Metabolic engineering advances and prospects for amir

Metabolic Engineering 58, 17-34 DOI: 10.1016/j.ymben.2019.03.008

Citation Report

#	Article	IF	CITATIONS
1	A seamless and iterative DNA assembly method named PS-Brick and its assisted metabolic engineering for threonine and 1-propanol production. Biotechnology for Biofuels, 2019, 12, 180.	6.2	6
2	Bromination of L-tryptophan in a Fermentative Process With Corynebacterium glutamicum. Frontiers in Bioengineering and Biotechnology, 2019, 7, 219.	2.0	25
3	Modular metabolic engineering of lysine supply for enhanced production of bacitracin in Bacillus licheniformis. Applied Microbiology and Biotechnology, 2019, 103, 8799-8812.	1.7	15
4	Enhancement of Sulfur Conversion Rate in the Production of <scp>l</scp> -Cysteine by Engineered <i>Escherichia coli</i> . Journal of Agricultural and Food Chemistry, 2020, 68, 250-257.	2.4	25
5	Pathway engineering of Escherichia coli for one-step fermentative production of L-theanine from sugars and ethylamine. Metabolic Engineering Communications, 2020, 11, e00151.	1.9	8
6	Rational engineering of Kluyveromyces marxianus to create a chassis for the production of aromatic products. Microbial Cell Factories, 2020, 19, 207.	1.9	28
7	Corynebacterium glutamicum CrtR and Its Orthologs in Actinobacteria: Conserved Function and Application as Genetically Encoded Biosensor for Detection of Geranylgeranyl Pyrophosphate. International Journal of Molecular Sciences, 2020, 21, 5482.	1.8	13
8	Overview on Multienzymatic Cascades for the Production of Non-canonical α-Amino Acids. Frontiers in Bioengineering and Biotechnology, 2020, 8, 887.	2.0	9
9	Fitness of Chassis Cells and Metabolic Pathways for <scp>l</scp> -Cysteine Overproduction in <i>Escherichia coli</i> . Journal of Agricultural and Food Chemistry, 2020, 68, 14928-14937.	2.4	21
10	Fermentative N-Methylanthranilate Production by Engineered Corynebacterium glutamicum. Microorganisms, 2020, 8, 866.	1.6	26
11	Development of a Corynebacterium glutamicum bio-factory for self-sufficient transaminase reactions. Green Chemistry, 2020, 22, 4128-4132.	4.6	10
12	Microbial Engineering for Production of <i>Nâ€</i> Functionalized Amino Acids and Amines. Biotechnology Journal, 2020, 15, e1900451.	1.8	32
13	Systematic engineering of branch chain amino acid supply modules for the enhanced production of bacitracin from Bacillus licheniformis. Metabolic Engineering Communications, 2020, 11, e00136.	1.9	13
14	Progress in the metabolic engineering of bio-based lactams and their ω-amino acids precursors. Biotechnology Advances, 2020, 43, 107587.	6.0	17
15	Enhanced Bacitracin Production by Systematically Engineering S-Adenosylmethionine Supply Modules in Bacillus licheniformis. Frontiers in Bioengineering and Biotechnology, 2020, 8, 305.	2.0	18
16	Valorization of Waste Biomass in Fermentative Production of Cellulases: A Review. Waste and Biomass Valorization, 2021, 12, 613-640.	1.8	26
17	Unlocking Nature's Biosynthetic Power—Metabolic Engineering for the Fermentative Production of Chemicals. Angewandte Chemie, 2021, 133, 2288-2308.	1.6	6
18	Unlocking Nature's Biosynthetic Power—Metabolic Engineering for the Fermentative Production of Chemicals. Angewandte Chemic - International Edition_2021_60_2258-2278	7.2	16

#	Article	IF	Citations
19	Improving the L-tyrosine production with application of repeated batch fermentation technology based on a novel centrifuge bioreactor. Food and Bioproducts Processing, 2021, 126, 3-11.	1.8	3
20	Two birds with one stone: Porous poly(ionic liquids) membrane with high efficiency for the separation of amino acids mixture and its antibacterial properties. Journal of Colloid and Interface Science, 2021, 584, 866-874.	5.0	16
21	Recent advances in (chemo)enzymatic cascades for upgrading bio-based resources. Chemical Communications, 2021, 57, 10661-10674.	2.2	28
22	A plug-and-play chemobiocatalytic route for the one-pot controllable synthesis of biobased C4 chemicals from furfural. Green Chemistry, 2021, 23, 8604-8610.	4.6	12
23	Dynamic Co-Cultivation Process of Corynebacterium glutamicum Strains for the Fermentative Production of Riboflavin. Fermentation, 2021, 7, 11.	1.4	14
24	Microbial production of multiple short-chain primary amines via retrobiosynthesis. Nature Communications, 2021, 12, 173.	5.8	17
26	CRISPRi-Library-Guided Target Identification for Engineering Carotenoid Production by Corynebacterium glutamicum. Microorganisms, 2021, 9, 670.	1.6	16
27	Increasing ATP turnover boosts productivity ofÂ2,3-butanediol synthesis inÂEscherichia coli. Microbial Cell Factories, 2021, 20, 63.	1.9	14
28	Coenzyme Q10 Biosynthesis Established in the Non-Ubiquinone Containing Corynebacterium glutamicum by Metabolic Engineering. Frontiers in Bioengineering and Biotechnology, 2021, 9, 650961.	2.0	12
29	Engineering endogenous l-proline biosynthetic pathway to boost trans-4-hydroxy-l-proline production in Escherichia coli. Journal of Biotechnology, 2021, 329, 104-117.	1.9	5
30	Incorporation of alternative amino acids into cyanophycin by different cyanophycin synthetases heterologously expressed in Corynebacterium glutamicum. AMB Express, 2021, 11, 55.	1.4	8
31	Developing a Riboswitch-Mediated Regulatory System for Metabolic Flux Control in Thermophilic Bacillus methanolicus. International Journal of Molecular Sciences, 2021, 22, 4686.	1.8	6
32	Genomic and Transcriptomic Investigation of the Physiological Response of the Methylotroph Bacillus methanolicus to 5-Aminovalerate. Frontiers in Microbiology, 2021, 12, 664598.	1.5	3
33	Sustainable Production of N-methylphenylalanine by Reductive Methylamination of Phenylpyruvate Using Engineered Corynebacterium glutamicum. Microorganisms, 2021, 9, 824.	1.6	12
34	Enhanced Glutamate Synthesis and Export by the Thermotolerant Emerging Industrial Workhorse Bacillus methanolicus in Response to High Osmolarity. Frontiers in Microbiology, 2021, 12, 640980.	1.5	8
35	L-Carnitine Production Through Biosensor-Guided Construction of the Neurospora crassa Biosynthesis Pathway in Escherichia coli. Frontiers in Bioengineering and Biotechnology, 2021, 9, 671321.	2.0	3
36	Microbial methionine transporters and biotechnological applications. Applied Microbiology and Biotechnology, 2021, 105, 3919-3929.	1.7	9
37	Highly efficient biosynthesis of l-ornithine from mannitol by using recombinant Corynebacterium glutamicum. Bioresource Technology, 2021, 327, 124799.	4.8	8

			2
#	ARTICLE	IF	CITATIONS
38	Evolving a New Efficient Mode of Fructose Utilization for Improved Bioproduction in Corynebacterium glutamicum. Frontiers in Bioengineering and Biotechnology, 2021, 9, 669093.	2.0	7
39	Adaptive laboratory evolution accelerated glutarate production by Corynebacterium glutamicum.	1.9	19
	Microbial Cell Factories, 2021, 20, 97.	2.7	
40	Metabolic engineering of Escherichia coli for efficient ectoine production. Systems Microbiology and Biomanufacturing, 2021, 1, 444-458.	1.5	9
41	Recent progress in metabolic engineering of Corynebacterium glutamicum for the production of C4, C5, and C6 chemicals. Korean Journal of Chemical Engineering, 2021, 38, 1291-1307.	1.2	6
42	Recuperative Amino Acids Separation through Cellulose Derivative Membranes with Microporous Polypropylene Fiber Matrix. Membranes, 2021, 11, 429.	1.4	13
43	Evaluation of Heterologous Biosynthetic Pathways for Methanol-Based 5-Aminovalerate Production by Thermophilic Bacillus methanolicus. Frontiers in Bioengineering and Biotechnology, 2021, 9, 686319.	2.0	10
44	Advances in metabolic engineering of <i>Corynebacterium glutamicum</i> to produce high-value active ingredients for food, feed, human health, and well-being. Essays in Biochemistry, 2021, 65, 197-212.	2.1	71
45	Engineering of microbial cells for L-valine production: challenges and opportunities. Microbial Cell Factories, 2021, 20, 172.	1.9	13
46	Coproduction of 5-Aminovalerate and δ-Valerolactam for the Synthesis of Nylon 5 From L-Lysine in Escherichia coli. Frontiers in Bioengineering and Biotechnology, 2021, 9, 726126.	2.0	4
47	Kinetic analysis and modeling of L-valine production in fermentation batch from E. coli using glucose, lactose and whey as carbon sources. Biotechnology Reports (Amsterdam, Netherlands), 2021, 31, e00642.	2.1	2
48	Utilization of a Wheat Sidestream for 5-Aminovalerate Production in Corynebacterium glutamicum. Frontiers in Bioengineering and Biotechnology, 2021, 9, 732271.	2.0	12
49	Growth Response and Recovery of Corynebacterium glutamicum Colonies on Single-Cell Level Upon Defined pH Stress Pulses. Frontiers in Microbiology, 2021, 12, 711893.	1.5	12
50	Expanding the lysine industry: biotechnological production of l-lysine and its derivatives. Advances in Applied Microbiology, 2021, 115, 1-33.	1.3	6
51	Fermentative High-Level Production of 5-Hydroxyvaleric Acid by Metabolically Engineered <i>Corynebacterium glutamicum</i> . ACS Sustainable Chemistry and Engineering, 2021, 9, 2523-2533.	3.2	21
52	Improved Plasmid-Based Inducible and Constitutive Gene Expression in Corynebacterium glutamicum. Microorganisms, 2021, 9, 204.	1.6	15
53	Genome-Reduced Corynebacterium glutamicum Fit for Biotechnological Applications. , 2020, , 95-116.		2
54	Flux Enforcement for Fermentative Production of 5-Aminovalerate and Glutarate by Corynebacterium glutamicum. Catalysts, 2020, 10, 1065.	1.6	18
55	An overview of branched-chain amino acid aminotransferases: functional differences between mitochondrial and cytosolic isozymes in yeast and human. Applied Microbiology and Biotechnology, 2021, 105, 8059-8072.	1.7	10

#	Article	IF	Citations
56	Review of arginase as a promising biocatalyst: characteristics, preparation, applications and future challenges. Critical Reviews in Biotechnology, 2022, 42, 651-667.	5.1	7
58	Metabolic Engineering in Corynebacterium glutamicum. Microbiology Monographs, 2020, , 287-322.	0.3	4
59	Engineering of Corynebacterium glutamicum for high-level γ-aminobutyric acid production from glycerol by dynamic metabolic control. Metabolic Engineering, 2022, 69, 134-146.	3.6	36
60	A Myo-Inositol-Inducible Expression System for Corynebacterium glutamicum and Its Application. Frontiers in Bioengineering and Biotechnology, 2021, 9, 746322.	2.0	2
61	Tyrosinase-based production of I-DOPA by Corynebacterium glutamicum. Applied Microbiology and Biotechnology, 2021, 105, 9103-9111.	1.7	8
62	Expression of phenylalanine ammonia lyases in Synechocystis sp. PCC 6803 and subsequent improvements of sustainable production of phenylpropanoids. Microbial Cell Factories, 2022, 21, 8.	1.9	13
64	Physiological Responses of Ribosomal Protein S12 K43 Mutants of Corynebacterium glutamicum. Current Microbiology, 2022, 79, 94.	1.0	0
65	Lanthanide-based metal–organic framework materials as bifunctional fluorescence sensors toward acetylacetone and aspartic acid. CrystEngComm, 2022, 24, 2464-2471.	1.3	14
66	Recent advances in the metabolic pathways and microbial production of coenzyme Q. World Journal of Microbiology and Biotechnology, 2022, 38, 58.	1.7	15
67	Metabolic Engineering for Valorization of Agri- and Aqua-Culture Sidestreams for Production of Nitrogenous Compounds by Corynebacterium glutamicum. Frontiers in Microbiology, 2022, 13, 835131.	1.5	11
68	Functional Genomics Uncovers Pleiotropic Role of Rhomboids in Corynebacterium glutamicum. Frontiers in Microbiology, 2022, 13, 771968.	1.5	1
69	Engineering precursor and co-factor supply to enhance D-pantothenic acid production in Bacillus megaterium. Bioprocess and Biosystems Engineering, 2022, , 1.	1.7	3
70	Importance of transmembrane helix 4 of l-alanine exporter AlaE in oligomer formation and substrate export activity in Escherichia coli. Microbiology (United Kingdom), 2022, 168, .	0.7	0
71	Production of indole by Corynebacterium glutamicum microbial cell factories for flavor and fragrance applications. Microbial Cell Factories, 2022, 21, 45.	1.9	19
72	Metabolic Engineering of Corynebacterium glutamicum for Sustainable Production of the Aromatic Dicarboxylic Acid Dipicolinic Acid. Microorganisms, 2022, 10, 730.	1.6	14
73	O-Acetyl-L-homoserine production enhanced by pathway strengthening and acetate supplementation in Corynebacterium glutamicum. , 2022, 15, 27.		8
74	Porphyromonas gingivalis Induces Increases in Branched-Chain Amino Acid Levels and Exacerbates Liver Injury Through livh/livk. Frontiers in Cellular and Infection Microbiology, 2022, 12, 776996.	1.8	1
75	Biotechnological production of specialty aromatic and aromatic-derivative compounds. World Journal of Microbiology and Biotechnology, 2022, 38, 80.	1.7	7

#	Article	IF	CITATIONS
76	Directed Evolution and Rational Design of Mechanosensitive Channel MscCG2 for Improved Glutamate Excretion Efficiency. Journal of Agricultural and Food Chemistry, 2021, 69, 15660-15669.	2.4	2
77	Construction of an IS-Free Corynebacterium glutamicum ATCC 13 032 Chassis Strain and Random Mutagenesis Using the Endogenous ISCg1 Transposase. Frontiers in Bioengineering and Biotechnology, 2021, 9, 751334.	2.0	5
80	Efficient cell factories for the production of <i>N</i> â€methylated amino acids and for methanolâ€based amino acid production. Microbial Biotechnology, 2022, 15, 2145-2159.	2.0	9
81	Rational Engineering of Non-Ubiquinone Containing Corynebacterium glutamicum for Enhanced Coenzyme Q10 Production. Metabolites, 2022, 12, 428.	1.3	4
82	Identification and Molecular Characterization of the Operon Required for L-Asparagine Utilization in Corynebacterium glutamicum. Microorganisms, 2022, 10, 1002.	1.6	1
83	Fermentative Indole Production via Bacterial Tryptophan Synthase Alpha Subunit and Plant Indole-3-Glycerol Phosphate Lyase Enzymes. Journal of Agricultural and Food Chemistry, 2022, 70, 5634-5645.	2.4	14
84	l-Serine Biosensor-Controlled Fermentative Production of l-Tryptophan Derivatives by Corynebacterium glutamicum. Biology, 2022, 11, 744.	1.3	9
85	The Expression Modulation of the Key Enzyme Acc for Highly Efficient 3-Hydroxypropionic Acid Production. Frontiers in Microbiology, 2022, 13, .	1.5	5
86	Engineered Corynebacterium glutamicum as the Platform for the Production of Aromatic Aldehydes. Frontiers in Bioengineering and Biotechnology, 2022, 10, .	2.0	14
87	Dynamic Regulation of Transporter Expression to Increase L-Threonine Production Using L-Threonine Biosensors. Fermentation, 2022, 8, 250.	1.4	3
88	Advances in microbial production of feed amino acid. Advances in Applied Microbiology, 2022, , 1-33.	1.3	3
89	Industrial production of L-lysine in Corynebacterium glutamicum: Progress and prospects. Microbiological Research, 2022, 262, 127101.	2.5	13
90	Rational Metabolic Engineering Combined with Biosensor-Mediated Adaptive Laboratory Evolution for I-Cysteine Overproduction from Glycerol in Escherichia coli. Fermentation, 2022, 8, 299.	1.4	4
91	Dynamic control of 4-hydroxyisoleucine biosynthesis by multi-biosensor in Corynebacterium glutamicum. Applied Microbiology and Biotechnology, 2022, 106, 5105-5121.	1.7	7
93	Efficient and scalable synthesis of 1,5-diamino-2-hydroxy-pentane from l-lysine via cascade catalysis using engineered Escherichia coli. Microbial Cell Factories, 2022, 21, .	1.9	2
94	On the flexibility of the cellular amination network in E coli. ELife, 0, 11, .	2.8	7
95	Transcriptome profiles of high-lysine adaptation reveal insights into osmotic stress response in Corynebacterium glutamicum. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	2
96	Can microbes be harnessed to reduce atmospheric loads of greenhouse gases?. Environmental Microbiology, 2023, 25, 17-25.	1.8	3

#	Article	IF	CITATIONS
97	Design of a genetically encoded biosensor to establish a high-throughput screening platform for L-cysteine overproduction. Metabolic Engineering, 2022, 73, 144-157.	3.6	24
98	Physiological, Biochemical, and Structural Bioinformatic Analysis of the Multiple Inositol Dehydrogenases from Corynebacterium glutamicum. Microbiology Spectrum, 2022, 10, .	1.2	4
99	Microbial Production of Amines and Amino Acids by Fermentation. Microbiology Monographs, 2022, , 47-80.	0.3	0
100	A synthetic biology approach to study carotenoid production in Corynebacterium glutamicum: Read-out by a genetically encoded biosensor combined with perturbing native gene expression by CRISPRi. Methods in Enzymology, 2022, , 383-419.	0.4	0
101	Bioprocess Engineering, Transcriptome, and Intermediate Metabolite Analysis of L-Serine High-Yielding Escherichia coli W3110. Microorganisms, 2022, 10, 1927.	1.6	1
102	Substrate specificity of branched chain amino acid aminotransferases: The substitution of glycine to serine in the active site determines the substrate specificity for α-ketoglutarate. Frontiers in Catalysis, 0, 2, .	1.8	0
103	Genetically encoded ATP and NAD(P)H biosensors: potential tools in metabolic engineering. Critical Reviews in Biotechnology, 2023, 43, 1211-1225.	5.1	2
104	A manually curated compendium of expression profiles for the microbial cell factory Corynebacterium glutamicum. Scientific Data, 2022, 9, .	2.4	3
105	Microbial chassis design and engineering for production of amino acids used in food industry. Systems Microbiology and Biomanufacturing, 2023, 3, 28-48.	1.5	4
106	Photobiocatalytic Cascades for Acylating Nâ€Heterocycles with Natural Amino Acids via the 2â€Keto Acids. Advanced Synthesis and Catalysis, 0, , .	2.1	1
107	Functional food additives/ingredients production by engineered Corynebacterium glutamicum. Systems Microbiology and Biomanufacturing, 2023, 3, 110-121.	1.5	7
109	Metabolic Engineering of Bacillus megaterium for the Production of β-alanine. Biotechnology and Bioprocess Engineering, 2022, 27, 909-920.	1.4	4
110	Functional Properties of Pineapple Plant Stem for Enhanced Glucose Recovery in Amino Acids Production. Energies, 2022, 15, 9155.	1.6	0
111	Metabolic engineering of Corynebacterium glutamicum for l-tyrosine production from glucose and xylose. Journal of Biotechnology, 2023, 363, 8-16.	1.9	4
112	Metabolic engineering of Corynebacterium glutamicum for acetate-based itaconic acid production. , 2022, 15, .		5
114	Metabolic engineering for sustainability and health. Trends in Biotechnology, 2023, 41, 425-451.	4.9	17
115	Enhanced production of d-pantothenic acid in Corynebacterium glutamicum using an efficient CRISPR–Cpf1 genome editing method. Microbial Cell Factories, 2023, 22, .	1.9	5
116	Differential gut microbiota and microbial metabolites in adolescents with depression. Asian Journal of Psychiatry, 2023, 83, 103496.	0.9	2

#	Article	IF	CITATIONS
117	Improving growth properties of <i>Corynebacterium glutamicum</i> by implementing an ironâ€responsive protocatechuate biosynthesis. Microbial Biotechnology, 0, , .	2.0	1
118	Production of L-serine and its derivative L-cysteine from renewable feedstocks using <i>Corynebacterium glutamicum</i> : advances and perspectives. Critical Reviews in Biotechnology, 2024, 44, 448-461.	5.1	3
119	Recent progress in the synthesis of advanced biofuel and bioproducts. Current Opinion in Biotechnology, 2023, 80, 102913.	3.3	18
120	Microbial synthesis of bacitracin: Recent progress, challenges, and prospects. Synthetic and Systems Biotechnology, 2023, 8, 314-322.	1.8	6
122	Effect of Ammonium Sulfate on the Solubility of α-Form and β-Form <scp>l</scp> -Glutamic Acid in Water and Actual Fermentation Mother Liquor from 278.15 to 333.15 K. Industrial & Engineering Chemistry Research, 2023, 62, 3724-3732.	1.8	0
123	From Aquaculture to Aquaculture: Production of the Fish Feed Additive Astaxanthin by Corynebacterium glutamicum Using Aquaculture Sidestream. Molecules, 2023, 28, 1996.	1.7	6
124	Catalytic conversion of biomass-derived compoUnds to various amino acids: status and perspectives. Frontiers of Chemical Science and Engineering, 2023, 17, 817-829.	2.3	3
125	Dynamic and balanced regulation of the thrABC operon gene for efficient synthesis of L-threonine. Frontiers in Bioengineering and Biotechnology, 0, 11, .	2.0	3
126	Recent Advances in the Hydroxylation of Amino Acids and Its Derivatives. Fermentation, 2023, 9, 285.	1.4	3
127	Reprogramming the sulfur recycling network to improve <scp>l</scp> -cysteine production in <i>Corynebacterium glutamicum</i> . Green Chemistry, 2023, 25, 3152-3165.	4.6	8
128	Comparative metabolomics of root-tips reveals distinct metabolic pathways conferring drought tolerance in contrasting genotypes of rice. BMC Genomics, 2023, 24, .	1.2	4
130	Identification and engineering efflux transporters for improved L-homoserine production in <i>Escherichia coli</i> . Journal of Applied Microbiology, 2023, 134, .	1.4	2
133	Rhodotorula sp. as a cell factory for production of valuable biomolecules. Advances in Applied Microbiology, 2023, , .	1.3	0
159	Microbial Production of Amine Chemicals from Sustainable Substrates. Biofuels and Biorefineries, 2023, , 189-248.	0.5	0