CITATIONS
37	Recent progress in noble metal nanocluster and single atom electrocatalysts for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2020, 8, 22467-22487.	5.2	92
38	Dithiol-Induced Contraction in Ag ₁₄ Clusters and Its Manifestation in Electronic Structures. Journal of Physical Chemistry C, 2020, 124, 23426-23432.	1.5	8
39	Spontaneous Resolution of Chiral Multi-Thiolate-Protected Ag ₃₀ Nanoclusters. ACS Central Science, 2020, 6, 1971-1976.	5.3	70
40	A structurally precise Ag _x Au _{25â[°]x} nanocluster based cancer theranostic platform with tri-targeting/ <i>in situ</i> O ₂ -generation/aggregation enhanced fluorescence imaging/photothermal–photodynamic therapies. Chemical Communications, 2020, 56, 9842-9845.	2.2	11
41	[Cu ₃₂ (PET) ₂₄ H ₈ Cl ₂](PPh ₄) ₂ : A Copper Hydride Nanocluster with a Bisquare Antiprismatic Core. Journal of the American Chemical Society, 2020, 142, 13974-13981.	6.6	73
42	An Ultrastable, Small {Ag 7 } 5+ Nanocluster within a Triangular Hollow Polyoxometalate Framework. Angewandte Chemie, 2020, 132, 16503-16507.	1.6	17
43	Insights into the Metal-Exchange Synthesis of MAg ₂₄ (SR) ₁₈ (M = Ni, Pd, Pt) Nanoclusters. Chemistry of Materials, 2020, 32, 10216-10226.	3.2	35
44	Defects Engineering on Ceria and C–C Coupling Reactions Using [Au ₁₁ (PPh ₃) ₇ 1 ₃] Nanocluster: A Combined Experimental and Theoretical Study. ACS Nano, 2020, 14, 16681-16688.	7.3	15
45	Cocrystals of Atomically Precise Noble Metal Nanoclusters. Small, 2021, 17, e2003981.	5.2	24
46	Self-Assembly of Au Nanoclusters into Helical Ribbons by Manipulating the Flexibility of Capping Ligands. Langmuir, 2020, 36, 14614-14622.	1.6	6
47	Nano-Apples and Orange-Zymes. ACS Catalysis, 2020, 10, 14315-14317.	5.5	33
48	Density-functional tight-binding for phosphine-stabilized nanoscale gold clusters. Chemical Science, 2020, 11, 13113-13128.	3.7	19
49	Synergistic Effect of Bridging Thiolate and Hub Atoms for the Aromaticity Driven Symmetry Breaking in Atomically Precise Gold Nanocluster. Journal of Physical Chemistry Letters, 2020, 11, 10052-10059.	2.1	12
50	Atomically Precise Metal Nanoclusters. Synthesis Lectures on Materials and Optics, 2020, 1, 1-139.	0.2	0
51	Atomically precise alloy nanoclusters: syntheses, structures, and properties. Chemical Society Reviews, 2020, 49, 6443-6514.	18.7	407
52	CoOx/CoNy nanoparticles encapsulated carbon-nitride nanosheets as an efficiently trifunctional electrocatalyst for overall water splitting and Zn-air battery. Applied Catalysis B: Environmental, 2020, 279, 119407.	10.8	169
53	Molecule template method for precise synthesis of Mo-based alloy clusters and electrocatalytic nitrogen reduction on partially reduced PtMo alloy oxide cluster. Nano Energy, 2020, 78, 105211.	8.2	38
54	Autogenous growth of the hierarchical V-doped NiFe layer double metal hydroxide electrodes for an enhanced overall water splitting. Dalton Transactions, 2020, 49, 11217-11225.	1.6	26

#	Article	IF	CITATIONS
55	Proximity Effects of Methyl Group on Ligand Steric Interactions and Colloidal Stability of Palladium Nanoparticles. Frontiers in Chemistry, 2020, 8, 599.	1.8	2
56	Lignin-Directed Control of Silver Nanoparticles with Tunable Size in Porous Lignocellulose Hydrogels and Their Application in Catalytic Reduction. ACS Sustainable Chemistry and Engineering, 2020, 8, 12655-12663.	3.2	69
57	In-situ fabrication of porous-silica-microsphere-supported platinum nanocluster catalyst by Î ³ -ray radiation. Applied Surface Science, 2020, 531, 147333.	3.1	7
58	Controlled colloidal metal nanoparticles and nanoclusters: recent applications as cocatalysts for improving photocatalytic water-splitting activity. Journal of Materials Chemistry A, 2020, 8, 16081-16113.	5.2	66
59	Low Valent Palladium Clusters: Synthesis, Structures and Catalytic Applications. Chinese Journal of Chemistry, 2020, 38, 1897-1908.	2.6	10
60	Development of dual-emission cluster of Ag atoms for genetically modified organisms detection. Mikrochimica Acta, 2020, 187, 628.	2.5	11
61	Core–satellite assemblies of Au@polydopamine@Ag nanoparticles for photothermal-mediated catalytic reaction. Soft Matter, 2020, 16, 10252-10259.	1.2	14
62	Supported Metal Clusters: Fabrication and Application in Heterogeneous Catalysis. ACS Catalysis, 2020, 10, 11011-11045.	5.5	260
63	Absolute Templating of M(111) Cluster Surrogates by Galvanic Exchange. Journal of the American Chemical Society, 2020, 142, 16479-16485.	6.6	24
64	Precisely modulating the surface sites on atomically monodispersed gold-based nanoclusters for controlling their catalytic performances. Nanoscale, 2020, 12, 18004-18012.	2.8	17
65	The Missing Link: Au191(SPh-tBu)66 Janus Nanoparticle with Molecular and Bulk-Metal-like Properties. Journal of the American Chemical Society, 2020, 142, 15799-15814.	6.6	48
66	The Catalytic Mechanics of Dynamic Surfaces: Stimulating Methods for Promoting Catalytic Resonance. ACS Catalysis, 2020, 10, 12666-12695.	5.5	54
67	Cocrystallization of Atomically Precise Nanoclusters. , 2020, 2, 1303-1314.		29
68	ZIF-8-based <i>vs.</i> ZIF-8-derived Au and Pd nanoparticles as efficient catalysts for the Ullmann homocoupling reaction. Inorganic Chemistry Frontiers, 2020, 7, 3945-3952.	3.0	13
69	Determining and Controlling Cu-Substitution Sites in Thiolate-Protected Gold-Based 25-Atom Alloy Nanoclusters. Journal of Physical Chemistry C, 2020, 124, 22304-22313.	1.5	26
70	Terahertz Raman Spectroscopy of Ligand-Protected Au ₈ Clusters. Journal of Physical Chemistry Letters, 2020, 11, 7996-8001.	2.1	19
71	A synchronous nucleation and passivation strategy for controllable synthesis of Au36(PA)24: unveiling the formation process and the role of Au22(PA)18 intermediate. Science China Chemistry, 2020, 63, 1777-1784.	4.2	19
72	Atomically Precise Alloy Nanoclusters. Chemistry - A European Journal, 2020, 26, 16149-16149.	1.7	10

		CITATION REPORT		
#	Article		IF	CITATIONS
73	A construction guide for high-nuclearity (≥50 metal atoms) coinage metal clusters at tl bridging molecular precise constructs with the bulk material phase. Nanoscale, 2020, 12, 2	ne nanoscale: 24331-24348.	2.8	15
74	State of the Art in the Characterization of Nano- and Atomic-Scale Catalysts. ACS Symposi 2020, , 51-93.	um Series,	0.5	0
75	Magicâ€Sized Stoichiometric II–VI Nanoclusters. Small, 2021, 17, e2002067.		5.2	30
76	A Gold Nanocluster Constructed Mixed-Metal Metal–Organic Network Film for Combatir Implant-Associated Infections. ACS Nano, 2020, 14, 15633-15645.	lg	7.3	43
77	Recent Progress in Synthesis of Nano- and Atomic-Sized Catalysts. ACS Symposium Series,	2020, , 95-128.	0.5	2
78	Highly Stable Pyrimidine Based Luminescent Copper Nanoclusters with Superoxide Dismut and Nitric Oxide Releasing Activity. ACS Applied Bio Materials, 2020, 3, 7454-7461.	ase Mimetic	2.3	12
79	Metal Clusters and Their Reactivity. , 2020, , .			9
80	Multiple Ways Realizing Chargeâ€State Transform in AuCu Bimetallic Nanoclusters with Precision. Small, 2021, 17, e1907114.	Atomic	5.2	19
81	Homo- and Hetero-Oligonuclear Complexes of Platinum Group Metals (PGM) Coordinated Schiff Base Ligands. International Journal of Molecular Sciences, 2020, 21, 3493.	by Imine	1.8	25
82	Structural evolution in gold nanoparticles using artificial neural network based interatomic potentials. Journal of Chemical Physics, 2020, 152, 154302.		1.2	8
83	A Review on Particle Size Effect in <scp>Metalâ€Catalyzed</scp> Heterogeneous Reaction Journal of Chemistry, 2020, 38, 1422-1444.	s. Chinese	2.6	69
84	Sensitivity of Monte Carlo Simulations to Linear Scaling Relations. Journal of Physical Chem 2020, 124, 11952-11959.	histry C,	1.5	5
85	All-thiolate-stabilized Ag42 nanocluster with a tetrahedral kernel and its transformation to nanocluster with a bi-tetrahedral kernel. Chemical Communications, 2020, 56, 7605-7608.	an Ag61	2.2	17
86	Atomically Precise Alloy Nanoclusters. Chemistry - A European Journal, 2020, 26, 16150-16	193.	1.7	63
87	Silver nanoclusters: synthesis, structures and photoluminescence. Materials Chemistry From 2020, 4, 2205-2222.	ntiers,	3.2	80
88	Nonaqueous capillary gel electrophoretic analysis of metal nanoclusters in polymeric–DN systems. Electrophoresis, 2020, 41, 1400-1404.	/SO–Li +	1.3	3
89	Stepwise Achievement of Circularly Polarized Luminescence on Atomically Precise Silver Cl Advanced Science, 2020, 7, 2000738.	usters.	5.6	36
90	Ultrastable and Highly Catalytically Active Nâ€Heterocyclicâ€Carbeneâ€Stabilized Gold Na Confined Spaces. Angewandte Chemie, 2020, 132, 16826.	noparticles in	1.6	17

#	Article	IF	CITATIONS
91	Towards elucidating structure of ligand-protected nanoclusters. Dalton Transactions, 2020, 49, 9191-9202.	1.6	15
92	Fabricating Dualâ€Atom Iron Catalysts for Efficient Oxygen Evolution Reaction: A Heteroatom Modulator Approach. Angewandte Chemie - International Edition, 2020, 59, 16013-16022.	7.2	151
93	On the Interaction between Superatom Al ₁₂ Be and DNA Nucleobases/Base Pairs: Bonding Nature and Potential Applications in O ₂ Activation and CO Oxidation. ACS Omega, 2020, 5, 15325-15334.	1.6	5
94	Homoleptic alkynyl-protected gold nanoclusters with unusual compositions and structures. Nanoscale, 2020, 12, 13346-13350.	2.8	24
95	One-, Two-, and Three-Dimensional Self-Assembly of Atomically Precise Metal Nanoclusters. Nanomaterials, 2020, 10, 1105.	1.9	61
96	Ultrastable and Highly Catalytically Active Nâ€Heterocyclicâ€Carbeneâ€Stabilized Gold Nanoparticles in Confined Spaces. Angewandte Chemie - International Edition, 2020, 59, 16683-16689.	7.2	92
97	Heterogeneous Single-Atom Photocatalysts: Fundamentals and Applications. Chemical Reviews, 2020, 120, 12175-12216.	23.0	620
98	Structure regulated catalytic performance of gold nanocluster-MOF nanocomposites. Nano Research, 2020, 13, 1928-1932.	5.8	46
99	Poly(sodium-p-styrenesulfonate)-enhanced fluorescent silver nanoclusters for the assay of two food flavors and silicic acid. Food Chemistry, 2020, 318, 126502.	4.2	9
100	Role of the Support in Gold-Containing Nanoparticles as Heterogeneous Catalysts. Chemical Reviews, 2020, 120, 3890-3938.	23.0	275
101	Cyclic (Alkyl)- and (Aryl)-(amino)carbene Coinage Metal Complexes and Their Applications. Chemical Reviews, 2020, 120, 4141-4168.	23.0	196
102	Cucurbiturils brighten Au nanoclusters in water. Chemical Science, 2020, 11, 3531-3537.	3.7	71
103	Gold nanoclusters as electrocatalysts: size, ligands, heteroatom doping, and charge dependences. Nanoscale, 2020, 12, 9969-9979.	2.8	80
104	Anionic Copper Clusters Reacting with NO: An Open-Shell Superatom Cu ₁₈ [–] . Journal of Physical Chemistry Letters, 2020, 11, 5807-5814.	2.1	22
105	Fullerene-Mediated Aggregation of M ₂₅ (SR) ₁₈ [–] (M = Ag, Au) Nanoclusters. Journal of Physical Chemistry C, 2020, 124, 14891-14900.	1.5	13
106	An Ultrastable, Small {Ag ₇ } ⁵⁺ Nanocluster within a Triangular Hollow Polyoxometalate Framework. Angewandte Chemie - International Edition, 2020, 59, 16361-16365.	7.2	55
107	Insight of the photoluminescence of atomically precise bimetallic nanoclusters with free electrons. Journal of the Chinese Chemical Society, 2020, 67, 2171-2181.	0.8	6
108	<i>>o</i> -Carborane-Based and Atomically Precise Metal Clusters as Hypergolic Materials. Journal of the American Chemical Society, 2020, 142, 12010-12014.	6.6	68

#	Article	IF	CITATIONS
109	Fabricating Dualâ€Atom Iron Catalysts for Efficient Oxygen Evolution Reaction: A Heteroatom Modulator Approach. Angewandte Chemie, 2020, 132, 16147-16156.	1.6	19
110	Layered double hydroxides supported atomically precise Aun nanoclusters for air oxidation of benzyl alcohol: Effects of size and active site structure. Journal of Catalysis, 2020, 389, 409-420.	3.1	21
111	Atomic-level separation of thiolate-protected metal clusters. Nanoscale, 2020, 12, 8017-8039.	2.8	39
112	Design and Remarkable Efficiency of the Robust Sandwich Cluster Composite Nanocatalysts ZIF-8@Au ₂₅ @ZIF-67. Journal of the American Chemical Society, 2020, 142, 4126-4130.	6.6	141
113	Property–Activity Relationship of Black Phosphorus at the Nano–Bio Interface: From Molecules to Organisms. Chemical Reviews, 2020, 120, 2288-2346.	23.0	158
114	Formation of an Alkynylâ€Protected Ag 112 Silver Nanocluster as Promoted by Chloride Released In Situ from CH 2 Cl 2. Angewandte Chemie, 2020, 132, 5350-5353.	1.6	22
115	lsomerization in Alkynyl-Protected Gold Nanoclusters. Journal of the American Chemical Society, 2020, 142, 2995-3001.	6.6	104
116	Gold Nanoclusters as Electrocatalysts for Energy Conversion. Nanomaterials, 2020, 10, 238.	1.9	34
117	Unraveling the single-atom electrocatalytic activity of transition metal-doped phosphorene. Nanoscale Advances, 2020, 2, 2410-2421.	2.2	23
118	Silver clusters templated by homo- and hetero-anions. CrystEngComm, 2020, 22, 3736-3748.	1.3	22
119	[Cu ₈₁ (PhS) ₄₆ (^{<i>t</i>} BuNH ₂) ₁₀ (H) _{32<!--<br-->Reveals the Coexistence of Large Planar Cores and Hemispherical Shells in High-Nuclearity Copper Nanoclusters. Journal of the American Chemical Society, 2020, 142, 8696-8705.}	/sub>] <su 6.6</su 	p>3+ 81
120	A Double-Layered {Cu9} Nanocage with Diacylhydrazine: Synthesis, Structure and Magnetic Properties. Journal of Cluster Science, 2021, 32, 765-772.	1.7	1
121	Coinage metal clusters: From superatom chemistry to genetic materials. Coordination Chemistry Reviews, 2021, 429, 213643.	9.5	57
122	Natural protein-templated fluorescent gold nanoclusters: Syntheses and applications. Food Chemistry, 2021, 335, 127657.	4.2	47
123	A Homoleptic Alkynylâ€Ligated [Au 13 Ag 16 L 24] 3â^' Cluster as a Catalytically Active Eightâ€Electron Superatom. Angewandte Chemie, 2021, 133, 983-988.	1.6	6
124	A Homoleptic Alkynylâ€Ligated [Au ₁₃ Ag ₁₆ L ₂₄] ^{3â^`} Cluster as a Catalytically Active Eightâ€Electron Superatom. Angewandte Chemie - International Edition, 2021, 60, 970-975.	7.2	43
125	Hydrido-coinage-metal clusters: Rational design, synthetic protocols and structural characteristics. Coordination Chemistry Reviews, 2021, 427, 213576.	9.5	117
126	On the Role of Alkaliâ€Metal‣ike Superatom Al ₁₂ P in Reduction and Conversion of Carbon Dioxide. Chemistry - A European Journal, 2021, 27, 1039-1045.	1.7	14

	CITATION	CITATION REPORT	
#	Article	IF	CITATIONS
127	Atomic Nanoarchitectonics for Catalysis. Advanced Materials Interfaces, 2021, 8, 2001395.	1.9	15
128	The Synthesis, Bonding, and Transformation of a Ligandâ€Protected Gold Nanohydride Cluster. Angewandte Chemie - International Edition, 2021, 60, 2424-2430.	7.2	36
129	Exerting charge transfer to stabilize Au nanoclusters for enhanced photocatalytic performance toward selective oxidation of amines. Applied Catalysis B: Environmental, 2021, 284, 119704.	10.8	31
130	Coassembly of nucleus-targeting gold nanoclusters with CRISPR/Cas9 for simultaneous bioimaging and therapeutic genome editing. Journal of Materials Chemistry B, 2021, 9, 94-100.	2.9	45
131	Complex Hollow Bowl‣ike Nanostructures: Synthesis, Application, and Perspective. Advanced Functional Materials, 2021, 31, 2007801.	7.8	35
132	Global optimization of chemical cluster structures: Methods, applications, and challenges. International Journal of Quantum Chemistry, 2021, 121, e26553.	1.0	31
133	Molecular reactivity of thiolate-protected noble metal nanoclusters: synthesis, self-assembly, and applications. Chemical Science, 2021, 12, 99-127.	3.7	108
134	Multiatom Catalysts for Energyâ€Related Electrocatalysis. Advanced Sustainable Systems, 2021, 5, 2000213.	2.7	13
135	Electrocatalytic and photocatalytic applications of atomically precise gold-based nanoclusters. Science China Chemistry, 2021, 64, 1065-1075.	4.2	18
136	Correlations between the fundamentals and applications of ultrasmall metal nanoclusters: Recent advances in catalysis and biomedical applications. Nano Today, 2021, 36, 101053.	6.2	86
137	Optical Properties and Excited-State Dynamics of Atomically Precise Gold Nanoclusters. Annual Review of Physical Chemistry, 2021, 72, 121-142.	4.8	40
138	Structural Isomerism in Atomically Precise Nanoclusters. Chemistry of Materials, 2021, 33, 39-62.	3.2	42
139	Highly Fluorescent Gold Cluster Assembly. Journal of the American Chemical Society, 2021, 143, 326-334.	6.6	73
140	Controllable synthesis and formation mechanism study of homoleptic alkynyl-protected Au nanoclusters: recent advances, grand challenges, and great opportunities. Nanoscale, 2021, 13, 602-614.	2.8	20
141	Atomically precise metal nanoclusters for (photo)electroreduction of CO2: Recent advances, challenges and opportunities. Journal of Energy Chemistry, 2021, 57, 359-370.	7.1	43
142	Computational Methods in Heterogeneous Catalysis. Chemical Reviews, 2021, 121, 1007-1048.	23.0	198
143	Fully Exposed Cluster Catalyst (FECC): Toward Rich Surface Sites and Full Atom Utilization Efficiency. ACS Central Science, 2021, 7, 262-273.	5.3	163
144	Creation of active water-splitting photocatalysts by controlling cocatalysts using atomically precise metal nanoclusters. Chemical Communications, 2021, 57, 417-440.	2.2	34

#	Article	IF	CITATIONS
145	[Cu ₂₃ (PhSe) ₁₆ (Ph ₃ P) ₈ (H) ₆] · BF _{ Atomic-Level Insights into Cuboidal Polyhydrido Copper Nanoclusters and Their Quasi-simple Cubic Self-Assembly. , 2021, 3, 90-99.}	4:	41
146	The Synthesis, Bonding, and Transformation of a Ligandâ€Protected Gold Nanohydride Cluster. Angewandte Chemie, 2021, 133, 2454-2460.	1.6	7
147	Surface Coordination of Multiple Ligands Endows Nâ€Heterocyclic Carbeneâ€Stabilized Gold Nanoclusters with High Robustness and Surface Reactivity. Angewandte Chemie - International Edition, 2021, 60, 3752-3758.	7.2	71
148	Silyleneâ€Bridged Tetranuclear Palladium Cluster as a Catalyst for Hydrogenation of Alkenes and Alkynes. ChemCatChem, 2021, 13, 169-173.	1.8	10
149	Surface Coordination of Multiple Ligands Endows Nâ€Heterocyclic Carbeneâ€6tabilized Gold Nanoclusters with High Robustness and Surface Reactivity. Angewandte Chemie, 2021, 133, 3796-3802.	1.6	14
150	Toward Active-Site Tailoring in Heterogeneous Catalysis by Atomically Precise Metal Nanoclusters with Crystallographic Structures. Chemical Reviews, 2021, 121, 567-648.	23.0	361
151	Electron Counting in Ligated High Nuclearity Late Transition Metal Clusters. Structure and Bonding, 2021, , 1.	1.0	2
152	Few-nm-sized, phase-pure Au ₅ Sn intermetallic nanoparticles: synthesis and characterization. Dalton Transactions, 2021, 50, 5177-5183.	1.6	5
153	Two-dimensional ultrathin surfactant-encapsulating polyoxometalate assemblies as carriers for monodispersing noble-metal nanoparticles with high catalytic activity and stability. Dalton Transactions, 2021, 50, 1666-1671.	1.6	7
154	Glutathione protected bimetallic gold-platinum nanoclusters with near-infrared emission for ratiometric determination of silver ions. Mikrochimica Acta, 2021, 188, 50.	2.5	10
155	A new method for cartap detection with high sensitivity and selectivity based on the inner filter effect between GSH-Cu NCs and Au NPs. Analytical Methods, 2021, 13, 2659-2664.	1.3	3
156	Site‧pecific Electronic Properties of [Ag ₂₅ (SR) ₁₈] ^{â^`} Nanoclusters by Xâ€Ray Spectroscopy. Small, 2021, 17, e2005162.	5.2	6
157	Trace thioether inserted polyamine patches on a support mediate uniform gold nanoclusters as ultrahigh active catalysts. Journal of Materials Chemistry A, 2021, 9, 15714-15723.	5.2	9
158	Nanoglobular carbon and palladium–nanoglobular carbon catalysts for liquid-phase hydrogenation of organic compounds. Russian Chemical Reviews, 2022, 91, .	2.5	10
159	A 20-core copper(<scp>i</scp>) nanocluster as electron–hole recombination inhibitor on TiO ₂ nanosheets for enhancing photocatalytic H ₂ evolution. Nanoscale, 2021, 13, 16182-16188.	2.8	5
160	Decorating Pt@cyclodextrin nanoclusters on C ₃ N ₄ /MXene for boosting the photocatalytic H ₂ O ₂ production. Journal of Materials Chemistry A, 2021, 9, 6872-6880.	5.2	39
161	Hydride- and halide-substituted Au ₉ (PH ₃) ₈ ³⁺ nanoclusters: similar absorption spectra disguise distinct geometries and electronic structures. Physical Chemistry Chemical Physics, 2021, 23, 17287-17299.	1.3	4
162	Photoinduced charge-transfer in chromophore-labeled gold nanoclusters: quantum evidence of the critical role of ligands and vibronic couplings. Nanoscale, 2021, 13, 6786-6797.	2.8	8

#	Article	IF	CITATIONS
163	Toward the creation of high-performance heterogeneous catalysts by controlled ligand desorption from atomically precise metal nanoclusters. Nanoscale Horizons, 2021, 6, 409-448.	4.1	52
164	Designing the electronic and geometric structures of single-atom and nanocluster catalysts. Journal of Materials Chemistry A, 2021, 9, 18773-18784.	5.2	9
165	Distinct structure assembly driven by metal–ligand binding in Au23 nanoclusters and its relation to photocatalysis. Chemical Communications, 2021, 57, 2176-2179.	2.2	6
166	Reversible polymorphic structural transition of crown-like nickel nanoclusters and its effect on conductivity. Chemical Communications, 2021, 57, 2935-2938.	2.2	5
167	Correlating Kernel–Shell Structures with Optical Properties of Pt ₁ Ag ₂₄ and Pt ₁ Ag ₁₄ Nanoclusters. Journal of Physical Chemistry C, 2021, 125, 2194-2201.	1.5	9
168	Plasmons: untangling the classical, experimental, and quantum mechanical definitions. Materials Horizons, 2022, 9, 25-42.	6.4	13
169	Electrochemical oxidation of biomass derived 5-hydroxymethylfurfural (HMF): pathway, mechanism, catalysts and coupling reactions. Green Chemistry, 2021, 23, 4228-4254.	4.6	191
170	A mono-copper doped undeca-gold cluster with up-converted and anti-stokes emissions of fluorescence and phosphorescence. Nanoscale, 2021, 13, 5300-5306.	2.8	9
171	Construction of a new Au ₂₇ Cd ₁ (SAdm) ₁₄ (DPPF)Cl nanocluster by surface engineering and insight into its structure–property correlation. Inorganic Chemistry Frontiers, 2021, 8, 4820-4827.	3.0	24
172	Chemically Modified Gold/Silver Superatoms as Artificial Elements at Nanoscale: Design Principles and Synthesis Challenges. Journal of the American Chemical Society, 2021, 143, 1683-1698.	6.6	148
173	Green Nanocatalysts in Organic Synthesis. Materials Horizons, 2021, , 221-236.	0.3	1
174	Preparation of Cu cluster catalysts by simultaneous cooling–microwave heating: application in radical cascade annulation. Nanoscale Advances, 2021, 3, 1087-1095.	2.2	4
175	Mechanistic insights into the two-phase synthesis of heteroleptic Au nanoclusters. Nanoscale, 2021, 13, 3512-3518.	2.8	8
176	Rhodium nanoparticles inside well-defined unimolecular amphiphilic polymeric nanoreactors: synthesis and biphasic hydrogenation catalysis. Nanoscale Advances, 2021, 3, 2554-2566.	2.2	7
177	The alloying-induced electrical conductivity of metal–chalcogenolate nanowires. Chemical Communications, 2021, 57, 8774-8777.	2.2	2
178	Rational design of an Fe cluster catalyst for robust nitrogen activation. Journal of Materials Chemistry A, 2021, 9, 21219-21227.	5.2	24
179	Insight into the Mechanism of the CuAAC Reaction by Capturing the Crucial Au ₄ Cu ₄ –i€-Alkyne Intermediate. Journal of the American Chemical Society, 2021, 143, 1768-1772.	6.6	45
180	A homoleptic alkynyl-protected [Ag ₉ Cu ₆ (^{<i>t</i>} BuCî€,C) ₁₂] ⁺ superatom with free electrons: synthesis, structure analysis, and different properties compared with the Au ₇ Ag ₈ cluster in the M ₁₅ ⁺ series. Chemical Science,	3.7	27

#	Article	IF	CITATIONS
181	Thiolateâ€Protected Metal Nanoclusters: Recent Development in Synthesis, Understanding of Reaction, and Application in Energy and Environmental Field. Small, 2021, 17, e2005328.	5.2	73
182	Sizeâ€Dependent Light Harvesting from Nonthermalized Excited States of Gold Clusters. Solar Rrl, 2021, 5, 2000710.	3.1	4
183	Vanadium Cluster Neutrals Reacting with Water: Superatomic Features and Hydrogen Evolution in a Fishing Mode. Journal of Physical Chemistry Letters, 2021, 12, 1593-1600.	2.1	21
184	Dynamic Structure of Metal Nanoclusters from Synchrotron X-ray Spectroscopy. Journal of Physical Chemistry C, 2021, 125, 5982-5994.	1.5	5
185	Synthesis and Photophysical Properties of Lightâ€Harvesting Gold Nanoclusters Fully Functionalized with Antenna Chromophores. Small, 2021, 17, e2004836.	5.2	13
186	Top–Down Synthesis of Noble Metal Particles on High-Entropy Oxide Supports for Electrocatalysis. Chemistry of Materials, 2021, 33, 1771-1780.	3.2	92
187	Catalytic Nanomaterials toward Atomic Levels for Biomedical Applications: From Metal Clusters to Single-Atom Catalysts. ACS Nano, 2021, 15, 2005-2037.	7.3	148
188	Size Exclusion Chromatography: An Indispensable Tool for the Isolation of Monodisperse Gold Nanomolecules. Analytical Chemistry, 2021, 93, 3987-3996.	3.2	9
189	DNA-templated silver nanoclusters as an efficient catalyst for reduction of nitrobenzene derivatives: a systematic study. Nanotechnology, 2021, 32, 195705.	1.3	3
190	Rapid synthesis of dual proteins co-functionalized gold nanoclusters for ratiometric fluorescence sensing of polynucleotide kinase activity. Sensors and Actuators B: Chemical, 2021, 329, 129200.	4.0	18
191	Singleâ€Atom Catalysts: A Sustainable Pathway for the Advanced Catalytic Applications. Small, 2021, 17, e2006473.	5.2	135
192	Traceless Removal of Two Kernel Atoms in a Gold Nanocluster and Its Impact on Photoluminescence. Angewandte Chemie, 2021, 133, 8750-8754.	1.6	7
193	Precisely Constructed Silver Active Sites in Gold Nanoclusters for Chemical Fixation of CO ₂ . Angewandte Chemie - International Edition, 2021, 60, 10573-10576.	7.2	60
194	Precisely Constructed Silver Active Sites in Gold Nanoclusters for Chemical Fixation of CO ₂ . Angewandte Chemie, 2021, 133, 10667-10670.	1.6	21
195	Exploring Novel Catalysis Using Polymer-Stabilized Metal Clusters. Bulletin of the Chemical Society of Japan, 2021, 94, 1036-1044.	2.0	12
196	One-Step Construction of a Hollow Au@Bimetal–Organic Framework Core–Shell Catalytic Nanoreactor for Selective Alcohol Oxidation Reaction. ACS Applied Materials & Interfaces, 2021, 13, 12463-12471.	4.0	68
197	Asymmetries in the Electronic Properties of Spheroidal Metallic Nanoparticles, Revealed by Conduction Electron Spin Resonance and Surface Plasmon Resonance. ACS Nano, 2021, 15, 4490-4503.	7.3	3
198	Atomic Design and Fine-Tuning of Subnanometric Pt Catalysts to Tame Hydrogen Generation. ACS Catalysis, 2021, 11, 4146-4156.	5.5	52

#	Article	IF	CITATIONS
199	[Cu ₁₅ (PPh ₃) ₆ (PET) ₁₃] ²⁺ : a Copper Nanocluster with Crystallization Enhanced Photoluminescence. Small, 2021, 17, e2006839.	5.2	50
200	Hydrogen Adsorption on Au-Supported Pt and Pd Nanoislands: A Computational Study of Hydrogen Coverage Effects. Journal of Physical Chemistry C, 2021, 125, 5110-5115.	1.5	6
201	Rareâ€Earth Incorporated Alloy Catalysts: Synthesis, Properties, and Applications. Advanced Materials, 2021, 33, e2005988.	11.1	84
202	Traceless Removal of Two Kernel Atoms in a Cold Nanocluster and Its Impact on Photoluminescence. Angewandte Chemie - International Edition, 2021, 60, 8668-8672.	7.2	43
203	Recent Progress in Heterogeneous Catalysis by Atomically and Structurally Precise Metal Nanoclusters. Chemical Record, 2021, 21, 879-892.	2.9	44
204	Compressionâ€Ðriven Internanocluster Reaction for Synthesis of Unconventional Gold Nanoclusters. Angewandte Chemie - International Edition, 2021, 60, 12253-12257.	7.2	8
205	Dithiothreitol-capped red emitting copper nanoclusters as highly effective fluorescent nanoprobe for cobalt (II) ions sensing. Microchemical Journal, 2021, 163, 105922.	2.3	20
206	Enhanced Surface Ligands Reactivity of Metal Clusters by Bulky Ligands for Controlling Optical and Chiral Properties. Angewandte Chemie, 2021, 133, 13007-13013.	1.6	4
207	Inhibition of DNA replication initiation by silver nanoclusters. Nucleic Acids Research, 2021, 49, 5074-5083.	6.5	12
208	A Twoâ€Electron Silver Superatom Isolated from Thermally Induced Internal Redox Reaction of A Silver(I) Hydride. Angewandte Chemie, 2021, 133, 12822-12826.	1.6	3
209	On the redox property of Ag16Au13 clusters: One-way conversion from anionic [Au13Ag16L24]3â^' to charge neutral [Au13Ag16L24]. Journal of Chemical Physics, 2021, 154, 164308.	1.2	6
210	The electronic and optical absorption properties of pristine, homo and hetero Bi-nanoclusters. Chemical Physics, 2021, 544, 111113.	0.9	5
211	New Magic Au ₂₄ Cluster Stabilized by PVP: Selective Formation, Atomic Structure, and Oxidation Catalysis. Jacs Au, 2021, 1, 660-668.	3.6	21
212	Water-Soluble Noble Metal Nanoparticle Catalysts Capped with Small Organic Molecules for Organic Transformations in Water. ACS Applied Nano Materials, 2021, 4, 3294-3318.	2.4	13
213	A Twoâ€Electron Silver Superatom Isolated from Thermally Induced Internal Redox Reaction of A Silver(I) Hydride. Angewandte Chemie - International Edition, 2021, 60, 12712-12716.	7.2	30
214	Compressionâ€Ðriven Internanocluster Reaction for Synthesis of Unconventional Gold Nanoclusters. Angewandte Chemie, 2021, 133, 12361-12365.	1.6	0
215	Magnetically induced currents and aromaticity in ligand-stabilized Au and AuPt superatoms. Nature Communications, 2021, 12, 2477.	5.8	6
216	AgAu nanoclusters supported on zeolites: Structural dynamics during CO oxidation. Catalysis Today, 2022, 384-386, 166-176.	2.2	13

#	Article	IF	CITATIONS
217	Tuning the Magic Sizes and Optical Properties of Atomically Precise Bidentate Nâ€Heterocyclic Carbeneâ€Protected Gold Nanoclusters via Subtle Change of Nâ€6ubstituents. Advanced Optical Materials, 2021, 9, 2001936.	3.6	27
218	Metalâ€6emiconductor Heterostructures for Photoredox Catalysis: Where Are We Now and Where Do We Go?. Advanced Functional Materials, 2021, 31, 2101103.	7.8	41
219	Enhanced Surface Ligands Reactivity of Metal Clusters by Bulky Ligands for Controlling Optical and Chiral Properties. Angewandte Chemie - International Edition, 2021, 60, 12897-12903.	7.2	42
220	Lowâ€Temperature H 2 Reduction of Copper Oxide Subnanoparticles. Chemistry - A European Journal, 2021, 27, 8410-8410.	1.7	1
221	On Heteronuclear Isoelectronic Alternatives to [Au13(dppe)5Cl2]3+: Electronic and Optical Properties of the 18-Electron Os@[Au12(dppe)5Cl2] Cluster from Relativistic Density Functional Theory Computations. Inorganic Chemistry, 2021, 60, 8173-8180.	1.9	11
222	Small Change, Big Difference: Photoelectrochemical Behavior of Au Nanocluster-Sensitized TiO ₂ Altered by Core Restructuring. ACS Energy Letters, 2021, 6, 2305-2312.	8.8	14
223	Robust Gold Nanocluster Protected with Amidinates for Electrocatalytic CO ₂ Reduction. Angewandte Chemie, 2021, 133, 14466-14470.	1.6	14
224	Robust Gold Nanocluster Protected with Amidinates for Electrocatalytic CO ₂ Reduction. Angewandte Chemie - International Edition, 2021, 60, 14345-14349.	7.2	54
225	Cu2+ enhanced fluorescent Ag nanoclusters with tunable emission from red to yellow and the application for Ag+ sensing. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 252, 119484.	2.0	19
226	Atomically precise noble metal clusters (Ag10, Au10, Pd10 and Pt10) on alumina support: A comprehensive DFT study for oxidative catalysis. Applied Surface Science, 2021, 547, 149160.	3.1	7
227	Electron Transfer in Films of Atomically Precise Gold Nanoclusters. Chemistry of Materials, 2021, 33, 4177-4187.	3.2	10
228	Lowâ€Temperature H ₂ Reduction of Copper Oxide Subnanoparticles. Chemistry - A European Journal, 2021, 27, 8452-8456.	1.7	16
229	Stability Changes in Iridium Nanoclusters via Monoxide Adsorption: A DFT Study within the van der Waals Corrections. Journal of Physical Chemistry A, 2021, 125, 4805-4818.	1.1	7
230	Single Atomic Pt on SrTiO3 Catalyst in Reverse Water Gas Shift Reactions. Catalysts, 2021, 11, 738.	1.6	8
231	Nâ€Heterocyclic Carbeneâ€Stabilized Ultrasmall Gold Nanoclusters in a Metalâ€Organic Framework for Photocatalytic CO ₂ Reduction. Angewandte Chemie - International Edition, 2021, 60, 17388-17393.	7.2	83
232	Size-activity threshold of titanium dioxide-supported Cu cluster in CO oxidation. Environmental Pollution, 2021, 279, 116899.	3.7	12
233	A Molecular Hybrid of an Atomically Precise Silver Nanocluster and Polyoxometalates for H 2 Cleavage into Protons and Electrons. Angewandte Chemie, 2021, 133, 17131-17135.	1.6	6
234	A Practice of Reticular Chemistry: Construction of a Robust Mesoporous Palladium Metal–Organic Framework via Metal Metathesis. Journal of the American Chemical Society, 2021, 143, 9901-9911.	6.6	60

#	Article	IF	CITATIONS
235	Octagold selenido nanoclusters: Significance of surface ligands on tuning geometric and electronic structure of Au8Se2 kernel. Nano Research, 2021, 14, 3343-3351.	5.8	19
236	Molybdenum-based materials for electrocatalytic nitrogen reduction reaction. Cell Reports Physical Science, 2021, 2, 100447.	2.8	30
237	Assembly of Chiral Cluster-Based Metal–Organic Frameworks and the Chirality Memory Effect during their Disassembly. Journal of the American Chemical Society, 2021, 143, 10214-10220.	6.6	54
238	Multifunctional Pillar[<i>n</i>]arene-Based Smart Nanomaterials. ACS Applied Materials & Interfaces, 2021, 13, 31337-31354.	4.0	37
239	Nâ€Heterocyclic Carbeneâ€Stabilized Ultrasmall Gold Nanoclusters in a Metalâ€Organic Framework for Photocatalytic CO 2 Reduction. Angewandte Chemie, 2021, 133, 17528-17533.	1.6	4
240	Selective hydroboration of unsaturated bonds by an easily accessible heterotopic cobalt catalyst. Nature Communications, 2021, 12, 3813.	5.8	25
241	Surface functionalization – The way for advanced applications of smart materials. Coordination Chemistry Reviews, 2021, 436, 213846.	9.5	110
242	[Ni8(CNtBu)12][Cl]: A nickel isocyanide nanocluster with a folded nanosheet structure. Journal of Chemical Physics, 2021, 154, 211102.	1.2	6
243	Ag ₂₃ Au ₂ and Ag ₂₂ Au ₃ : A Model of Cocrystallization in Bimetal Nanoclusters. Inorganic Chemistry, 2021, 60, 8404-8408.	1.9	7
244	A Molecular Hybrid of an Atomically Precise Silver Nanocluster and Polyoxometalates for H ₂ Cleavage into Protons and Electrons. Angewandte Chemie - International Edition, 2021, 60, 16994-16998.	7.2	38
245	On the Metal-Aided Catalytic Mechanism for Phosphodiester Bond Cleavage Performed by Nanozymes. ACS Catalysis, 2021, 11, 8736-8748.	5.5	20
246	Molecular metal nanoclusters for ORR, HER and OER: Achievements, opportunities and challenges. International Journal of Hydrogen Energy, 2021, 46, 25771-25781.	3.8	56
247	Coordination-based molecular nanomaterials for biomedically relevant applications. Coordination Chemistry Reviews, 2021, 438, 213752.	9.5	17
248	Contributions of Internal Atoms of Atomically Precise Metal Nanoclusters to Catalytic Performances. Chemistry - A European Journal, 2021, 27, 11539-11547.	1.7	10
249	Search for Global Minimum Structures of P2n+1+ (n = 1–15) Using xTB-Based Basin-Hopping Algorithm. Frontiers in Chemistry, 2021, 9, 694156.	1.8	3
250	Synthesis and Optical Properties of Unique Pt ₁ Ag ₂₄ Nanoclusters with Mixed Exterior Motif Structures. Inorganic Chemistry, 2021, 60, 10167-10172.	1.9	4
251	Analysis of the Reduction of 4-Nitrophenol Catalyzed by Para-Mercaptobenzoic Acid Capped Magic Number Gold Clusters. Catalysis Letters, 2022, 152, 1257-1263.	1.4	1
252	[Ag23Pd2(PPh3)10Cl7]: A new family of synthesizable bi-icosahedral superatomic molecules. Journal of Chemical Physics, 2021, 155, 024302.	1.2	15

#	Article	IF	Citations
253	Isotopic Exchange of Atomically Precise Nanoclusters with Materials of Varying Dimensions: From Nanoscale to Bulk. Journal of Physical Chemistry C, 2021, 125, 16110-16117.	1.5	2
254	An Adjacent Atomic Platinum Site Enables Singleâ€Atom Iron with High Oxygen Reduction Reaction Performance. Angewandte Chemie - International Edition, 2021, 60, 19262-19271.	7.2	275
255	The beauty of binary phases: A facile strategy for synthesis, processing, functionalization, and application of ultrasmall metal nanoclusters. Coordination Chemistry Reviews, 2021, 438, 213900.	9.5	24
256	[Pt ₂ Cu ₃₄ (PET) ₂₂ Cl ₄] ^{2–} : An Atomically Precise, 10-Electron PtCu Bimetal Nanocluster with a Direct Pt–Pt Bond. Journal of the American Chemical Society, 2021, 143, 12100-12107.	6.6	47
257	Creation of Highâ€Performance Heterogeneous Photocatalysts by Controlling Ligand Desorption and Particle Size of Gold Nanocluster. Angewandte Chemie, 2021, 133, 21510-21520.	1.6	12
258	Creation of Highâ€Performance Heterogeneous Photocatalysts by Controlling Ligand Desorption and Particle Size of Gold Nanocluster. Angewandte Chemie - International Edition, 2021, 60, 21340-21350.	7.2	74
259	An Adjacent Atomic Platinum Site Enables Singleâ€Atom Iron with High Oxygen Reduction Reaction Performance. Angewandte Chemie, 2021, 133, 19411-19420.	1.6	32
260	Magnetic porous nano arbon catalysts supported silver nanoparticles derived from chitin and their application in catalytic reduction reactions. Journal of Applied Polymer Science, 2021, 138, 51439.	1.3	2
261	Atomically Precise Dinuclear Site Active toward Electrocatalytic CO ₂ Reduction. Journal of the American Chemical Society, 2021, 143, 11317-11324.	6.6	153
262	Catalytic Clusterbody for Enhanced Quantitative Protein Immunoblot. Analytical Chemistry, 2021, 93, 10807-10815.	3.2	10
263	Ligandâ€Protected Au ₅₅ with a Novel Structure and Remarkable CO ₂ Electroreduction Performance. Angewandte Chemie, 2021, 133, 20916-20921.	1.6	17
264	A Nanocluster [Ag ₃₀₇ Cl ₆₂ (SPh ^{<i>t</i>} Bu) ₁₁₀]: Chloride Intercalation, Specific Electronic State, and Superstability. Journal of the American Chemical Society, 2021, 143, 13731-13737.	6.6	24
265	Molecular Dynamics Simulations of Thermally Induced Surface and Shape Evolution of Concave Au Nanocubes: Implications for Catalysis. ACS Applied Nano Materials, 2021, 4, 9527-9535.	2.4	2
266	Gold Nanoclusters as Electrocatalysts: Atomic Level Understanding from Fundamentals to Applications. Chemistry of Materials, 2021, 33, 7595-7612.	3.2	36
267	On the Roles of Electron Transfer in Catalysis by Nanoclusters and Nanoparticles. Chemistry - A European Journal, 2021, 27, 16291-16308.	1.7	8
268	Ligandâ€Protected Au ₅₅ with a Novel Structure and Remarkable CO ₂ Electroreduction Performance. Angewandte Chemie - International Edition, 2021, 60, 20748-20753.	7.2	59
269	Predictive optical photoabsorption of Ag24Au(DMBT)18â^' via efficient TDDFT simulations. Journal of Chemical Physics, 2021, 155, 084103.	1.2	12
270	Gold Clusters: From the Dispute on a Gold Chair to the Golden Future of Nanostructures. Molecules, 2021, 26, 5014.	1.7	1

#	Article	IF	CITATIONS
271	Recent Notable Approaches to Study Selfâ€Assembly of Nanoparticles with Xâ€Ray Scattering and Electron Microscopy. Particle and Particle Systems Characterization, 2021, 38, 2100087.	1.2	23
272	To inorganic nanoparticles via nanoclusters: Nonclassical nucleation and growth pathway. Bulletin of the Korean Chemical Society, 2021, 42, 1386-1399.	1.0	5
273	Atomically precise metal nanoclusters meet metal-organic frameworks. IScience, 2021, 24, 103206.	1.9	21
274	PdZn alloys decorated 3D hierarchical porous carbon networks for highly efficient and stable hydrogen production from aldehyde solution. International Journal of Hydrogen Energy, 2021, 46, 33429-33437.	3.8	6
275	Ionic organic cage-encapsulated metal clusters for switchable catalysis. Cell Reports Physical Science, 2021, 2, 100546.	2.8	16
276	Mimicking Enzymes: The Quest for Powerful Catalysts from Simple Molecules to Nanozymes. ACS Catalysis, 2021, 11, 11501-11509.	5.5	45
277	Nanomolecular Metallurgy: Transformation from Au ₁₄₄ (SCH ₂ CH ₂ Ph) ₆₀ to Au ₂₇₉ (SPh- <i>t</i> Bu) ₈₄ . Journal of Physical Chemistry C, 2021, 125, 20488-20502.	1.5	4
278	Nanowires as a versatile catalytic platform for facilitating chemical transformations. Journal of Alloys and Compounds, 2022, 892, 162158.	2.8	9
279	Efficient Nearâ€infrared Electrochemiluminescence from Au ₁₈ Nanoclusters. Chemistry - A European Journal, 2021, 27, 14821-14825.	1.7	11
280	TiO2-supported Au144 nanoclusters for enhanced sonocatalytic performance. Journal of Chemical Physics, 2021, 155, 124702.	1.2	8
281	Polystyrene Microspheres Decorated with Au ₄ Cu ₅ Nanoclusters and their Application in Catalytic Reduction of 4â€Nitrophenol. ChemistrySelect, 2021, 6, 8843-8847.	0.7	4
282	Computational Approaches to the Electronic Properties of Noble Metal Nanoclusters Protected by Organic Ligands. Nanomaterials, 2021, 11, 2409.	1.9	3
283	Triangular Palladium Cluster from Activation of the Si–Si Bond in a Disilane with Phosphine Pendants. Inorganic Chemistry, 2021, 60, 15101-15105.	1.9	11
284	Construction of Sixâ€Oxygen oordinated Single Ni Sites on g ₃ N ₄ with Boronâ€Oxo Species for Photocatalytic Waterâ€Activationâ€Induced CO ₂ Reduction. Advanced Materials, 2021, 33, e2105482.	11.1	128
285	An acid-base molecular assembly strategy toward N-doped Mo2C@C nanowires with mesoporous Mo2C cores and ultrathin carbon shells for efficient hydrogen evolution. Journal of Colloid and Interface Science, 2021, 602, 520-533.	5.0	18
286	0D/2D heterostructure constructed by ultra-small chalcogenide-cluster aggregated quaternary sulfides and g-C3N4 for enhanced photocatalytic H2 evolution. Chemical Engineering Journal, 2021, 426, 131216.	6.6	18
287	Biomolecules as promising ligands in the synthesis of metal nanoclusters: Sensing, bioimaging and catalytic applications. Trends in Environmental Analytical Chemistry, 2021, 32, e00140.	5.3	52
288	Unveiling the intermediates/pathways towards photocatalytic dechlorination of 3,3′,4,4′-trtrachlorobiphenyl over Pd /TiO2(B) nanosheets. Applied Catalysis B: Environmental, 2021, 298, 120526.	10.8	21

#	Article	IF	Citations
289	Immunoassay based on Au-Ag bimetallic nanoclusters for colorimetric/fluorescent double biosensing of dicofol. Biosensors and Bioelectronics, 2021, 194, 113611.	5.3	25
290	Strong response of Pt clusters to the environment and conditions, formation of metastable states, and simple methods to trace the reversible changes. Physical Chemistry Chemical Physics, 2021, 23, 22718-22732.	1.3	1
291	Rare-Earth Eu ³⁺ /Gold Nanocluster Ensemble-Based Fluorescent Photoinduced Electron Transfer Sensor for Biomarker Dipicolinic Acid Detection. Langmuir, 2021, 37, 949-956.	1.6	21
292	From phosphine-stabilised towards naked Au ₈ clusters through ZIF-8 encapsulation. Molecular Systems Design and Engineering, 2021, 6, 876-882.	1.7	6
293	Polyoxoplatinates as covalently dynamic electron sponges and molecular electronics materials. Nanoscale Advances, 2021, 3, 5663-5675.	2.2	5
294	Porphyrin and single atom featured reticular materials: recent advances and future perspective of solar-driven CO ₂ reduction. Green Chemistry, 2021, 23, 8332-8360.	4.6	37
295	Ligand Design in Ligandâ€Protected Gold Nanoclusters. Small, 2021, 17, e2004381.	5.2	128
296	Machine learning powered by principal component descriptors as the key for sorted structural fit of XANES. Physical Chemistry Chemical Physics, 2021, 23, 17873-17887.	1.3	7
297	A Co-MOF-derived Co ₉ S ₈ @NS-C electrocatalyst for efficient hydrogen evolution reaction. RSC Advances, 2021, 11, 5947-5957.	1.7	13
298	Fast and high-yield synthesis of thiolate Ag ₄₄ and Au ₁₂ Ag ₃₂ nanoclusters <i>via</i> the CTAB reverse micelle method. Dalton Transactions, 2021, 50, 562-567.	1.6	1
299	Controlling ultrasmall gold nanoparticles with atomic precision. Chemical Science, 2021, 12, 2368-2380.	3.7	50
300	Biomarker sensing platforms based on fluorescent metal nanoclusters. Nanoscale Advances, 2021, 3, 1331-1341.	2.2	29
301	Predicting ligand removal energetics in thiolate-protected nanoclusters from molecular complexes. Nanoscale, 2021, 13, 2034-2043.	2.8	7
302	New atomically precise M1Ag21 (M = Au/Ag) nanoclusters as excellent oxygen reduction reaction catalysts. Chemical Science, 2021, 12, 3660-3667.	3.7	22
303	Tailoring silver nanoclusters <i>via</i> doping: advances and opportunities. Nanoscale Advances, 2021, 3, 2411-2422.	2.2	23
304	Theoretical Analysis of the Mackay Icosahedral Cluster Pd55(PiPr3)12(μ3 O)20: An Open‧hell 20â€Electron Superatom. Chemistry - A European Journal, 2020, 26, 5508-5514.	1.7	7
305	Investigation of the optical properties of uniform platinum, palladium, and nickel nanocrystals enables direct measurements of their concentrations in solution. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 601, 125007.	2.3	6
306	From nanoparticles to single atoms for Pt/CeO2: Synthetic strategies, characterizations and applications. Journal of Rare Earths, 2020, 38, 850-862.	2.5	32

#	Article	IF	CITATIONS
307	[AuAg ₂₆ (SR) ₁₈ S] ^{â^{~;}} Nanocluster: Open Shell Structure and High Faradaic Efficiency in Electrochemical Reduction of CO ₂ to CO. Journal of Physical Chemistry Letters, 2021, 12, 552-557.	2.1	36
308	Novel class of water-soluble phosphonate silver cluster assembled material for efficient photoelectric sensing and photoacoustic imaging. Nanoscale, 2021, 13, 17325-17330.	2.8	10
309	Encapsulation of gold nanoclusters: stabilization and more. Nanoscale, 2021, 13, 17199-17217.	2.8	28
310	Porous materials confining noble metals for the catalytic reduction of nitroaromatics: controllable synthesis and enhanced mechanism. Environmental Science: Nano, 2021, 8, 3067-3097.	2.2	22
311	Progress in controlling the synthesis of atomically precise silver nanoclusters. CrystEngComm, 2021, 23, 7369-7379.	1.3	7
312	Functionalized Metal Nanoclusters for Biosensing Applications. Chemistry in the Environment, 2021, , 1-29.	0.2	0
313	Rapid synthesis of supported single metal nanoparticles and effective removal of stabilizing ligands. Journal of Materials Chemistry A, 2021, 9, 24283-24289.	5.2	7
314	All Hydroxyl-Thiol-Protected Gold Nanoclusters with Near-Neutral Surface Charge. Journal of Physical Chemistry Letters, 2021, 12, 9882-9887.	2.1	5
315	Assembling Silver Cluster-Based Organic Frameworks for Higher-Performance Hypergolic Properties. Jacs Au, 2021, 1, 2202-2207.	3.6	11
316	Synthesis of metal nanoclusters and their application in Hg2+ ions detection: A review. Journal of Hazardous Materials, 2022, 424, 127565.	6.5	44
317	Synergistic Effect of Bimetallic Sulfide Synthesized by a Simple Solvothermal Method for High-Efficiency Oxygen Evolution Reaction. Energy & Fuels, 2021, 35, 17869-17875.	2.5	5
318	Gold Nanocluster Functionalized with Peptide Dendron Thiolates: Acceleration of the Photocatalytic Oxidation of an Amino Alcohol in a Supramolecular Reaction Field. ACS Catalysis, 2021, 11, 13180-13187.	5.5	12
319	Supported, â^1¼1-nm-Sized Platinum Clusters: Controlled Preparation and Enhanced Catalytic Activity. Bulletin of the Chemical Society of Japan, 2021, 94, 2853-2870.	2.0	10
320	Fluorescent noble metal nanoclusters for contaminants analysis in food matrix. Critical Reviews in Food Science and Nutrition, 2023, 63, 3519-3537.	5.4	15
321	Tetra metallic Copper Complex to Nanoscale Copper: Selective and Switchable Dehydrogenationâ€Hydrogenation under light. Chemistry - A European Journal, 2021, , .	1.7	0
322	Spontaneous amorphous oxide-interfaced ultrafine noble metal nanoclusters for unexpected anodic electrocatalysis. Chem Catalysis, 2021, 1, 1104-1117.	2.9	14
323	Superatomic Au25(SC2H5)18 Nanocluster under Pressure. ACS Nanoscience Au, 0, , .	2.0	2
324	Atomically Precise Ni–Pd Alloy Carbonyl Nanoclusters: Synthesis, Total Structure, Electrochemistry, Spectroelectrochemistry, and Electrochemical Impedance Spectroscopy. Inorganic Chemistry, 2021, 60, 16713-16725.	1.9	8

#	Article	IF	CITATIONS
325	Heterocyclic thiol protected supramolecular self-assembly of silver nanoclusters for ultrasensitive detection of toxic Hg (II) ions in nanomolar range. Journal of Molecular Liquids, 2021, 344, 117769.	2.3	11
327	Synthesis of Copper Nanocluster and Its Application in Pollutant Analysis. Biosensors, 2021, 11, 424.	2.3	5
328	Crystallographic studies of the structures of Au11(PPh3)7(SCN)3. Inorganica Chimica Acta, 2022, 530, 120682.	1.2	1
329	Hierarchical Fe–Mn binary metal oxide core–shell nano-polyhedron as a bifunctional electrocatalyst for efficient water splitting. Dalton Transactions, 2021, 50, 17265-17274.	1.6	7
330	Engineering luminescent metal nanoclusters for sensing applications. Coordination Chemistry Reviews, 2022, 451, 214268.	9.5	79
331	Scaling up of cluster beam deposition technology for catalysis application. Frontiers of Chemical Science and Engineering, 2021, 15, 1360-1379.	2.3	8
332	Solvent-Dependent Photophysical Properties of a Semiconducting One-Dimensional Silver Cluster-Assembled Material. Inorganic Chemistry, 2021, 60, 18234-18241.	1.9	11
333	[Au _{37–<i>x</i>} Ag _{<i>x</i>} (PPh ₃) ₁₃ Cl ₁₀] <sup into [Au_{25–<i>y</i>}Ag_{<i>y</i>}(PPh₃)₁₀Cl₈]^{ Fragmentation of a Trimer of 8-Electron Superatoms by Light. Journal of Physical Chemistry Letters.}</sup 		
334	2021, 12, 10920-10926. Facile Synthesis of Peptide-Conjugated Gold Nanoclusters with Different Lengths. Nanomaterials, 2021, 11, 2932.	1.9	4
335	Understanding the Single Atom Doping Effects in Oxygen Reduction with Atomically Precise Metal Nanoclusters. Journal of Physical Chemistry C, 2021, 125, 24831-24836.	1.5	7
336	Size Distributions of Gold Nanoparticles in Solution Measured by Single-Particle Mass Photometry. Journal of Physical Chemistry B, 2021, 125, 12466-12475.	1.2	4
337	Direct imaging of lattice planes in atomically precise noble metal cluster crystals using a conventional transmission electron microscope. Chemical Communications, 2022, 58, 1906-1909.	2.2	3
338	Effects of protecting groups on luminescent metal nanoclusters: spectroscopic signatures and applications. Chemical Communications, 2021, 58, 29-47.	2.2	16
339	Ionic Cyclopropenium-Derived Triplatinum Cluster Complex [(Ph ₃ C ₃) ₂ Pt ₃ (MeCN) ₄] ²⁺ (BF <sub Synthesis, Structure, and Perspectives for Use as a Catalyst for Hydrosilylation Reactions. Organometallics, 2021, 40, 3876-3885.</sub 	>4	<şup>–<
340	Reactivities of Interstitial Hydrides in a Cu ₁₁ Template: En Route to Bimetallic Clusters. Angewandte Chemie, 2022, 134, e202113266.	1.6	5
341	Silica-Encapsulated Palladium Clusters for Methane Combustion Catalysis. Catalysis Today, 2021, , .	2.2	0
342	Reactivities of Interstitial Hydrides in a Cu ₁₁ Template: En Route to Bimetallic Clusters. Angewandte Chemie - International Edition, 2022, 61, .	7.2	25
343	Recent progress in functional atom-precise coinage metal clusters protected by alkynyl ligands. Coordination Chemistry Reviews, 2022, 453, 214315.	9.5	62

#	Article	IF	CITATIONS
344	Identifying Highly Photoelectrochemical Active Sites of Two Au ₂₁ Nanocluster Isomers toward Bright Near-Infrared Electrochemiluminescence. Journal of the American Chemical Society, 2021, 143, 19474-19485.	6.6	50
345	Recent Advances in Spinel Ferrite-Based Thin Films: Synthesis, Performances, Applications, and Beyond. Frontiers in Materials, 2021, 8, .	1.2	20
346	Full-Color Tunable Circularly Polarized Luminescence Induced by the Crystal Defect from the Co-assembly of Chiral Silver(I) Clusters and Dyes. Journal of the American Chemical Society, 2021, 143, 20574-20578.	6.6	39
347	The interesting luminescence behavior and rare nonlinear optical properties of the {Ag ₅₅ Mo ₆ } nanocluster. RSC Advances, 2021, 11, 38814-38819.	1.7	1
348	Delayed Dual Emission of Two-Dimensional Copper Nanocluster Assembly. Journal of Physical Chemistry C, 2022, 126, 997-1005.	1.5	7
349	Master key to coinage metal nanoclusters treasure chest: 38-metal clusters. Nanoscale, 2022, 14, 1538-1565.	2.8	6
350	Electropolymerization of Metal Clusters Establishing a Versatile Platform for Enhanced Catalysis Performance. Angewandte Chemie - International Edition, 2022, 61, e202114538.	7.2	27
351	Ligand Engineering toward the Tradeâ€Off between Stability and Activity in Cluster Catalysis. Angewandte Chemie - International Edition, 2022, 61, .	7.2	45
352	Atomically precise structures of Pt ₂ (S-Adam) ₄ (PPh ₃) ₂ complexes and catalytic application in propane dehydrogenation. Nanoscale, 2022, 14, 2482-2489.	2.8	3
353	Carbon-based iron-cobalt phosphate FeCoP/C as an effective ORR/OER/HER trifunctional electrocatalyst. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 635, 128118.	2.3	21
354	Accelerating the structure search of catalysts with machine learning. Current Opinion in Chemical Engineering, 2022, 35, 100771.	3.8	20
355	Electrospinning construction of heterostructural Co3W3C/CoP nanoparticles embedded in N, P-doped hierarchically porous carbon fibers as excellent multifunctional electrocatalyst for Zn-air batteries and water splitting. Chemical Engineering Journal, 2022, 431, 134188.	6.6	46
356	Metal nanocluster-based hybrid nanomaterials: Fabrication and application. Coordination Chemistry Reviews, 2022, 456, 214391.	9.5	27
357	Atomically dispersed catalysts for small molecule electrooxidation in direct liquid fuel cells. Journal of Energy Chemistry, 2022, 68, 439-453.	7.1	18
358	Simultaneously enhancing purification, catalysis and in situ separation in a continuous cross-flow catalytic degradation process of multi-component organic pollutants by a double-layer PVDF composite membrane. Journal of Environmental Chemical Engineering, 2022, 10, 107160.	3.3	6
359	Metal Nanoclusters Combined with CRISPR-Cas12a for Hepatitis B Virus DNA Detection. SSRN Electronic Journal, 0, , .	0.4	0
360	Direct Formation of Colloidal All-Inorganic Metal Nanocrystals from Magic-Size Clusters. ACS Applied Materials & Interfaces, 2022, , .	4.0	5
361	Alloying dichalcogenolate-protected Ag ₂₁ eight-electron nanoclusters: a DFT investigation. Nanoscale, 2021, 14, 196-203.	2.8	14

#	Article	IF	CITATIONS
362	Heteroatom doping and supramolecular assembly promoted copper nanoclusters to be a stable & high fluorescence sensor for trace amounts of ATP determination. Sensors and Actuators B: Chemical, 2022, 358, 131469.	4.0	17
363	Mn ₁₃ -Cluster-Based Nanowire Arrays Deposited on Ni Foam for the Oxygen Evolution Reaction. ACS Applied Nano Materials, 2022, 5, 326-330.	2.4	1
364	Enhanced oxygen reduction activity of size-selected platinum subnanocluster catalysts: Pt _{<i>n</i>} (<i>n</i> = 3–9). Catalysis Science and Technology, 2022, 12, 1400-1407.	2.1	6
365	Gold nanoparticles for biocatalysis. , 2022, , 377-434.		2
366	Copper-bismuth Binary Oxide Clusters: An Efficient Catalyst for Selective Styrene Bisperoxidation. Chemistry Letters, 2022, 51, 317-320.	0.7	0
367	Ligand Engineering toward the Tradeâ€Off between Stability and Activity in Cluster Catalysis. Angewandte Chemie, 0, , .	1.6	9
368	Unravelling the origin of dual photoluminescence in Au ₂ Cu ₆ clusters by triplet sensitization and photon upconversion. Journal of Materials Chemistry C, 2022, 10, 4597-4606.	2.7	8
369	Rapid Discrimination of Adsorbed Oxygen and Lattice Oxygen in Catalysts by the Cataluminescence Method. Analytical Chemistry, 2022, 94, 1382-1389.	3.2	20
370	Epitaxial coordination assembly of a semi-conductive silver-chalcogenide layer-based MOF. Chemical Communications, 2022, 58, 1788-1791.	2.2	3
371	Development and Functionalization of Visible-Light-Driven Water-Splitting Photocatalysts. Nanomaterials, 2022, 12, 344.	1.9	17
372	Electropolymerization of Metal Clusters Establishing a Versatile Platform for Enhanced Catalysis Performance. Angewandte Chemie, 2022, 134, .	1.6	5
373	Metal-nanocluster science and technology: my personal history and outlook. Physical Chemistry Chemical Physics, 2022, 24, 7569-7594.	1.3	15
374	Insight Into the Stability and Electronic and Optical Properties of N-Heterocyclic Carbene Analogues of Halogen/Phosphine-Protected Au ₁₃ Superatomic Clusters. Journal of Physical Chemistry A, 2022, 126, 536-545.	1.1	8
375	Interstitial Hydrides in Nanoclusters can Reduce M(I) (M=Cu, Ag, Au) to M(0) and Form Stable Superatoms. Chemistry - A European Journal, 2022, 28, .	1.7	13
376	Dualâ€metal singleâ€atomic catalyst: The challenge in synthesis, characterization, and mechanistic investigation for electrocatalysis. SmartMat, 2022, 3, 533-564.	6.4	35
377	Review—Micro/Nanoelectrodes and Their Use in Electrocrystallization: Historical Perspective and Current Trends. Journal of the Electrochemical Society, 2022, 169, 022505.	1.3	10
378	Mechanism of heteroatom-doped Cu5 catalysis for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2022, 47, 7802-7812.	3.8	4
379	Enhanced methanol oxidation on PtNi nanoparticles supported on silane-modified reduced graphene oxide. International Journal of Hydrogen Energy, 2022, 47, 6638-6649.	3.8	13

#	ARTICLE	IF	CITATIONS
380	First-principles modelling of the new generation of subnanometric metal clusters: Recent case studies. Journal of Colloid and Interface Science, 2022, 612, 737-759.	5.0	13
381	Lanthanide-containing clusters for catalytic water splitting and CO2 conversion. Coordination Chemistry Reviews, 2022, 457, 214419.	9.5	41
382	Size and structure effects on platinum nanocatalysts: theoretical insights from methanol dehydrogenation. Nanoscale, 2022, 14, 4145-4155.	2.8	3
383	Mapping the Finite-Temperature Behavior of Conformations to Their Potential Energy Barriers: Case Studies on Si ₆ B and Si ₅ B Clusters. ACS Omega, 2022, 7, 6167-6173.	1.6	2
384	Light alloying element-regulated noble metal catalysts for energy-related applications. Chinese Journal of Catalysis, 2022, 43, 611-635.	6.9	27
385	Engineering stable Pt nanoclusters on defective two-dimensional TiO2 nanosheets by introducing SMSI for efficient ambient formaldehyde oxidation. Chemical Engineering Journal, 2022, 435, 135035.	6.6	31
386	Coumarin Derivative Induced 3D Organoâ€Silver(I) Complex with Tandem Hydrazine Detection and 4â€Nitrophenol Catalysis. Crystal Research and Technology, 0, , 2100186.	0.6	3
387	In Situ Synthesis of Bismuth Nanoclusters within Carbon Nanoâ€Bundles from Metal–Organic Framework for Chlorideâ€Driven Electrochemical Deionization. Advanced Functional Materials, 2022, 32, .	7.8	46
388	Site-specific doping of silver atoms into a Au ₂₅ nanocluster as directed by ligand binding preferences. Chemical Science, 2022, 13, 5148-5154.	3.7	11
389	Ligand engineering of Au nanoclusters with multifunctional metalloporphyrins for photocatalytic H ₂ O ₂ production. Journal of Materials Chemistry A, 2022, 10, 8371-8377.	5.2	13
390	Tuning the activity and selectivity of polymerised ionic liquid-stabilised ruthenium nanoparticles through anion exchange reactions. Nanoscale, 2022, 14, 4635-4643.	2.8	9
391	Co-ligand triphenylphosphine/alkynyl-stabilized undecagold nanocluster with a capped crown structure. RSC Advances, 2022, 12, 11047-11051.	1.7	5
392	Looking at platinum carbonyl nanoclusters as <i>superatoms</i> . Nanoscale, 2022, 14, 3946-3957.	2.8	3
393	Single-atom catalysts for high-efficiency photocatalytic and photoelectrochemical water splitting: distinctive roles, unique fabrication methods and specific design strategies. Journal of Materials Chemistry A, 2022, 10, 6835-6871.	5.2	63
394	Supramolecular nanocapsules as two-fold stabilizers of outer-cavity sub-nanometric Ru NPs and inner-cavity ultra-small Ru clusters. Nanoscale Horizons, 2022, 7, 607-615.	4.1	2
395	Surfactant-free synthesis of fluorescent platinum nanoclusters using HEPES buffer for hypochlorous acid sensing and imaging. RSC Advances, 2022, 12, 10395-10400.	1.7	3
396	Controlled Synthesis of Diphosphine-Protected Gold Cluster Cations Using Magnetron Sputtering Method. Molecules, 2022, 27, 1330.	1.7	0
397	Relativistic Effects in Platinum Nanocluster Catalysis: A Statistical Ensemble-Based Analysis. Journal of Physical Chemistry A, 2022, 126, 1345-1359.	1.1	7

#	Article	IF	CITATIONS
398	Exploiting the Fracture in Metalâ€Organic Frameworks: A General Strategy for Bifunctional Atomâ€Precise Nanocluster/ZIFâ€8(300°C) Composites. Small, 2022, 18, e2107459.	5.2	11
399	Covalent Attachment of Aggregation-Induced Emission Molecules to the Surface of Ultrasmall Gold Nanoparticles to Enhance Cell Penetration. Molecules, 2022, 27, 1788.	1.7	3
400	Atom-Precision Engineering Chemistry of Noble Metal Nanoparticles. Industrial & Engineering Chemistry Research, 2022, 61, 7594-7612.	1.8	7
401	Atomically Precise Core-Tailored Metal Chalcogenide Nanoclusters: Tuning the Electronic Structure and Magnetic Properties. Journal of Physical Chemistry C, 2022, 126, 6512-6522.	1.5	3
402	Synthesis of Dual Redâ€Emitting Fluorescent Silver Nanoclusters in Aqueous Lipoic Acidâ€Based Polymer Solutions and Application for Cu ²⁺ Detection and Cell Imaging. ChemistrySelect, 2022, 7, .	0.7	2
403	Theoretical study of M ₆ X ₂ and M ₆ XX′ structure (M = Au, Ag;) Tj ET properties under biaxial strain. Chinese Physics B, 2022, 31, 097101.	Qq1 1 0.7 0 . 7	84314 rgBT 2
404	Temperature-dependent chloride-mediated access to atom-precise silver thiolate nanoclusters. Science China Chemistry, 2022, 65, 1094-1099.	4.2	11
405	Metal nanoclusters combined with CRISPR-Cas12a for hepatitis B virus DNA detection. Sensors and Actuators B: Chemical, 2022, 361, 131711.	4.0	27
406	Transition metal-based single-atom catalysts (TM-SACs); rising materials for electrochemical CO2 reduction. Journal of Energy Chemistry, 2022, 70, 444-471.	7.1	44
407	Surface Engineering Assisted Size and Structure Modulation of Gold Nanoclusters by Ionic Liquid Cations. Angewandte Chemie - International Edition, 2022, 61, .	7.2	19
408	Mesoporous silica nanospheres supported atomically precise palladium nanocluster: Highly efficient and recyclable catalysts in the reduction of 4â€nitrophenol and Heck reactions. Applied Organometallic Chemistry, 2022, 36, .	1.7	4
409	Role of Ligand on Photophysical Properties of Nanoclusters with fcc Kernel: A Case Study of Ag ₁₄ (SC ₆ H ₄ X) ₁₂ (PPh ₃) ₈ (X =) T	j ETQ q1 1	0. 78 4314 g
410	Recent Advances in the Marriage of Catalyst Nanoparticles and Mesoporous Supports. Advanced Materials Interfaces, 2022, 9, .	1.9	10
411	Surface Engineering Assisted Size and Structure Modulation of Gold Nanoclusters by Ionic Liquid Cations. Angewandte Chemie, 2022, 134, .	1.6	4
412	Unveiling the Antibacterial Mechanism of Gold Nanoclusters via In Situ Transmission Electron Microscopy. ACS Sustainable Chemistry and Engineering, 2022, 10, 464-471.	3.2	35
413	Variable control of the electronic states of a silver nanocluster <i>via</i> protonation/deprotonation of polyoxometalate ligands. Chemical Science, 2022, 13, 5557-5561.	3.7	19
414	Co-assembly of Ag ₂₉ Nanoclusters with Ru(bpy) ₃ ²⁺ for Two-Photon Up-Conversion and Singlet Oxygen Generation. , 2022, 4, 960-966.		4
415	The Factors Dictating Properties of Atomically Precise Metal Nanocluster Electrocatalysts. Small, 2022, 18, e2200812.	5.2	25

#	Article	IF	CITATIONS
416	Phosphated IrMo bimetallic cluster for efficient hydrogen evolution reaction. EScience, 2022, 2, 304-310.	25.0	171
417	Probing the structural evolution, electronic and vibrational properties of magnesium clusters doped with two lithium atoms. Computational Materials Science, 2022, 210, 111440.	1.4	3
418	Selective transfer hydrogenation coupling of nitroaromatics to azoxy/azo compounds by electron-enriched single Ni-N4 sites on mesoporous N-doped carbon. Chemical Engineering Journal, 2022, 443, 136416.	6.6	10
420	Homoleptic Silver-Rich Trimetallic M ₂₀ Nanocluster. Inorganic Chemistry, 2022, 61, 6695-6700.	1.9	5
421	Incorporating Au ₁₁ nanoclusters on MoS ₂ nanosheet edges for promoting the hydrogen evolution reaction at the interface. Nanoscale, 2022, 14, 7919-7926.	2.8	9
422	Alkynyl and halogen co-protected (AuAg) ₄₄ nanoclusters: a comparative study on their optical absorbance, structure, and hydrogen evolution performance. Dalton Transactions, 2022, 51, 7845-7850.	1.6	11
423	High Performance Separation of Metal Complexes by Non-aqueous Capillary Gel Electrophoresis Using Hydroxypropyl Methylcellulose. Bunseki Kagaku, 2022, 71, 187-190.	0.1	1
424	CeO ₂ Supported Gold Nanocluster Catalysts for CO Oxidation: Surface Evolution Influenced by the Ligand Shell. ChemCatChem, 2022, 14, .	1.8	6
425	Editorial: Design, Synthesis, Characterization and Applications of Nanoclusters. Frontiers in Chemistry, 2022, 10, 898480.	1.8	2
426	Recent Advances in Bimetallic Catalysts for Hydrogen Production from Ammonia. Chemical Record, 2022, 22, e202200030.	2.9	19
427	Highly Selective Detection of Paraoxon in Food Based on the Platform of Cu Nanocluster/MnO2 Nanosheets. Nanomaterials, 2022, 12, 1429.	1.9	1
428	Circularly Polarized Phosphorescence from Cocrystallization of Atomic Precise Silver Nanoclusters with Tartaric Acid. Advanced Optical Materials, 2022, 10, .	3.6	17
429	The New Ag–S Cluster [Ag ₅₀ S ₁₃ (S ^t Bu) ₂₀][CF ₃ COO] ₄ with a Unique hcp Ag ₁₄ Kernel and Ag ₃₆ Keplerian-Shell-Based Structural Architecture and Its Photoresponsivity. Nano Letters, 2022, 22, 3721-3727.	4.5	21
430	Molecular Engineering of Atomically Precise Silver Clusters into 2D and 3D Framework Solids. Chemistry of Materials, 2022, 34, 4703-4711.	3.2	18
431	Pure Metal Clusters with Atomic Precision for Nanomanufacturing. Nanomanufacturing and Metrology, 2022, 5, 230-239.	1.5	4
432	The Hidden Role of the Supporting Electrode for Creating Heterogeneity in Single Entity Electrochemistry. ChemElectroChem, 2022, 9, .	1.7	7
433	Ultrasmall Gold Nanoclustersâ€Enabled Fabrication of Ultrafine Gold Aerogels as Novel Selfâ€ S upported Nanozymes. Small, 2022, 18, e2200525.	5.2	23
434	Methanol tolerant Oxygen Reduction Reaction electrocatalysis using Sizeâ€Specific Triphenylphosphineâ€Ligated Gold Nanoclusters. ChemNanoMat, 0, , .	1.5	2

ARTICLE IF CITATIONS Atomically Precise Cu_n(n=3, 6 and 11) Nanocatalysts for Alkyneâ€Haloalkaneâ€Amine (AHA) 435 1.0 2 Coupling Reaction. European Journal of Inorganic Chemistry, 2022, 2022, . Regioselective hydrogenation of alkenes over atomically dispersed Pd sites on NHC-stabilized 5.8 19 bimetallic nanoclusters. CheM, 2022, 8, 2380-2392. Establishing bilateral modulation of radiation induced redox damage via biocatalytic single atom 437 9 6.6 engineering at Au clusters. Chemical Engineering Journal, 2022, 445, 136793. A one-pot carbon-coating-ex-solution route to efficient Ru-MnO@C nanowire electrocatalysts with enhanced interfacial interactions. Chemical Engineering Journal, 2022, 446, 136816. Controlling the Structure, Properties and Surface Reactivity of Clickable Azideâ€Functionalized Au₂₅(SR)₁₈ Nanocluster Platforms Through Regioisomeric Ligand 439 7.2 9 Modifications. Angewandte Chemie - International Edition, 2022, 61, . Controlling the Structure, Properties and Surface Reactivity of Clickable Azideâ€Functionalized Au25(SR) I8 Nanocluster Platforms Through Regioisomeric Ligand Modifications. Angewandte Chemie, 1.6 0, , . Revealing Surface Restraint-Induced Hexagonal Pd Nanocrystals via <i>In Situ</i> Transmission 441 4.5 8 Electron Microscopy. Nano Letters, 2022, 22, 4333-4339. Recent advances in solarâ€driven CO₂ reduction over gâ€C₃N₄â€based 449 38 photocatalysts., 2023, 5,. A Homoleptic Alkynylâ€Protected Au(I)9â€Ag(I)9 Cluster: Structure Analysis, Optical Properties, and 443 1.0 5 Catalytic Implications. European Journal of Inorganic Chemistry, 2022, 2022, . Dynamic hetero-metallic bondings visualized by sequential atom imaging. Nature Communications, 444 5.8 2022, 13, . Polymer-Stabilized Au₃₈ Cluster: Atomically Precise Synthesis by Digestive Ripening and 445 5.55 Characterization of the Atomic Structure and Oxidation Catalysis. ACS Catalysis, 2022, 12, 6550-6558. Silver nanoparticles (AgNPs) as a metal nano-therapy: possible mechanisms of antiviral action against 446 0.9 COVID-19. Inorganic and Nano-Metal Chemistry, 0, , 1-19. Probing the structural evolution, electronic and vibrational properties of neutral and anionic 447 2.0 2 calcium-doped magnesium clusters. Results in Physics, 2022, 38, 105635. [Cu₁₈H₃(S-Adm)₁₂(PPh₃(sub>4</sub>Cl₂]: fusion of Platonic and Johnson solids through a Cu(0) center and its photophysical properties. 448 3.7 Chemical Science, 2022, 13, 7616-7625. Ultrasmall Ag nanoclusters anchored on NiCo-layered double hydroxide nanoarray for efficient 449 3.5 14 electrooxidation of 5-hydroxymethylfurfural. Science China Materials, 2022, 65, 2704-2710. Engineering Gold Nanostructures for Cancer Treatment: Spherical Nanoparticles, Nanorods, and Atomically Precise Nanoclusters. Nanomaterials, 2022, 12, 1738. Surface modification of metallic catalysts for the design of selective processes. Catalysis Reviews -451 5.76 Science and Engineering, 0, , 1-47. Electron Affinities of Ligated Icosahedral M₁₃ Superatoms Revisited by Gas-Phase Anion 2.1 Photoelectron Spectroscopy. Journal of Physical Chemistry Letters, 2022, 13, 5049-5055.

#	Article	IF	Citations
# 453	Botryoidal nanolignin channel stabilized ultrasmall PdNP incorporating with filter membrane for enhanced removal of Cr(VI) via synergetic filtration and catalysis. Separation and Purification	іг 3.9	11
	Technology, 2022, 296, 121409.		
457	An atomically precise silver nanocluster for artificial light-harvesting system through supramolecular functionalization. Chemical Science, 2022, 13, 8355-8364.	3.7	21
458	Compact accumulation of superatomic silver nanoclusters with an octahedral Ag ₆ core ligated by trithiane. Nanoscale, 2022, 14, 10321-10326.	2.8	5
459	d–sp orbital hybridization: a strategy for activity improvement of transition metal catalysts. Chemical Communications, 2022, 58, 7730-7740.	2.2	37
460	Metal Nanoclusters as Biomaterials for Bioapplications: Atomic Precision as the Next Goal. , 2022, 4, 1279-1296.		34
461	The Atomically Precise Gold/Captopril Nanocluster Au ₂₅ (Capt) ₁₈ Gains Anticancer Activity by Inhibiting Mitochondrial Oxidative Phosphorylation. ACS Applied Materials & Interfaces, 2022, 14, 29521-29536.	4.0	16
462	Nanosheet array-like Ni Mg Al-LDH/rGO hybrids loaded atomically precise Au nanoclusters for the solvent-free oxidation of benzyl alcohol. Journal of Catalysis, 2022, 413, 534-545.	3.1	6
463	Ligandâ€Shell Engineering of a Au ₂₈ Nanocluster Boosts Electrocatalytic CO ₂ Reduction. Angewandte Chemie - International Edition, 2022, 61, .	7.2	40
464	Mechanistic Study on Enhanced Electrocatalytic Nitrogen Reduction Reaction by Mo Single Clusters Supported on MoS ₂ . ACS Applied Materials & Interfaces, 2022, 14, 28900-28910.	4.0	8
465	N-Heterocyclic Carbene-Stabilized Gold Nanoclusters with Organometallic Motifs for Promoting Catalysis. Journal of the American Chemical Society, 2022, 144, 10844-10853.	6.6	51
466	Markovnikov‣elective Hydroboration of Aryl Alkenes Enabled by A Simple Nickel Salt. Chinese Journal of Chemistry, 0, , .	2.6	3
467	Ligandâ€Shell Engineering of a Au ₂₈ Nanocluster Boosts Electrocatalytic CO ₂ Reduction. Angewandte Chemie, 2022, 134, .	1.6	11
468	Identification of the Active Species in Bimetallic Cluster Catalyzed Hydrogenation. Journal of the American Chemical Society, 2022, 144, 11405-11412.	6.6	45
469	Alloy nanoclusters-synthesis methods and structural evaluation. , 2022, , 349-384.		1
470	Polymer- and dendrimer-protected metal nanoclusters. , 2022, , 223-249.		0
471	Cooperative selective benzyl alcohol oxidation and hydrogen production over Pd ₆ (SC ₁₂ H ₂₅) ₁₂ cluster-coupled CdS nanorods: the key role of water in photocatalytic benzyl alcohol splitting. Journal of Materials Chemistry A, 2022, 10. 15941-15948.	5.2	9
472	Methods of synthesis of metal nanoclusters. , 2022, , 17-55.		0
473	General introduction—luminescent metal nanoclusters. , 2022, , 1-16.		0

#	Article	IF	CITATIONS
474	Visible-Light Copper Nanocluster Catalysis for the C–N Coupling of Aryl Chlorides at Room Temperature. Journal of the American Chemical Society, 2022, 144, 12052-12061.	6.6	37
475	Selective Semihydrogenation of Polarized Alkynes by a Gold Hydride Nanocluster. Journal of the American Chemical Society, 2022, 144, 12501-12509.	6.6	25
476	Alloyâ€Driven Efficient Electrocatalytic Oxidation of Biomassâ€Derived 5â€Hydroxymethylfurfural towards 2,5â€Furandicarboxylic Acid: A Review. ChemSusChem, 2022, 15, .	3.6	14
477	Crystal structure of bulky-ligand-protected Au ₂₄ (S-C ₄ H ₉ 16. Acta Crystallographica Section C, Structural Chemistry, 2022, 78, 430-436.	0.2	0
478	Gold nanoclusters: Photophysical properties and photocatalytic applications. Frontiers in Chemistry, 0, 10, .	1.8	9
479	"Template synthesis―of discrete metal clusters with two- or three-dimensional architectures. Coordination Chemistry Reviews, 2022, 469, 214673.	9.5	13
480	Anion-templated silver thiolated clusters affected by carboxylate ligands. Dalton Transactions, 2022, 51, 14557-14562.	1.6	6
481	Formation of a Pt–MgO Solid Solution: Analysis by X-ray Absorption Fine Structure Spectroscopy. ACS Omega, 2022, 7, 27458-27468.	1.6	4
482	Atomically precise thiolateâ€protected gold nanoclusters: Current status of designability of the structure and physicochemical properties. Aggregate, 2023, 4, .	5.2	22
483	Iron oxide clusters on g-C3N4 promote the electron–hole separation in photo-Fenton reaction for efficient degradation of wastewater. Chemical Papers, 2022, 76, 7553-7563.	1.0	20
484	Aggregation-Induced Emission of Gold Nanoclusters by Ionic Liquids for White Light-Emitting Diode and Multiple-Ion Probe Applications. Journal of Physical Chemistry Letters, 2022, 13, 7722-7730.	2.1	8
485	Guiding the High-Yield Synthesis of NHC-Ligated Gold Nanoclusters by ¹⁹ F NMR Spectroscopy. ACS Nanoscience Au, 2022, 2, 520-526.	2.0	8
486	Covalence bridge atomically precise metal nanocluster and metal-organic frameworks for enhanced photostability and photocatalysis. Nano Research, 2023, 16, 1527-1532.	5.8	9
487	Atomically Precise Platinum Carbonyl Nanoclusters: Synthesis, Total Structure, and Electrochemical Investigation of [Pt ₂₇ (CO) ₃₁ 4– Displaying a Defective Structure. Inorganic Chemistry, 2022, 61, 12534-12544.	1.9	3
488	Room-Temperature Synthesis of Sub-2 nm Ultrasmall Platinum–Rare-Earth Metal Nanoalloys for Hydrogen Evolution Reaction. Inorganic Chemistry, 2022, 61, 13379-13385.	1.9	6
489	A Nanohybrid Containing Cyanâ€Emitting Copper Nanoclusters and TiO ₂ Nanoparticles: Tuning of Optoelectronic Properties. ChemistrySelect, 2022, 7, .	0.7	1
490	Evolution of Triangular All-Metal Aromatic Complexes from Bonding Quandaries to Powerful Catalytic Platforms. ACS Organic & Inorganic Au, 2022, 2, 373-385.	1.9	2
491	Single-palladium-atom catalyst nestled in nine-atom gold "bowl―for regioselective hydrogenation. Chem Catalysis, 2022, 2, 2127-2129.	2.9	0

#	Article	IF	CITATIONS
492	Understanding and application of metal–support interactions in catalysts for CO-PROX. Physical Chemistry Chemical Physics, 2022, 24, 18454-18468.	1.3	3
493	Recent Process in the <i>in situ </i> Generated Metal Nanocluster Catalysis. Chinese Journal of Organic Chemistry, 2022, 42, 2331.	0.6	1
494	Taking a different road: following Ag ₂₅ and Au ₂₅ cluster activation <i>via in situ</i> differential pair distribution function analysis. Physical Chemistry Chemical Physics, 2022, 24, 24834-24844.	1.3	3
495	Template-assisted alloying of atom-precise silver nanoclusters: a new approach to generate cluster functionality. Chemical Science, 2022, 13, 11394-11404.	3.7	14
496	Silencing of proinflammatory NF-κB and inhibition of herpes simplex virus (HSV) replication by ultrasmall gold nanoparticles (2 nm) conjugated with small-interfering RNA. Nanoscale Advances, 2022, 4, 4502-4516.	2.2	5
497	Controlled Synthesis of Molybdenum Based Catalyst and Its Performance in Electrolysis of Water. Advances in Analytical Chemistry, 2022, 12, 240-253.	0.1	0
498	A fourteen-component high-entropy alloy@oxide bifunctional electrocatalyst with a record-low Δ <i>E</i> of 0.61 V for highly reversible Zn–air batteries. Chemical Science, 2022, 13, 12056-12064.	3.7	27
499	Phosphate anion-induced silver-chalcogenide cluster-based metal organic frameworks as dual-functional catalysts for detoxifying chemical warfare agent simulants. Chemical Communications, 2022, 58, 9806-9809.	2.2	9
500	Silver based photocatalysts in emerging applications. Nanoscale, 2022, 14, 11909-11922.	2.8	13
501	<i>In situ</i> synthesis of chiral AuNCs with aggregation-induced emission using glutathione and ceria precursor nanosheets for glutathione biosensing. Analyst, The, 2022, 147, 4525-4535.	1.7	3
502	Nanodrugs alleviate acute kidney injury: Manipulate RONS at kidney. Bioactive Materials, 2023, 22, 141-167.	8.6	30
503	Assembling Au ₄ Tetrahedra to 2D and 3D Superatomic Crystals Based on Superatomic-Network Model. ACS Omega, 2022, 7, 32708-32716.	1.6	0
504	Parametrization of the PM7 Semiempirical Quantum Mechanical Method for Silver Nanoclusters. Journal of Physical Chemistry A, 2022, 126, 6558-6569.	1.1	0
505	2-D Molecular Alloy Ru–M (M = Cu, Ag, and Au) Carbonyl Clusters: Synthesis, Molecular Structure, Catalysis, and Computational Studies. Inorganic Chemistry, 2022, 61, 14726-14741.	1.9	4
506	Ag ₂₂ Nanoclusters with Thermally Activated Delayed Fluorescence Protected by Ag/Cyanurate/Phosphine Metallamacrocyclic Monolayers through Inâ€Situ Ligand Transesterification. Angewandte Chemie, 2022, 134, .	1.6	1
507	Robust Enantiomeric Two-Dimensional Assembly of Atomically Precise Silver Clusters. ACS Nano, 2022, 16, 15188-15196.	7.3	11
508	Structural Engineering toward Gold Nanocluster Catalysis. Angewandte Chemie, 2022, 134, .	1.6	2
509	Structural Engineering toward Gold Nanocluster Catalysis. Angewandte Chemie - International Edition. 2022. 61	7.2	49

#	Article	IF	CITATIONS
510	Ag ₂₂ Nanoclusters with Thermally Activated Delayed Fluorescence Protected by Ag/Cyanurate/Phosphine Metallamacrocyclic Monolayers through Inâ€Situ Ligand Transesterification. Angewandte Chemie - International Edition, 2022, 61, .	7.2	21
511	The Synergy of Tensile Strain and Ligand Effect in PtBi Nanorings for Boosting Electrocatalytic Alcohol Oxidation. Advanced Functional Materials, 2022, 32, .	7.8	32
512	Depletion Driven Assembly of Ultrasmall Metal Nanoclusters: From Kinetically Arrested Assemblies to Thermodynamically Stable, Spherical Superclusters. Journal of Physical Chemistry Letters, 2022, 13, 9411-9421.	2.1	5
513	Synergistically Activated Pd Atom in Polymer-Stabilized Au ₂₃ Pd ₁ Cluster. ACS Nano, 2022, 16, 16932-16940.	7.3	9
514	Using Au NPs anchored on ZrO2/carbon black toward more efficient H2O2 electrogeneration in flow-by reactor for carbaryl removal in real wastewater. Chemical Engineering Journal, 2023, 452, 139598.	6.6	14
515	Direct dehydrogenation of propane over Pd nanoparticles encapsulated within IPC zeolites with tunable pore sizes. Applied Materials Today, 2022, 29, 101644.	2.3	5
516	Plasmonic photothermal activation of an organosilica shielded cold-adapted lipase co-immobilised with gold nanoparticles on silica particles. Nanoscale Advances, 0, , .	2.2	1
517	Insights into mechanisms of diphosphine-mediated controlled surface construction on Au nanoclusters. Nanoscale, 2022, 14, 15804-15811.	2.8	10
518	Unexpected Redispersion Effect of Au Nanoclusters for Enormous Enhancement of Electrocatalytic Stability and Activity. Advanced Functional Materials, 2022, 32, .	7.8	9
519	Face-Centered Cubic Silver Nanoclusters Consolidated with Tetradentate Formamidinate Ligands. Journal of the American Chemical Society, 2022, 144, 19365-19371.	6.6	10
520	Growth Pattern of Large Morse Clusters with Medium-Range Potentials. Journal of Physical Chemistry Letters, 2022, 13, 9801-9808.	2.1	2
521	Tuning the Properties of Metalâ€Organic Cages through Platinum Nanoparticle Encapsulation. ChemistrySelect, 2022, 7, .	0.7	0
522	Origins of the pH-Responsive Photoluminescence of Peptide-Functionalized Au Nanoclusters. ACS Nano, 2022, 16, 20129-20140.	7.3	11
523	Paired electrocatalysis in 5-hydroxymethylfurfural valorization. Frontiers in Chemistry, 0, 10, .	1.8	8
524	Frustrations of supported catalytic clusters under operando conditions predicted by a simple lattice model. Scientific Reports, 2022, 12, .	1.6	1
525	Alkynyl-Protected Ag ₁₂ Cu ₄ Cluster with Aggregation-Induced Emission Enhancement. Journal of Physical Chemistry C, 2022, 126, 20577-20583.	1.5	10
526	Engineering Coinage Metal Nanoclusters for Electroluminescent Light-Emitting Diodes. Nanomaterials, 2022, 12, 3837.	1.9	4
527	Tailoring the Electron–Phonon Interaction in Au ₂₅ (SR) ₁₈ Nanoclusters via Ligand Engineering and Insight into Luminescence. ACS Nano, 2022, 16, 18448-18458.	7.3	11

#	Article	IF	CITATIONS
528	Gas-phase fragmentation of single heteroatom-incorporated Co5MS8(PEt3)6+ (M = Mn, Fe, Co, Ni) nanoclusters. Communications Chemistry, 2022, 5, .	2.0	2
529	Catalysis for an electrified chemical production. Catalysis Today, 2023, 423, 113935.	2.2	14
530	A Nanomedicine Structure–Activity Framework for Research, Development, and Regulation of Future Cancer Therapies. ACS Nano, 2022, 16, 17497-17551.	7.3	10
531	Phosphinous Acid–Phosphinito Tetra-Icosahedral Au ₅₂ Nanoclusters for Electrocatalytic Oxygen Reduction. Jacs Au, 2022, 2, 2617-2626.	3.6	5
532	Other metal nanoclusters. , 2023, , 497-518.		0
533	Structure by single crystal X-ray diffraction. , 2023, , 271-298.		1
534	Cluster-based metal–organic frameworks. , 2023, , 129-156.		1
535	Hydrides, alkynyls, phosphines, and amines as ligands for nanoclusters. , 2023, , 551-573.		0
536	Nanocluster assembled solids. , 2023, , 49-82.		0
537	Atom hybridization of metallic elements: Emergence of subnano metallurgy for the post-nanotechnology. Coordination Chemistry Reviews, 2023, 474, 214826.	9.5	3
538	Controlled Engineering of Supported Metal Nanoparticles Using Electrospraying: Robust Removal of Stabilising Ligands. Springer Theses, 2022, , 157-181.	0.0	0
539	Silver-doped nickel thiolates as electrocatalysts for heterogeneous CO2 reduction. Science China Materials, 2023, 66, 407-412.	3.5	4
540	Insight into the Role of Copper in the Transformation of a [Ag ₂₅ (2,5-DMBT) ₁₆ (DPPF) ₃] ⁺ Nanocluster: Doping or Oxidation. Inorganic Chemistry, 2022, 61, 18450-18457.	1.9	4
541	Atomically Precise Metal Nanoclusters versus Metal Nanocrystals: Maneuvering Tunable Charge Transfer in an Integrated Photosystem. Inorganic Chemistry, 2022, 61, 19022-19030.	1.9	3
542	Structure and assembly of a hexanuclear AuNi bimetallic nanocluster. Nanoscale, 2022, 15, 109-113.	2.8	3
543	Switchable catalysis and CO ₂ sensing by reduction resistant, luminescent copper–thiolate complexes. Nanoscale, 2022, 14, 18051-18059.	2.8	0
544	Polymeric tungsten carbide nanoclusters as potential non-noble metal catalysts for CO oxidation. Nanoscale, 2022, 14, 18231-18240.	2.8	2
545	An atomically precise Ag ₁₈ Cu ₈ nanocluster with rich alkynyl–metal coordination structures and unique SbF ₆ ^{â^'} assembling modes. Nanoscale, 2023, 15, 2316-2322.	2.8	9

#	Article	IF	CITATIONS
546	An alkynyl-protected Ag _{13â^`<i>x</i>} Cu _{6+<i>x</i>} nanocluster for catalytic hydrogenation. Dalton Transactions, 2022, 52, 52-57.	1.6	7
547	A Review of CO2 Reduction Reaction Catalyzed by Atomical-Level Ag Nanomaterials: Atom-Precise Nanoclusters and Atomically Dispersed Catalysts. Surfaces and Interfaces, 2023, 36, 102555.	1.5	4
548	Calix[n]arene-Based Coordination Cage and Its Application to Electrocatalysis. ACS Symposium Series, 0, , 137-154.	0.5	0
549	Surface-Clean Au ₂₅ Nanoclusters in Modulated Microenvironment Enabled by Metal–Organic Frameworks for Enhanced Catalysis. Journal of the American Chemical Society, 2022, 144, 22008-22017.	6.6	50
550	Effects of ligand tuning and core doping of atomically precise copper nanoclusters on CO2 electroreduction selectivity. Communications Chemistry, 2022, 5, .	2.0	11
551	Accelerating water dissociation at carbon supported nanoscale Ni/NiO heterojunction electrocatalysts for high-efficiency alkaline hydrogen evolution. Nano Research, 2023, 16, 4742-4750.	5.8	8
552	Reactivity and Recyclability of Ligandâ€Protected Metal Cluster Catalysts for CO ₂ Transformation. Angewandte Chemie - International Edition, 2023, 62, .	7.2	11
553	Cadmiumâ€Ðoped and Pincer Ligandâ€Modified Gold Nanocluster for Catalytic KA ² Reaction. Angewandte Chemie - International Edition, 2023, 62, .	7.2	16
554	Metal-oxide clusters with semiconductive heterojunction counterparts. , 2023, 2, 9140020.		9
555	Reactivity and Recyclability of Ligandâ€Protected Metal Cluster Catalysts for CO ₂ Transformation. Angewandte Chemie, 2023, 135, .	1.6	1
556	Boosting Benzene Oxidation with a Spinâ€Stateâ€Controlled Nuclearity Effect on Iron Subâ€Nanocatalysts. Angewandte Chemie, 0, , .	1.6	0
557	Metallic nanoclusters: From synthetic challenges to applications of their unique properties in food contamination detection. Coordination Chemistry Reviews, 2023, 478, 214964.	9.5	11
558	Body-Centered-Cubic-Kernelled Ag ₁₅ Cu ₆ Nanocluster with Alkynyl Protection: Synthesis, Total Structure, and CO ₂ Electroreduction. Journal of the American Chemical Society, 2023, 145, 3401-3407.	6.6	30
559	Cadmiumâ€Doped and Pincer Ligandâ€Modified Gold Nanocluster for Catalytic KA2 Reaction. Angewandte Chemie, 0, , .	1.6	0
560	Boosting Benzene Oxidation with a Spinâ€Stateâ€Controlled Nuclearity Effect on Iron Subâ€Nanocatalysts. Angewandte Chemie - International Edition, 2023, 62, .	7.2	4
561	A heptazine-based polymer photocatalyst with donor-acceptor configuration to promote exciton dissociation and charge separation. Applied Catalysis B: Environmental, 2023, 325, 122312.	10.8	28
562	Ultralong nitrogen/sulfur Coâ€doped carbon nanoâ€hollowâ€sphere chains with encapsulated cobalt nanoparticles for highly efficient oxygen electrocatalysis. , 2023, 5, .		16
563	Facile Biological-Based Synthesis of Size-Controlled Palladium Nanoclusters Anchored on the Surface of <i>Geobacter sulfurreducens</i> and Their Application in Electrocatalysis. ACS Sustainable Chemistry and Engineering, 2023, 11, 1100-1109.	3.2	3

#	Article	IF	CITATIONS
564	The enhancement in the performance of ultra-small core–shell Au@AuPt nanoparticles toward HER and ORR by surface engineering. Nanoscale, 2023, 15, 4378-4387.	2.8	3
565	Ultrafast preparation of NiFe nanocluster/graphene heterojunction catalysts for oxygen evolution reaction. CrystEngComm, 2023, 25, 925-934.	1.3	1
566	The synthesis of single-atom catalysts for heterogeneous catalysis. Chemical Communications, 2023, 59, 2854-2868.	2.2	13
567	Tunable reactivity of silver nanoclusters: a facile route to synthesize a range of bimetallic nanostructures. Nanoscale, 2023, 15, 2690-2699.	2.8	5
568	CO ₂ hydrogenation to formic acid on Pd–Cu nanoclusters: a DFT study. Physical Chemistry Chemical Physics, 2023, 25, 2584-2594.	1.3	4
569	From Au ₁₁ to Au ₁₃ : Tailored Synthesis of Superatomic Di-NHC/PPh ₃ -Stabilized Molecular Gold Nanoclusters. Inorganic Chemistry, 2023, 62, 1383-1393.	1.9	8
570	Non-directed C–H arylation of electron-deficient arenes by synergistic silver and Pd ₃ cluster catalysis. Nanoscale, 2023, 15, 3560-3565.	2.8	4
571	Structural evolution after oxidative pretreatment and CO oxidation of Au nanoclusters with different ligand shell composition: a view on the Au core. Physical Chemistry Chemical Physics, 2023, 25, 3622-3628.	1.3	1
572	Preparation of several novel Salen-Co(III) visible photocatalysts and their application in the copolymerization of carbon dioxide with propylene oxide. Journal of Molecular Structure, 2023, 1279, 134979.	1.8	1
573	Plasmon-enhanced visible-light photocatalytic antibacterial activity of metal–organic framework/gold nanocomposites. Journal of Materials Chemistry A, 2023, 11, 2391-2401.	5.2	7
574	Water-Soluble Pd Nanoparticles for the Anti-Markovnikov Oxidation of Allyl Benzene in Water. Nanomaterials, 2023, 13, 348.	1.9	0
575	IrGa Bimetallic Catalyst with Atomical Metal Dispersion for Propane Dehydrogenation with High Stability. ChemCatChem, 2023, 15, .	1.8	3
576	A Career in Catalysis: Didier Astruc. ACS Catalysis, 2023, 13, 1574-1596.	5.5	3
577	IrO2 clusters loaded on dendritic mesoporous silica nanospheres with superior peroxidase-like activity for sensitive detection of acetylcholinesterase and its inhibitors. Journal of Colloid and Interface Science, 2023, 635, 481-493.	5.0	4
578	Alkynyl-anchored silver nanoclusters in lanthanide metal-organic framework for luminescent thermometer and CO2 cycloaddition. Nano Research, 2023, 16, 7452-7458.	5.8	4
579	Surface and Interface Coordination Chemistry Learned from Model Heterogeneous Metal Nanocatalysts: From Atomically Dispersed Catalysts to Atomically Precise Clusters. Chemical Reviews, 2023, 123, 5948-6002.	23.0	50
580	Molecular adsorption on coinage metal subnanoclusters: A <scp>DFT</scp> + <scp>D3</scp> investigation. Journal of Computational Chemistry, 0, , .	1.5	1
581	An Atomically Precise Pyrazolateâ€Protected Copper Nanocluster Exhibiting Exceptional Stability and Catalytic Activity. Angewandte Chemie - International Edition, 2023, 62, .	7.2	9

#	Article	IF	CITATIONS
582	A Facile Approach to Efficiently Load and Isolate CoN Active Sites for the Preparation of a Highâ€Performance Co–N–C Oxygen Reduction Catalyst. Energy Technology, 2023, 11, .	1.8	2
583	Enhancing the durability of Au clusters in CO ₂ photoreduction <i>via</i> encapsulation in Cu-based metal–organic frameworks. Chemical Communications, 2023, 59, 2299-2302.	2.2	5
584	A stable superatomic Cu ₆ (SMPP) ₆ nanocluster with dual emission. Nanoscale, 2023, 15, 4137-4142.	2.8	0
585	An Atomically Precise Pyrazolateâ€Protected Copper Nanocluster Exhibiting Exceptional Stability and Catalytic Activity. Angewandte Chemie, 2023, 135, .	1.6	2
586	Pressure-Driven Fabrication of Zn-Doped Co ₃ C@Carbon Nano-Onions for Robust Oxygen Evolution Reaction. Energy & Fuels, 2023, 37, 2255-2261.	2.5	3
587	Improved activity for the oxygen evolution reaction using a tiara-like thiolate-protected nickel nanocluster. Nanoscale, 2023, 15, 5201-5208.	2.8	9
588	Noble-metal single atom with non-metal co-doped graphene: First-principles investigation of structures, electronic and magnetic properties. Journal of Magnetism and Magnetic Materials, 2023, 568, 170418.	1.0	1
589	All-alkynyl-protected coinage metal nanoclusters: from synthesis to electrocatalytic CO ₂ reduction applications. Materials Chemistry Frontiers, 2023, 7, 1482-1495.	3.2	11
590	Partially Thiolated Au ₂₅ Cluster Anchored on Carbon Support via Noncovalent Ligand–Support Interactions: Active and Robust Catalyst for Aerobic Oxidation of Alcohols. ACS Catalysis, 2023, 13, 3263-3271.	5.5	8
591	Quenching of the Photoluminescence of Gold Nanoclusters Synthesized by Pulsed Laser Ablation in Water upon Interaction with Toxic Metal Species in Aqueous Solution. Chemosensors, 2023, 11, 118.	1.8	1
592	Gold Nanoparticles Immobilized in Porous Aromatic Frameworks with Abundant Metal Anchoring Sites as Heterogeneous Nanocatalysts. ACS Applied Materials & Interfaces, 0, , .	4.0	1
593	Simple Approach toward <i>N</i> -Heterocyclic Carbene-Protected Gold Nanoclusters. Inorganic Chemistry, 2023, 62, 5088-5094.	1.9	0
594	Rapid microwave heating and fast quenching for the highly efficient production of long-term stable supported Ag nanoclusters. Catalysis Today, 2023, 420, 114081.	2.2	1
595	Modeling the Photo-Absorption Properties of Noble Metal Nanoclusters: A Challenge for Density-Functional Theory. Journal of Physical Chemistry C, 2023, 127, 7718-7729.	1.5	2
596	Facile Preparation of Magnetic Nitrogenâ€Doped Carbon Microtubes with Co Nanoparticles for Reduction of 4â€Nitrophenol. ChemistrySelect, 2023, 8, .	0.7	2
597	Benzothiadiazole-based materials for organic solar cells. Chinese Chemical Letters, 2024, 35, 108438.	4.8	1
598	A Functionalized Heterogeneous Catalyst from Atomically Precise Pd ₁ Au ₈ Clusters Facilitates Carbon–Carbon Bond Construction. Advanced Materials, 2023, 35, .	11.1	7
599	Temperature-mediated in-situ formation of antimony nanoclusters inside carbon nanofibers for chloride-driven capacitive deionization. Desalination, 2023, 553, 116471.	4.0	6

		CITATION R	EPORT	
# 600	ARTICLE High-performance rechargeable metal–air batteries enabled by efficient charge transp multielement random alloy electrocatalyst. Applied Catalysis B: Environmental, 2023, 33		IF 10.8	CITATIONS 2
601	Bimetallic (AuAg, AuPd and AgPd) nanoparticles supported on cellulose-based hydrogel catalysis. Carbohydrate Polymers, 2023, 310, 120726.		5.1	7
602	Up-shifting the desalination rate limit of capacitive deionization via integrating chloride nanocluster with flow-through cell architecture. Chemical Engineering Journal, 2023, 46	capturing Bi 0, 141726.	6.6	33
603	Atomically precise gold and silver nanoclusters: Synthesis and applications. , 2023, , 13	7-164.		0
604	Theoretical simulations on metal nanocluster systems. , 2023, , 201-231.			0
605	Efficient electron transfer through insulating lipid bilayers containing Au clusters. Journa Electroanalytical Chemistry, 2023, 932, 117261.	l of	1.9	0
606	Atomâ€Precise Heteroatom Coreâ€Tailoring of Nanoclusters for Enhanced Solar Hydrog Advanced Materials, 2023, 35, .	gen Generation.	11.1	14
607	Double spatial confinement on ruthenium nanoparticles inside carbon frameworks as du catalysts for a quasiâ€solidâ€state Li–O ₂ battery. , 2023, 5, .	urable		2
608	Nicotinamide adenine dinucleotide (NAD+) reduction enabled by an atomically precise A nanocluster. Nano Research, 2023, 16, 7770-7776.	Au-Ag alloy	5.8	3
609	Understanding ligand-protected noble metal nanoclusters at work. Nature Reviews Mat 372-389.	erials, 2023, 8,	23.3	40
610	Identifying magic-number structures of supported sub-nano Ni clusters and the influenc coverage: a density functional theory based particle swarm optimization investigation. Science and Technology, 2023, 13, 2080-2091.		2.1	0
611	Vertically Aligned Nanoplates of Atomically Precise Co ₆ S ₈ Clu Practical Arsenic Sensing. , 2023, 5, 893-899.	ister for		1
612	Stepwise Amplification of Circularly Polarized Luminescence in Chiral Metal Cluster Ense Advanced Science, 2023, 10, .	embles.	5.6	8
613	Cocrystallization of Two Negatively Charged Dimercaptomaleonitrile-Stabilized Silver Na ACS Nano, 2023, 17, 5834-5841.	anoclusters.	7.3	5
614	Glutathione-Activated Emission of Ultrasmall Gold Nanoparticles in the Second Near-Infi Window for Imaging of Early Kidney Injury. Analytical Chemistry, 2023, 95, 5061-5068.	rared	3.2	9
615	Size Effects of Atomically Precise Gold Nanoclusters in Catalysis. , 2023, 1, 14-28.			10
616	Recent advances in electrocatalytic oxidation of 5-hydroxymethylfurfural to 2,5-furandic acid: Mechanism, catalyst, coupling system. Nanotechnology Reviews, 2023, 12, .	arboxylic	2.6	3
617	Amorphous Copperâ€Based Nanoparticles with Clusterizationâ€Triggered Phosphoresc Ultrasensing 2,4,6â€Trinitrotoluene. Advanced Materials, 2023, 35, .	ence for	11.1	11

#	Article	IF	CITATIONS
618	Probing the effects of lithium doping on structures, properties, and stabilities of magnesium cluster anions. Chinese Physics B, 2023, 32, 066102.	0.7	14
619	Uniform Gold Nanoclusters Supported on Mesoporous Polymer Beads Decorated with Polyaminophosphine Patches for the Catalytic Reduction of 4-Nitrophenol. ACS Applied Nano Materials, 2023, 6, 6653-6661.	2.4	4
620	Nanomaterials in Catalysis Applications. Catalysts, 2023, 13, 627.	1.6	1
621	Carboxylate engineering for manipulating the optical and assembly properties of copper clusters. Inorganic Chemistry Frontiers, 2023, 10, 2618-2625.	3.0	2
626	Acceleration of Stepwise Carbon-Polygold Bonding Cleavage in Hypercoordinated Carbon-Centered Gold(I) Clusters. Inorganic Chemistry, 2023, 62, 6147-6154.	1.9	0
629	Carbon-coated magnetite nanoclusters with NIR-II absorbance for imaging-guided photothermal-chemodynamic synergistic therapy. Science China Materials, 2023, 66, 2492-2503.	3.5	1
630	Ag–S Type Quantum Dots versus Superatom Nanocatalyst: A Single Sulfur Atom Modulated Decarboxylative Radical Cascade Reaction. Inorganic Chemistry, 2023, 62, 6092-6101.	1.9	0
631	DFT Investigations on the Interactions Between Pyrimidine Derivatives and Ag/Au/Cu Metal Clusters: Solvation Effects and Reactivity Analysis. Journal of Cluster Science, 2023, 34, 2847-2858.	1.7	3
632	Sizeâ€Defined Ru Nanoclusters Supported by TiO ₂ Nanotubes Enable Lowâ€Concentration Nitrate Electroreduction to Ammonia with Suppressed Hydrogen Evolution. Small, 2023, 19, .	5.2	23
633	Atomically accurate structural tailoring of thiacalix[4]arene-protected copper(<scp>ii</scp>)-based metallamacrocycles. Dalton Transactions, 0, , .	1.6	1
634	A Double Open-Shelled Au ₄₃ Nanocluster with Increased Catalytic Activity and Stability. Journal of the American Chemical Society, 2023, 145, 9304-9312.	6.6	11
635	Time-Resolved Formation and Operation Maps of Pd Catalysts Suggest a Key Role of Single Atom Centers in Cross-Coupling. Journal of the American Chemical Society, 2023, 145, 9092-9103.	6.6	13
636	Synthesis of LiTiO ₂ Nanocrystals/Ordered Mesoporous Carbon Composite Hosts for Highâ€Performance Lithium–Sulfur Batteries. Small Science, 2023, 3, .	5.8	3
637	General Method to Synthesize Highly Stable Nanoclusters via Pickering-Stabilized Microemulsions. Langmuir, 0, , .	1.6	0
638	Anion-templated silver nanoclusters: precise synthesis and geometric structure. Science and Technology of Advanced Materials, 2023, 24, .	2.8	9
639	Surfaceâ€Functionalized Nanoparticles as Catalysts for Artificial Photosynthesis. Advanced Energy Materials, 2023, 13, .	10.2	5
640	Secondary hierarchical complexity in double-stranded cluster helicates covered by NNNNN type pincer ligands. Dalton Transactions, 0, , .	1.6	0
651	Recent advances in atomically precise metal nanoclusters for electrocatalytic applications. Inorganic Chemistry Frontiers, 2023, 10, 3995-4007.	3.0	5

#	Article	IF	Citations
665	Shape control with atomic precision: anisotropic nanoclusters of noble metals. Nanoscale Horizons, 2023, 8, 991-1013.	4.1	9
673	Single-cluster electronics using metallic clusters: Fabrications, regulations, and applications. Nano Research, 2024, 17, 65-78.	5.8	0
676	Probing the binding and activation of small molecules by gas-phase transition metal clusters <i>via</i> IR spectroscopy. Chemical Society Reviews, 2023, 52, 3778-3841.	18.7	9
678	Ultrasmall Coinage Metal Nanoclusters as Promising Theranostic Probes for Biomedical Applications. Journal of the American Chemical Society, 2023, 145, 11879-11898.	6.6	26
688	MOFs and their Derived Structures for Multifunctional Electrocatalysis. , 2023, , 162-191.		1
696	Nanohybrids of atomically precise metal nanoclusters. Communications Chemistry, 2023, 6, .	2.0	7
699	Energy harvesting, charge, and mass transport considerations for reaction center-nanomaterial composites. , 2023, , 293-332.		0
703	Recent developments in the investigation of driving forces for transforming coinage metal nanoclusters. Chemical Society Reviews, 2023, 52, 5892-5967.	18.7	18
705	Atomically precise Au _{<i>x</i>} Ag _{25â^'<i>x</i>} nanoclusters with a modulated interstitial Au–Ag microenvironment for enhanced visible-light-driven photocatalytic hydrogen evolution. Nanoscale Horizons, 2023, 8, 1435-1439.	4.1	2
717	Elucidation of the electronic structures of thiolate-protected gold nanoclusters by electrochemical measurements. Dalton Transactions, 0, , .	1.6	0
718	Progress in optical properties of chiral metal clusters: circular dichroism and circularly polarized luminescence. Materials Chemistry Frontiers, 2023, 7, 6389-6410.	3.2	1
722	Recent progress, trends, and new challenges in the electrochemical production of green hydrogen coupled to selective electrooxidation of 5-hydroxymethylfurfural (HMF). RSC Advances, 2023, 13, 28307-28336.	1.7	1
723	Advances in Cu nanocluster catalyst design: recent progress and promising applications. Nanoscale Horizons, 2023, 8, 1509-1522.	4.1	6
726	Metal Oxide Nanostructures-Based Electronics. Progress in Optical Science and Photonics, 2023, , 371-397.	0.3	0
735	Atomically precise metal nanoclusters as catalysts for electrocatalytic CO ₂ reduction. Green Chemistry, 2024, 26, 122-163.	4.6	2
736	Advances in heterogeneous single-cluster catalysis. Nature Reviews Chemistry, 2023, 7, 754-767.	13.8	10
768	An introduction to chirality. Advances in Catalysis, 2023, , 1-96.	0.1	0
773	A concise guide to chemical reactions of atomically precise noble metal nanoclusters. Nanoscale, 0, , .	2.8	0

	Сіта	TION REPORT	
#	Article	IF	CITATIONS
776	Biological Interaction and Imaging of Ultrasmall Gold Nanoparticles. Nano-Micro Letters, 2024, 16, .	14.4	0
780	Palladium-based nanocatalysts for NH ₃ synthesis through nitrate electroreduction: nanocomposites, alloys, and atomically precise nanoclusters. Catalysis Science and Technology, 0, , .	2.1	0
798	Structure control and evolution of atomically precise gold clusters as heterogeneous precatalysts. Nanoscale, 2024, 16, 1526-1538.	2.8	0
812	Multi-modal nanoprobe-enabled biosensing platforms: a critical review. Nanoscale, 2024, 16, 3784-3816	5. 2.8	0
820	Atomically precise Au and Ag nanoclusters doped with a single atom as model alloy catalysts. Nanoscale, 2024, 16, 4514-4528.	2.8	0
825	Nanomaterials in catalysis. , 2024, , 393-420.		0