Revisiting metabolic engineering strategies for microbi

Metabolic Engineering 58, 35-46 DOI: 10.1016/j.ymben.2019.04.009

Citation Report

#	Article	IF	CITATIONS
1	High-Throughput Screening of Acyl-CoA Thioesterase I Mutants Using a Fluid Array Platform. ACS Omega, 2019, 4, 21848-21854.	1.6	1
2	Design and engineering of whole-cell biocatalytic cascades for the valorization of fatty acids. Catalysis Science and Technology, 2020, 10, 46-64.	2.1	38
3	Advances in Metabolic Engineering of Saccharomyces cerevisiae for Cocoa Butter Equivalent Production. Frontiers in Bioengineering and Biotechnology, 2020, 8, 594081.	2.0	23
4	Production of 1-octanol in Escherichia coli by a high flux thioesterase route. Metabolic Engineering, 2020, 61, 352-359.	3.6	22
5	A kinetic rationale for functional redundancy in fatty acid biosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 23557-23564.	3.3	9
6	Modification of PapA5 acyltransferase substrate selectivity for optimization of short-chain alcohol-derived multimethyl-branched ester production in Escherichia coli. Applied Microbiology and Biotechnology, 2020, 104, 8705-8718.	1.7	1
7	Fatty Acid and Alcohol Metabolism in Pseudomonas putida: Functional Analysis Using Random Barcode Transposon Sequencing. Applied and Environmental Microbiology, 2020, 86, .	1.4	52
8	Biosynthesis of Fatty Alcohols in Engineered Microbial Cell Factories: Advances and Limitations. Frontiers in Bioengineering and Biotechnology, 2020, 8, 610936.	2.0	31
9	Metabolic engineering of Î ² -oxidation to leverage thioesterases for production of 2-heptanone, 2-nonanone and 2-undecanone. Metabolic Engineering, 2020, 61, 335-343.	3.6	24
10	Microbial production of fatty acids and derivative chemicals. Current Opinion in Biotechnology, 2020, 65, 129-141.	3.3	34
11	Metabolic Engineering of Oleaginous Yeast Yarrowia lipolytica for Overproduction of Fatty Acids. Frontiers in Microbiology, 2020, 11, 1717.	1.5	20
12	Rhodosporidium toruloides - A potential red yeast chassis for lipids and beyond. FEMS Yeast Research, 2020, 20, .	1.1	83
13	Dynamic control in metabolic engineering: Theories, tools, and applications. Metabolic Engineering, 2021, 63, 126-140.	3.6	93
14	A Futile Metabolic Cycle of Fatty Acyl Coenzyme A (Acyl-CoA) Hydrolysis and Resynthesis in Corynebacterium glutamicum and Its Disruption Leading to Fatty Acid Production. Applied and Environmental Microbiology, 2021, 87, .	1.4	5
15	Lipid production by oleaginous yeasts. Advances in Applied Microbiology, 2021, 116, 1-98.	1.3	14
16	Metabolic Engineering of Yeast for Enhanced Natural and Exotic Fatty Acid Production. , 2021, , 207-228.		0
17	Yarrowia lipolytica as an Oleaginous Platform for the Production of Value-Added Fatty Acid-Based Bioproducts. Frontiers in Microbiology, 2020, 11, 608662.	1.5	19
18	Transcriptomic response of <i>Saccharomyces cerevisiae</i> to octanoic acid production. FEMS Yeast Research, 2021, 21, .	1.1	4

#	Article	IF	CITATIONS
19	Yeast based biorefineries for oleochemical production. Current Opinion in Biotechnology, 2021, 67, 26-34.	3.3	21
20	Partitioning metabolism between growth and product synthesis for coordinated production of wax esters in <i>Acinetobacter baylyi</i> ADP1. Biotechnology and Bioengineering, 2021, 118, 2283-2292.	1.7	9
21	In Silico Analysis of Functionalized Hydrocarbon Production Using Ehrlich Pathway and Fatty Acid Derivatives in an Endophytic Fungus. Journal of Fungi (Basel, Switzerland), 2021, 7, 435.	1.5	0
22	High-Throughput Screening of an Octanoic Acid Producer Strain Library Enables Detection of New Targets for Increasing Titers in <i>Saccharomyces cerevisiae</i> . ACS Synthetic Biology, 2021, 10, 1077-1086.	1.9	7
24	Microbial production of advanced biofuels. Nature Reviews Microbiology, 2021, 19, 701-715.	13.6	126
25	Metabolic engineering of <i>Yarrowia lipolytica</i> for terpenoids production: advances and perspectives. Critical Reviews in Biotechnology, 2021, , 1-16.	5.1	26
28	Chemoenzymatic Cascade Conversion of Linoleic Acid into a Secondary Fatty Alcohol Using a Combination of 13 <i>S</i> -Lipoxygenase, Chemical Reduction, and a Photo-Activated Decarboxylase. ACS Sustainable Chemistry and Engineering, 2021, 9, 10837-10845.	3.2	12
29	Advances in developing metabolically engineered microbial platforms to produce fourth-generation biofuels and high-value biochemicals. Bioresource Technology, 2021, 337, 125510.	4.8	33
30	Building cell factories for the production of advanced fuels. Biochemical Society Transactions, 2019, 47, 1701-1714.	1.6	6
31	Key Targets for Improving Algal Biofuel Production. Clean Technologies, 2021, 3, 711-742.	1.9	15
32	An orthogonal metabolic framework for one-carbon utilization. Nature Metabolism, 2021, 3, 1385-1399.	5.1	32
33	Chemotyping of three Morchella species reveals species- and age-related aroma volatile biomarkers. LWT - Food Science and Technology, 2022, 154, 112587.	2.5	8
35	Kinetically guided, ratiometric tuning of fatty acid biosynthesis. Metabolic Engineering, 2022, 69, 209-220.	3.6	7
36	Design of a surrogate for high throughput screening of fatty aldehyde reductase engineering. Chemical Communications, 2021, 57, 13373-13376.	2.2	0
37	Escherichia coli coculture for de novo production of esters derived of methyl-branched alcohols and multi-methyl branched fatty acids. Microbial Cell Factories, 2022, 21, 10.	1.9	3
38	A review on contemporary approaches in enhancing the innate lipid content of yeast cell. Chemosphere, 2022, 293, 133616.	4.2	14
39	Metabolic engineering strategies to produce medium-chain oleochemicals via acyl-ACP:CoA transacylase activity. Nature Communications, 2022, 13, 1619.	5.8	8
40	Characterization of Long-chain fatty ester (Loxiol GXX): A study on heat transfer of spray tower. Materials Today: Proceedings, 2022, , .	0.9	0

#	Article	IF	CITATIONS
41	Prospect of metabolic engineering in enhanced microbial lipid production: review. Biomass Conversion and Biorefinery, 2023, 13, 15335-15356.	2.9	5
44	Towards one sample per second for mass spectrometric screening of engineered microbial strains. Current Opinion in Biotechnology, 2022, 76, 102725.	3.3	6
45	Biofuel production from renewable feedstocks: Progress through metabolic engineering. , 2022, , 417-448.		1
46	Metabolic engineering of microorganisms for the production of carotenoids, flavonoids, and functional polysaccharides. , 2022, , 281-306.		0
47	RNP-Based Control Systems for Genetic Circuits in Synthetic Biology Beyond CRISPR. Methods in Molecular Biology, 2022, , 1-31.	0.4	1
48	Biofuels from biomass toward a net-zero carbon and sustainable world. Joule, 2022, 6, 1396-1399.	11.7	9
49	Degradation of Exogenous Fatty Acids in Escherichia coli. Biomolecules, 2022, 12, 1019.	1.8	9
50	A Universal Method for Developing Autoinduction Expression Systems Using AHL-Mediated Quorum-Sensing Circuits. ACS Synthetic Biology, 2022, 11, 3114-3119.	1.9	0
51	A kinetic framework for modeling oleochemical biosynthesis in <i>EscherichiaÂcoli</i> . Biotechnology and Bioengineering, 2022, 119, 3149-3161.	1.7	2
52	Dual β-oxidation pathway and transcription factor engineering for methyl ketones production in Saccharomyces cerevisiae. Metabolic Engineering, 2022, 73, 225-234.	3.6	1
53	Engineering diverse fatty acid compositions of phospholipids in Escherichia coli. Metabolic Engineering, 2022, 74, 11-23.	3.6	4
54	A multi-layer genome mining and phylogenomic analysis to construct efficient and autonomous efflux system for medium chain fatty acids. , 2022, 2, 1-14.		0
55	Quantitative Methods for Metabolite Analysis in Metabolic Engineering. Biotechnology and Bioprocess Engineering, 2023, 28, 949-961.	1.4	0
56	Spatialâ \in "temporal regulation of fatty alcohol biosynthesis in yeast. , 2022, 15, .		7
57	Perspectives for self-driving labs in synthetic biology. Current Opinion in Biotechnology, 2023, 79, 102881.	3.3	12
58	Evaluation of 1,2-diacyl-3-acetyl triacylglycerol production in Yarrowia lipolytica. Metabolic Engineering, 2023, 76, 18-28.	3.6	2
59	Recent progress in the synthesis of advanced biofuel and bioproducts. Current Opinion in Biotechnology, 2023, 80, 102913.	3.3	18
60	Efforts to install a heterologous Wood-Ljungdahl pathway in Clostridium acetobutylicum enable the identification of the native tetrahydrofolate (THF) cycle and result in early induction of solvents. Metabolic Engineering, 2023, 77, 188-198.	3.6	4

CITATION REPORT

#	Article	IF	CITATIONS
61	Strategies to Enhance the Biosynthesis of Monounsaturated Fatty Acids in Escherichia coli. Biotechnology and Bioprocess Engineering, 2023, 28, 36-50.	1.4	2
62	An optogenetic toolkit for light-inducible antibiotic resistance. Nature Communications, 2023, 14, .	5.8	10
63	Concomitant strategy of wastewater treatment and biodiesel production using innate yeast cell (Rhodotorula mucilaginosa) from food industry sewerage and its energy system analysis. Renewable Energy, 2023, 208, 52-62.	4.3	4
64	Conformational Changes of Acyl Carrier Protein Switch the Chain Length Preference of Acyl-ACP Thioesterase ChFatB2. International Journal of Molecular Sciences, 2023, 24, 6864.	1.8	0
65	Relative Activities of the β-Ketoacyl-CoA and Acyl-CoA Reductases Influence the Product Profile and Flux in a Reversed β-Oxidation Pathway. ACS Catalysis, 2023, 13, 5914-5925.	5.5	3
69	A comprehensive review on microbial lipid production from wastes: research updates and tendencies. Environmental Science and Pollution Research, 2023, 30, 79654-79675.	2.7	2
75	Improvement of Lipid and Terpenoid Yield in Thraustochytrids Using Chemical Regulators: A Review. Biotechnology and Bioprocess Engineering, 2023, 28, 720-733.	1.4	0