Data-driven and deep learning-based detection and diagraphication to electrical traction systems

Neurocomputing 396, 429-437

DOI: 10.1016/j.neucom.2018.07.103

Citation Report

#	Article	IF	CITATIONS
1	A Review of Fault Detection and Diagnosis for the Traction System in High-Speed Trains. IEEE Transactions on Intelligent Transportation Systems, 2020, 21, 450-465.	4.7	258
2	Neural networks and statistical decision making for fault diagnosis of PM linear synchronous machines. International Journal of Systems Science, 2020, 51, 2150-2166.	3.7	1
3	Data-Driven Fault Diagnosis for Traction Systems in High-Speed Trains: A Survey, Challenges, and Perspectives. IEEE Transactions on Intelligent Transportation Systems, 2022, 23, 1700-1716.	4.7	244
4	Fault detection and identification of rolling element bearings with Attentive Dense CNN. Neurocomputing, 2020, 405, 208-217.	3.5	64
5	Incipient fault diagnosis and amplitude estimation based on K–L divergence with a Gaussian mixture model. Review of Scientific Instruments, 2020, 91, 055103.	0.6	6
6	A systematic review of deep transfer learning for machinery fault diagnosis. Neurocomputing, 2020, 407, 121-135.	3.5	253
7	A Hybrid Sensor Fault Diagnosis for Maintenance in Railway Traction Drives. Sensors, 2020, 20, 962.	2.1	18
8	A survey and classification of incipient fault diagnosis approaches. Journal of Process Control, 2021, 97, 1-16.	1.7	55
9	End-to-End Deep Fault-Tolerant Control. IEEE/ASME Transactions on Mechatronics, 2022, 27, 2224-2234.	3.7	4
10	Hierarchical Latent Variable Extraction and Multisegment Probability Density Analysis Method for Incipient Fault Detection. IEEE Transactions on Industrial Informatics, 2022, 18, 2244-2254.	7.2	10
11	Towards End-to-End Deep Learning Performance Analysis of Electric Motors. Actuators, 2021, 10, 28.	1.2	8
12	Soft sensor based on eXtreme gradient boosting and bidirectional converted gates long short-term memory self-attention network. Neurocomputing, 2021, 434, 126-136.	3.5	16
13	Data-Driven Fault Diagnosis for Electric Drives: A Review. Sensors, 2021, 21, 4024.	2.1	49
14	A Tutorial on Hardware-Implemented Fault Injection and Online Fault Diagnosis for High-Speed Trains. Sensors, 2021, 21, 5957.	2.1	2
15	Artificial Intelligence-Based Technique for Fault Detection and Diagnosis of EV Motors: A Review. IEEE Transactions on Transportation Electrification, 2022, 8, 384-406.	5. 3	45
16	A Review of Intelligent Fault Diagnosis for High-Speed Trains: Qualitative Approaches. Entropy, 2021, 23, 1.	1.1	75
17	A Method for Detecting Incipient Faults in Satellites Based on Dynamic Linear Discriminant Analysis. Computational Intelligence and Neuroscience, 2021, 2021, 1-15.	1.1	2
18	Multi-agent system for anomaly detection in Industry 4.0 using Machine Learning techniques. Advances in Distributed Computing and Artificial Intelligence Journal, 2020, 8, 33-40.	1.1	7

#	Article	IF	CITATIONS
19	Multi-modal Fusion Methods for Robust Emotion Recognition using Body-worn Physiological Sensors in Mobile Environments. , 2019 , , .		2
20	MetodologÃa mixta Flipped Classroom y Aprendizaje Basado en Proyectos para el aprendizaje de la geometrÃa analÃtica en Secundaria. Enseñanza & Teaching, 2020, 38, 135-156.	0.2	1
22	Basics of Data-Driven FDD Methods. Lecture Notes in Intelligent Transportation and Infrastructure, 2020, , 43-61.	0.3	0
23	Disturbance Detection of a Power Transmission System Based on the Enhanced Canonical Variate Analysis Method. Machines, 2021, 9, 272.	1.2	2
24	Data-Driven Designs of Fault Identification via Collaborative Deep Learning for Traction Systems in High-Speed Trains. IEEE Transactions on Transportation Electrification, 2022, 8, 1748-1757.	5. 3	11
25	Estimator-based iterative deviation-free residual generator for fault detection under random access protocol. Neurocomputing, 2022, 493, 583-591.	3.5	6
26	A method of Fault Diagnosis of non-Gaussian Property and Performance Correlation Based on Independent Component Analysis. , 2020, , .		1
27	Fault detection of rotating machinery based on wavelet transform and improved deep neural network. , 2020, , .		1
28	Data-Driven Soft Sensing for Batch Processes Using Neural Network-Based Deep Quality-Relevant Representation Learning. IEEE Transactions on Artificial Intelligence, 2023, 4, 602-611.	3.4	6
29	Fault classification based on variableâ€weighted dynamic sparse stacked autoencoder for industrial processes. Canadian Journal of Chemical Engineering, 2023, 101, 420-430.	0.9	2
30	Vibration signal-based early fault prognosis: Status quo and applications. Advanced Engineering Informatics, 2022, 52, 101609.	4.0	44
31	A Predictive, Context-Dependent Stochastic Model for Engineering Applications. IFAC-PapersOnLine, 2022, 55, 402-407.	0.5	0
32	ACGAN and BN based method for downhole incident diagnosis during the drilling process with small sample data size. Ocean Engineering, 2022, 256, 111516.	1.9	6
33	An Improved Convolutional Neural Network for Recognition of Incipient Faults. IEEE Sensors Journal, 2022, 22, 16314-16322.	2.4	8
34	Bearing Fault Diagnosis Based on Stochastic Resonance and Improved Whale Optimization Algorithm. Electronics (Switzerland), 2022, 11, 2185.	1.8	7
35	Detection of Faults in Electrical Power Grids Using an Enhanced Anomaly-Based Method. Arabian Journal for Science and Engineering, 2022, 47, 14899-14914.	1.7	7
36	Research on Virtual Coupled Train Control Method Based on GPC & Samp; VAPF. Chinese Journal of Electronics, 2022, 31, 897-905.	0.7	51
37	Fault Feature Enhanced Extraction and Fault Diagnosis Method of Vibrating Screen Bearings. Machines, 2022, 10, 1007.	1.2	4

#	Article	IF	CITATIONS
38	Detection of an Incipient Fault for Dual Three-Phase PMSMs Using a Modified Autoencoder. Electronics (Switzerland), 2022, 11, 3741.	1.8	1
41	Personalized Movie Recommendation Prediction Using Reinforcement Learning. Communications in Computer and Information Science, 2023, , 46-56.	0.4	0