High performance columnar-like Fe2O3@carbon compostructural design

Journal of Energy Chemistry 41, 126-134 DOI: 10.1016/j.jechem.2019.05.009

Citation Report

#	Article	IF	CITATIONS
1	Preparation of TiO2 nanotube arrays with efficient photocatalytic performance and super-hydrophilic properties utilizing anodized voltage method. Results in Physics, 2019, 14, 102499.	2.0	22
2	Dual-Band Plasmonic Perfect Absorber Based on Graphene Metamaterials for Refractive Index Sensing Application. Micromachines, 2019, 10, 443.	1.4	89
3	Numerical investigation of a tunable metamaterial perfect absorber consisting of two-intersecting graphene nanoring arrays. Physics Letters, Section A: General, Atomic and Solid State Physics, 2019, 383, 3030-3035.	0.9	56
4	Theoretical design of a triple-band perfect metamaterial absorber in the THz frequency range. Results in Physics, 2019, 14, 102463.	2.0	77
5	Synthesis, surface properties, crystal structure and dye-sensitized solar cell performance of TiO2 nanotube arrays anodized under different parameters. Results in Physics, 2019, 15, 102609.	2.0	87
6	Fabrication of ZnO@Ag3PO4 Core-Shell Nanocomposite Arrays as Photoanodes and Their Photoelectric Properties. Nanomaterials, 2019, 9, 1254.	1.9	73
7	Yolk–shell structured metal oxide@carbon nanoring anode boosting performance of lithium-ion batteries. New Journal of Chemistry, 2019, 43, 16148-16155.	1.4	10
8	Strongly Coupled MoS ₂ Nanocrystal/Ti ₃ C ₂ Nanosheet Hybrids Enable Highâ€Capacity Lithiumâ€ion Storage. ChemSusChem, 2020, 13, 1485-1490.	3.6	39
9	Dual-Band Infrared Perfect Absorber Based on a Ag-Dielectric-Ag Multilayer Films with Nanoring Grooves Arrays. Plasmonics, 2020, 15, 93-100.	1.8	68
10	Reinventing the mechanism of high-performance Bi anode in aqueous K+ rechargeable batteries. Journal of Energy Chemistry, 2020, 48, 21-28.	7.1	34
11	Bifunctional Li6CoO4 serving as prelithiation reagent and pseudocapacitive electrode for lithium ion capacitors. Journal of Energy Chemistry, 2020, 47, 38-45.	7.1	33
12	A dual-band metamaterial absorber for graphene surface plasmon resonance at terahertz frequency. Physica E: Low-Dimensional Systems and Nanostructures, 2020, 117, 113840.	1.3	129
13	Achieving Fast and Durable Lithium Storage through Amorphous FeP Nanoparticles Encapsulated in Ultrathin 3D P-Doped Porous Carbon Nanosheets. ACS Nano, 2020, 14, 9545-9561.	7.3	250
14	Application of Co3O4-based materials in electrocatalytic hydrogen evolution reaction: A review. International Journal of Hydrogen Energy, 2020, 45, 21205-21220.	3.8	91
15	Hierarchical Design of Mn ₂ P Nanoparticles Embedded in N,P-Codoped Porous Carbon Nanosheets Enables Highly Durable Lithium Storage. ACS Applied Materials & Interfaces, 2020, 12, 36247-36258.	4.0	36
16	In-situ preparation of gel polymer electrolyte with glass fiber membrane for lithium batteries. Journal of Power Sources, 2020, 472, 228627.	4.0	38
17	Improved Electrochemical Performance of 0.5Li2MnO3·0.5LiNi0.5Mn0.5O2 Cathode Materials for Lithium Ion Batteries Synthesized by Ionic-Liquid-Assisted Hydrothermal Method. Frontiers in Chemistry, 2020, 8, 729.	1.8	36
18	Micro/nanostructured TiNb ₂ O ₇ -related electrode materials for high-performance electrochemical energy storage: recent advances and future prospects. Journal of Materials Chemistry A, 2020, 8, 18425-18463.	5.2	59

#	Article	IF	CITATIONS
19	Electrospun MnCo ₂ O ₄ Nanotubes as High-Performance Anode Materials for Lithium-Ion Batteries. Energy & Fuels, 2020, 34, 11574-11580.	2.5	38
20	Convenient fabrication of a core–shell Sn@TiO ₂ anode for lithium storage from tinplate electroplating sludge. Chemical Communications, 2020, 56, 10187-10190.	2.2	16
21	Dual network porous Si/Al9FeSi3/Fe2O3 composite for high performance Li-ion battery anode. Electrochimica Acta, 2020, 358, 136936.	2.6	11
22	In Situ Atomicâ€Scale Observation of Reversible Potassium Storage in Sb ₂ S ₃ @Carbon Nanowire Anodes. Advanced Functional Materials, 2020, 30, 2005417.	7.8	75
23	Monodisperse SnO2/Co3O4 nanocubes synthesized via phase separation and their advantages in electrochemical Li-ion storage. Ionics, 2020, 26, 6125-6132.	1.2	4
24	Study of TiO ₂ -Coated α-Fe ₂ O ₃ Composites and the Oxygen-Defects Effect on the Application as the Anode Materials of High-Performance Li-Ion Batteries. ACS Applied Energy Materials, 2020, 3, 11666-11673.	2.5	19
25	Carbon-Encapsulated Iron Oxide Nanoparticles in Self-Supporting Carbon Nanofiber for High-Performance Supercapacitor in Acid Electrolyte with Superior Stability. ACS Applied Energy Materials, 2020, 3, 12652-12661.	2.5	24
26	Selective Formation of the Li ₄ Mn ₅ O ₁₂ Surface Spinel Phase in Sulfur-Doped Li-Excess-Layered Cathode Materials for Improved Cycle Life. ACS Sustainable Chemistry and Engineering, 2020, 8, 8037-8048.	3.2	17
27	Enabling ultrafast ionic conductivity in Br-based lithium argyrodite electrolytes for solid-state batteries with different anodes. Energy Storage Materials, 2020, 30, 238-249.	9.5	46
28	Hollow MoS ₃ Nanospheres as Electrode Material for "Waterâ€inâ€Salt―Li–Ion Batteries. Batteries and Supercaps, 2020, 3, 747-756.	2.4	15
29	Improved electrochemical properties and kinetics of an LiMn ₂ O ₄ -based cathode co-modified <i>via</i> Cu doping with truncated octahedron morphology. New Journal of Chemistry, 2020, 44, 10569-10577.	1.4	21
30	WO3-Based Materials as Electrocatalysts for Hydrogen Evolution Reaction. Frontiers in Materials, 2020, 7, .	1.2	44
31	Nitrogen/chlorine-doped carbon nanodisk-encapsulated hematite nanoparticles for high-performance lithium-ion storage. Journal of Alloys and Compounds, 2020, 843, 156045.	2.8	7
32	Ultrahigh-rate sodium-ion battery anode enabled by vertically aligned (1T-2H MoS2)/CoS2 heteronanosheets. Materials Today Nano, 2020, 12, 100089.	2.3	19
33	High-performance spherical LiVPO4F/C cathode enabled by facile spray pyrolysis. Science China Technological Sciences, 2020, 63, 2729-2734.	2.0	4
34	Bowl-like C@MoS ₂ Nanocomposites as Anode Materials for Lithium-Ion Batteries: Enhanced Stress Buffering and Charge/Mass Transfer. ACS Sustainable Chemistry and Engineering, 2020, 8, 10065-10072.	3.2	35
35	Carbon-nitrogen quantum dots modification of Li4Ti5O12 anode material for lithium-ion batteries. Ionics, 2020, 26, 3325-3331.	1.2	4
36	Self-assembled GeO _X /Ti ₃ C ₂ T _X Composites as Promising Anode Materials for Lithium Ion Batteries. Inorganic Chemistry, 2020, 59, 4711-4719.	1.9	18

#	Article	IF	CITATIONS
37	Role of Oxygen Deficiency and Microstructural Voids/Gaps in Nanostructures of Ca ₂ Fe ₂ O ₅ as an Anode Toward Next-Generation High-Performance Li-Ion Batteries. ACS Applied Energy Materials, 2020, 3, 6360-6373.	2.5	18
38	Ammonia-etching-assisted nanotailoring of manganese silicate boosts faradaic capacity for high-performance hybrid supercapacitors. Sustainable Energy and Fuels, 2020, 4, 2220-2228.	2.5	26
39	Design of Nb2O5/graphene hybrid aerogel as polymer binder-free electrodes for lithium-ion capacitors. Materials Technology, 2020, 35, 625-634.	1.5	18
40	Thin solid electrolyte interface on chemically bonded Sb2Te3/CNT composite anodes for high performance sodium ion full cells. Nano Energy, 2020, 71, 104613.	8.2	38
41	Dominant pseudocapacitive lithium storage in the carbon-coated ferric oxide nanoparticles (Fe2O3@C) towards anode materials for lithium-ion batteries. International Journal of Hydrogen Energy, 2020, 45, 8186-8197.	3.8	41
42	Hierarchical urchin-like Fe2O3 structures grown directly on Ti foils for binder-free lithium-ion batteries with fast charging/discharging properties. Inorganic Chemistry Communication, 2020, 113, 107769.	1.8	8
43	Lithiophilicity conversion of carbon paper with uniform Cu2+1O coating: Boosting stable Li-Cu2+1O-CP composite anode through melting infusion. Chemical Engineering Journal, 2020, 388, 124238.	6.6	5
44	Electrochemical reaction mechanism of amorphous iron selenite with ultrahigh rate and excellent cyclic stability performance as new anode material for lithium-ion batteries. Chemical Engineering Journal, 2020, 389, 124350.	6.6	42
45	Ultrahigh and Durable Volumetric Lithium/Sodium Storage Enabled by a Highly Dense Graphene-Encapsulated Nitrogen-Doped Carbon@Sn Compact Monolith. Nano Letters, 2020, 20, 2034-2046.	4.5	74
46	Surface Amorphization of Vanadium Dioxide (B) for Kâ€lon Battery. Advanced Energy Materials, 2020, 10, 2000717.	10.2	109
47	Porous FeP/C composite nanofibers as high-performance anodes for Li-ion/Na-ion batteries. Materials Today Energy, 2020, 16, 100410.	2.5	23
40			
48	Supersonically sprayed Fe2O3/C/CNT composites for highly stable Li-ion battery anodes. Chemical Engineering Journal, 2020, 395, 125018.	6.6	55
48	Supersonically sprayed Fe2O3/C/CNT composites for highly stable Li-ion battery anodes. Chemical Engineering Journal, 2020, 395, 125018. Low-temperature solution synthesis and characterization of enhanced titanium dioxide photocatalyst on tailored mesoporous Î ³ -Al2O3 support. Composites Communications, 2020, 19, 82-89.	6.6 3.3	55 24
	Engineering Journal, 2020, 395, 125018. Low-temperature solution synthesis and characterization of enhanced titanium dioxide photocatalyst		
49	Engineering Journal, 2020, 395, 125018. Low-temperature solution synthesis and characterization of enhanced titanium dioxide photocatalyst on tailored mesoporous Î ³ -Al2O3 support. Composites Communications, 2020, 19, 82-89. Designed formation of nitrogen-doped caramel sheathed bilateral hybrid oxides nanoarrays as ultra-stable anode for high-areal-capacity lithium-ion batteries. Journal of Alloys and Compounds,	3.3	24
49 50	Engineering Journal, 2020, 395, 125018. Low-temperature solution synthesis and characterization of enhanced titanium dioxide photocatalyst on tailored mesoporous Î ³ -Al2O3 support. Composites Communications, 2020, 19, 82-89. Designed formation of nitrogen-doped caramel sheathed bilateral hybrid oxides nanoarrays as ultra-stable anode for high-areal-capacity lithium-ion batteries. Journal of Alloys and Compounds, 2020, 834, 155069. Superior Electrochemical and Kinetics Performance of LiNi _{0.8} Co _{0.15} Al _{0.05} Co ₂ Cathode by Neodymium Synergistic Modifying for Lithium Ion Batteries. Journal of the Electrochemical Society, 2020, 167,	3.3 2.8	24
49 50 51	Engineering Journal, 2020, 395, 125018. Low-temperature solution synthesis and characterization of enhanced titanium dioxide photocatalyst on tailored mesoporous Î ³ -Al2O3 support. Composites Communications, 2020, 19, 82-89. Designed formation of nitrogen-doped caramel sheathed bilateral hybrid oxides nanoarrays as ultra-stable anode for high-areal-capacity lithium-ion batteries. Journal of Alloys and Compounds, 2020, 834, 155069. Superior Electrochemical and Kinetics Performance of LiNi _{0.8} Co _{0.15} Al _{0.05} O ₂ Cathode by Neodymium Synergistic Modifying for Lithium Ion Batteries. Journal of the Electrochemical Society, 2020, 167, 090509. Loading Fe3O4 nanoparticles on paper-derived carbon scaffold toward advanced lithium–sulfur	3.3 2.8 1.3	24 10 12

#	Article	IF	CITATIONS
55	Interface coupling 2D/2D SnSe2/graphene heterostructure as long-cycle anode for all-climate lithium-ion battery. Chemical Engineering Journal, 2021, 407, 126973.	6.6	52
56	Biotemplate synthesis of mesoporous α-Fe2O3 hierarchical structure with assisted pseudocapacitive as an anode for long-life lithium ion batteries. Ceramics International, 2021, 47, 3772-3779.	2.3	31
57	Carbon-coated cation-disordered rocksalt-type transition metal oxide composites for high energy Li-ion batteries. Ceramics International, 2021, 47, 1758-1765.	2.3	50
58	Nickelâ€Rich Layered Cathode Materials for Lithiumâ€Ion Batteries. Chemistry - A European Journal, 2021, 27, 4249-4269.	1.7	44
59	Effects of chelating agents on electrochemical properties of Na0.9Ni0.45Mn0.55O2 cathode materials. Journal of Alloys and Compounds, 2021, 855, 157485.	2.8	28
60	Facile Fabrication of Fe ₂ O ₃ -Decorated Carbon Matrixes with a Multidimensional Structure as Anodes for Lithium-Ion Batteries. Energy & Fuels, 2021, 35, 816-826.	2.5	14
61	Selenizing CoMoO4 nanoparticles within electrospun carbon nanofibers towards enhanced sodium storage performance. Journal of Colloid and Interface Science, 2021, 586, 663-672.	5.0	9
62	Electrochemical properties of α-LiVOPO4/C composites prepared by a combined sol-gel-microwave method. Materials Letters, 2021, 286, 128984.	1.3	0
63	Revealing the structure design of alloyed based electrodes for alkali metal ion batteries with in situ TEM. Journal of Energy Chemistry, 2021, 59, 405-418.	7.1	12
64	Synthesis and electrochemical properties of mixed-phase $\hat{I}\pm$ / \hat{I}^2 -LiVOPO4/C composites. Ceramics International, 2021, 47, 700-705.	2.3	1
65	Synthesis of iron oxide cubes/reduced graphene oxide composite and its enhanced lithium storage performance. Chinese Chemical Letters, 2021, 32, 113-118.	4.8	30
66	Highly efficient Co3O4/CeO2 heterostructure as anode for lithium-ion batteries. Journal of Colloid and Interface Science, 2021, 585, 705-715.	5.0	116
67	Revealing the working mechanism of a multi-functional block copolymer binder for lithium-sulfur batteries. Journal of Energy Chemistry, 2021, 59, 1-8.	7.1	8
68	All-inorganic halide perovskite CsPbBr3@CNTs composite enabling superior lithium storage performance with pseudocapacitive contribution. Electrochimica Acta, 2021, 367, 137352.	2.6	8
69	Graphene-encapsulated blackberry-like porous silicon nanospheres prepared by modest magnesiothermic reduction for high-performance lithium-ion battery anode. Rare Metals, 2021, 40, 383-392.	3.6	65
70	Neurons-system-like structured SnS2/CNTs composite for high-performance sodium-ion battery anode. Rare Metals, 2021, 40, 1383-1390.	3.6	67
71	A general route for the mass production of graphene-enhanced carbon composites toward practical pouch lithium-ion capacitors. Journal of Materials Chemistry A, 2021, 9, 15654-15664.	5.2	69
72	Regulating the carbon distribution of anode materials in lithium-ion batteries. Nanoscale, 2021, 13, 3937-3947.	2.8	21

#	Article	IF	CITATIONS
73	Laser ablation of pristine Fe foil for constructing a layer-by-layer SiO ₂ /Fe ₂ O ₃ /Fe integrated anode for high cycling-stability lithium-ion batteries. Physical Chemistry Chemical Physics, 2021, 23, 10365-10376.	1.3	7
74	Sn@C composite for lithium ion batteries: amorphous vs. crystalline structures. Ionics, 2021, 27, 1403-1412.	1.2	6
75	Plate-like carbon-supported Fe3C nanoparticles with superior electrochemical performance. Rare Metals, 2021, 40, 1402-1411.	3.6	21
76	Reversible potassium storage in ultrafine CF : A superior cathode material for potassium batteries and its mechanism. Journal of Energy Chemistry, 2021, 53, 347-353.	7.1	16
77	Enhanced photocurrent by MOFs layer on Ti-doped α-Fe2O3 for PEC water oxidation. International Journal of Hydrogen Energy, 2021, 46, 7954-7963.	3.8	19
78	In-situ constructing uniform polymer network for iron oxide microspheres: A novel approach to improve the cycling stability of the conversion electrodes through chemical interaction. Journal of Power Sources, 2021, 489, 229510.	4.0	6
79	Carbon-enriched SiOC ceramics with hierarchical porous structure as anodes for lithium storage. Electrochimica Acta, 2021, 372, 137899.	2.6	32
80	FeBO3 as a low cost and high-performance anode material for sodium-ion batteries. Chinese Chemical Letters, 2021, 32, 3113-3117.	4.8	18
81	A yolk-shell structured CoS2@NC@CNC with double carbon shell coating from confined derivatization of ZIF-67 growth in carbon nanocages for superior Li storage. Electrochimica Acta, 2021, 371, 137773.	2.6	25
82	Boosting lithium storage performance of Si nanoparticles via thin carbon and nitrogen/phosphorus co-doped two-dimensional carbon sheet dual encapsulation. Rare Metals, 2021, 40, 1347-1356.	3.6	115
83	Engineering hollow multi-shelled Co3O4 cubes to boost lithium storage performance. Applied Surface Science, 2021, 545, 149022.	3.1	9
84	Fe2O3-encapsulated SiC nanowires with superior electrochemical properties as anode materials for the lithium-ion batteries. Ionics, 2021, 27, 2431-2444.	1.2	5
85	Flexible FeS@Fe ₂ O ₃ /CNT composite films as self-supporting anodes for high-performance lithium-ion batteries. Nanotechnology, 2021, 32, 285404.	1.3	4
86	Porous N-doped C coated gallium nitride submicron bricks/reduced graphene oxide hybrid as high-performance anode for lithium-ion batteries. Materials Chemistry and Physics, 2021, 263, 124437.	2.0	8
87	Recent development of lithium argyrodite solid-state electrolytes for solid-state batteries: Synthesis, structure, stability and dynamics. Nano Energy, 2021, 83, 105858.	8.2	140
88	Graphitic Carbon-Doped Mesoporous Fe ₂ O ₃ Nanoparticles for Long-Life Li-Ion Anodes. ACS Applied Nano Materials, 2021, 4, 6689-6699.	2.4	11
89	Tetrabutylammoniumâ€Intercalated 1Tâ€MoS ₂ Nanosheets with Expanded Interlayer Spacing Vertically Coupled on 2D Delaminated MXene for Highâ€Performance Lithiumâ€Ion Capacitors. Advanced Functional Materials, 2021, 31, 2104286.	7.8	106
90	Uniform α-Fe2O3 nanoparticles with narrow gap immobilized on CNTs through N-doped carbon as high-performance lithium-ion batteries anode. Ceramics International, 2021, 47, 15743-15749.	2.3	18

#	Article	IF	CITATIONS
91	Piezoelectric composite of BaTiO3-coated SnO2 microsphere: Li-ion battery anode with enhanced electrochemical performance based on accelerated Li+ mobility. Journal of Alloys and Compounds, 2021, 870, 159267.	2.8	10
92	Fe2O3 Microcubes Derived from Metal–Organic Frameworks for Lithium-Ion Storage with Excellent Performance. Crystals, 2021, 11, 854.	1.0	3
93	Alkoxide hydrolysis in-situ constructing robust trimanganese tetraoxide/graphene composite for high-performance lithium storage. Journal of Colloid and Interface Science, 2021, 594, 531-539.	5.0	11
94	High lithiophilic nitrogen-doped carbon nanotube arrays prepared by in-situ catalyze for lithium metal anode. Chinese Chemical Letters, 2021, 32, 2254-2258.	4.8	32
95	MOF-derived iron sulfide nanocomposite with sulfur-doped carbon shell as a promising anode material for high-performance lithium-ion batteries. Journal of Alloys and Compounds, 2021, 868, 159110.	2.8	19
96	Design principles and direct applications of cobalt-based metal-organic frameworks for electrochemical energy storage. Coordination Chemistry Reviews, 2021, 438, 213872.	9.5	51
97	<scp>Li₄Ti₅O₁₂</scp> spinel anode: Fundamentals and advances in rechargeable batteries. InformaÄnÃ-Materiály, 2022, 4, .	8.5	71
98	Wrinkled, partially-graphitized carbon encapsulated silicon with preformed voids as lithium-ion battery anode with enhanced cyclic and rate performances. Composites Communications, 2021, 26, 100782.	3.3	3
99	Ultrafine ZnSe Encapsulated in Nitrogen-Doped Porous Carbon Nanofibers for Superior Na-Ion Batteries with a Long Lifespan and Low-Temperature Performance. ACS Sustainable Chemistry and Engineering, 2021, 9, 11705-11713.	3.2	31
100	Li-Ion Capacitors Based on Activated Ferric Oxide as an Anode. Journal of Electrochemical Energy Conversion and Storage, 2022, 19, .	1.1	2
101	Investigation of the cyclic aging characteristics and degradation mechanism of LiNi1/3Co1/3Mn1/3O2 batteries by non-invasive methodologies. Surfaces and Interfaces, 2021, 25, 101235.	1.5	1
102	LiPO2F2 electrolyte additive for high-performance Li-rich cathode material. Journal of Energy Chemistry, 2021, 60, 564-571.	7.1	49
103	Enhanced electrochemical performance of a selectively formed V2O3/C composite structure for Li-ion batteries. Electrochimica Acta, 2021, 389, 138685.	2.6	17
104	Quad-band tunable graphene-based metamaterial absorber operating at THz frequencies. Optical and Quantum Electronics, 2021, 53, 1.	1.5	4
105	Synthesis of <scp>MnSe</scp> @C yolkâ€shell nanospheres via a water vaporâ€assisted strategy for use as anode in sodiumâ€ion batteries. International Journal of Energy Research, 2022, 46, 2500-2511.	2.2	16
106	Constructing CoFe2O4 with cubic structure by Prussian blue to provide high-performance anodes for lithium-ion batteries. Materials Letters, 2021, 300, 130152.	1.3	6
107	N-doped carbon coated SnO2 nanospheres as Li-ion battery anode with high capacity and good cycling stability. Journal of Electroanalytical Chemistry, 2021, 899, 115694.	1.9	3
108	A review on nanoconfinement engineering of red phosphorus for enhanced Li/Na/K-ion storage performances. Journal of Energy Chemistry, 2021, 61, 531-552.	7.1	36

# 109	ARTICLE Nanoneedle-assembled hollow α-Fe2O3 microflowers as Li-ion battery anode with high capacity and good temperature tolerance. Journal of Electroanalytical Chemistry, 2021, 898, 115625.	lF 1.9	Citations
110	Using Prussian blue as a self-sacrificial template to construct MnO/MnFe2O4 microcubes as anodes for lithium-ion batteries. Journal of Alloys and Compounds, 2021, 882, 160693.	2.8	14
111	A strongly interactive adatom/substrate interface for dendrite-free and high-rate Li metal anodes. Journal of Energy Chemistry, 2021, 62, 179-190.	7.1	22
112	High-performance of LaCoO3/Co3O4 nanocrystal as anode for lithium-ion batteries. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 628, 127265.	2.3	17
113	Ultra-thin N-doped carbon coated SnO2 nanotubes as anode material for high performance lithium-ion batteries. Applied Surface Science, 2021, 568, 150969.	3.1	16
114	Study on self-derived products of nanometer lignin in silicon nitride ceramics during sintering process. Results in Materials, 2021, 12, 100228.	0.9	4
115	A safe, low-cost and high-efficiency presodiation strategy for pouch-type sodium-ion capacitors with high energy density. Journal of Energy Chemistry, 2022, 64, 442-450.	7.1	24
116	Al-Doped Fe ₂ O ₃ nanoparticles: advanced anode materials for high capacity lithium ion batteries. Dalton Transactions, 2021, 50, 5115-5119.	1.6	12
117	The precise synthesis of twin-born Fe ₃ O ₄ /FeS/carbon nanosheets for high-rate lithium-ion batteries. Materials Chemistry Frontiers, 2021, 5, 4579-4588.	3.2	28
118	Practical development and challenges of garnet-structured Li7La3Zr2O12 electrolytes for all-solid-state lithium-ion batteries: A review. International Journal of Minerals, Metallurgy and Materials, 2021, 28, 1565-1583.	2.4	26
119	Anion-immobilized solid composite electrolytes based on metal-organic frameworks and superacid ZrO2 fillers for high-performance all solid-state lithium metal batteries. International Journal of Minerals, Metallurgy and Materials, 2021, 28, 1636-1646.	2.4	30
120	Graphene induced growth of Sb2WO6 nanosheets for high-performance pseudocapacitive lithium-ion storage. Journal of Alloys and Compounds, 2020, 839, 155614.	2.8	23
121	Hierarchical Co2VO4 yolk-shell microspheres confined by N-doped carbon layer as anode for high-rate lithium-ion batteries. Journal of Electroanalytical Chemistry, 2021, 882, 115027.	1.9	11
122	Space-Confined Synthesis of Ultrasmall SnO ₂ Nanodots within Ordered Mesoporous Carbon CMK-3 for High-Performance Lithium Ion Batteries. Energy & Fuels, 2020, 34, 7709-7715.	2.5	19
123	Advance in interface and characterizations of sulfide solid electrolyte materials. Wuli Xuebao/Acta Physica Sinica, 2020, 69, 228803.	0.2	24
124	A chain-like compound of Si@CNT nanostructures and MOF-derived porous carbon as an anode for Li-ion batteries. International Journal of Minerals, Metallurgy and Materials, 2021, 28, 1611-1620.	2.4	16
125	Rational design of nano-Fe ₃ O ₄ encapsulated in 3D honeycomb biochar for enhanced lithium storage performance. Nanotechnology, 2022, 33, 035401.	1.3	8
126	Deoxygenated porous carbon with highly stable electrochemical reaction interface for practical high-performance lithium-ion capacitors. Journal Physics D: Applied Physics, 2022, 55, 045501.	1.3	9

ARTICLE IF CITATIONS Hollow Co-Fe LDH as an effective adsorption/catalytic bifunctional sulfur host for high-performance 127 3.3 20 Lithiumâ€"Sulfur batteries. Composites Communications, 2021, 28, 100973. High-Performance Freestanding Lithium-Ion Battery Si Anode by Weakening the Current-Collector 1.3 Constraint. Journal of the Electrochemical Society, 2020, 167, 080536. Mechanism Analysis of Preparation of Anode Materials for Lithium-Ion Batteries. Hans Journal of 129 0.0 0 Chemical Engineering and Technology, 2020, 10, 192-207. Redispersed Bi nanoparticles on graphene fiber fabric anode regulated by microwave irradiation for flexible sodium ion capacitors. Chemical Engineering Journal, 2022, 433, 133521. Facile Premixed Flame Synthesis C@Fe ₂O ₃/SWCNT as Superior Free-Standing 131 0.4 0 Anode for Lithium-Ion Batteries. SSRN Electronic Journal, 0, , . Nondestructive CNT chained Fe3O4 anode materials for high-performance Li-ion batteries. Colloids 2.3 and Surfaces A: Physicochemical and Engineering Aspects, 2022, 635, 128084. A New Octagonal Close Ring Resonator Based Dumbbell-Shaped Tuning Fork Perfect Metamaterial 133 1.4 15 Absorber for C- and Ku-Band Applications. Micromachines, 2022, 13, 162. Heterostructure Fe₂O₃ nanorods@imine-based covalent organic framework 134 2.8 for long cycling and high-rate lithium storage. Nanoscale, 2022, 14, 1906-1920. Bi nanoparticles in situ encapsulated by carbon film as high-performance anode materials for Li-ion 135 7.1 27 batteries. Journal of Energy Chemistry, 2022, 69, 524-530. Preparation of Li2MnO3 nanowires with structural defects as high rate and high capacity cathodes 3.1 for lithium-ion batteries. Applied Surface Science, 2022, 585, 152605. Porous Fe2O3 nanorod-decorated hollow carbon nanofibers for high-rate lithium storage. Advanced 137 9.9 34 Composites and Hybrid Materials, 2022, 5, 370-382. Multiple transition metals modulated hierarchical networks for high performance of metal-ion 138 batteries. Journal of Energy Chemistry, 2022, 70, 604-613. Activated metal-organic frameworks (a-MIL-100 (Fe)) as fillers in polymer electrolyte for 139 high-performance all-solid-state lithium metal batteries. Materials Today Communications, 2022, 31, 0.9 23 103518. Facile premixed flame synthesis C@Fe2O3/SWCNT as superior free-standing anode for lithium-ion 140 2.8 14 batteries. Journal of Alloys and Compounds, 2022, 905, 164247. A simple route to constructing rGO wrapped Fe2O3 cubes as a high-performance anode material for 142 1.2 1 lithium-ion batteries. lonics, 2022, 28, 3165-3176. Nitrogen-doped carbon boosting Fe2O3 anode performance for supercapacitors. Journal of Materials 143 1.1 Science: Materials in Electronics, 0, , 1. In Situ Electrochemical Impedance Measurements of α-Fe2O3 Nanofibers: Unravelling the Li-Ion 144 2.15 Conduction Mechanism in Li-Ion Batteries. Batteries, 2022, 8, 44. Sea urchin-like LiAlO2@NiCoO2 hybrid composites with core-shell structure as high-performance Li 145 2.3 storage materials. Ceramics International, 2022, 48, 26196-26205.

#	Article	IF	CITATIONS
146	Tuning fork-hammer shaped perfect metamaterial absorber for C-band applications. Radiation Physics and Chemistry, 2022, 200, 110262.	1.4	4
147	A Review of Cobalt-Containing Nanomaterials, Carbon Nanomaterials and Their Composites in Preparation Methods and Application. Nanomaterials, 2022, 12, 2042.	1.9	6
148	One-Step Calcination Process for the Construction of Oxygen Deficient Fe2O3/N, P Co-doped Carbon Composites for High-Performance Supercapacitors. Journal of Electronic Materials, 2022, 51, 5262-5272.	1.0	2
149	Double-Enhanced Core–Shell–Shell Sb ₂ S ₃ /Sb@TiO ₂ @C Nanorod Composites for Lithium- and Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2022, 14, 33064-33075.	4.0	15
150	Heterostructured δ-MnO2/Fe2O3 nanoarrays layer-by-layer assembled on stainless-steel mesh as free-standing anodes for lithium ion batteries towards enhanced performance. Materials Today Communications, 2022, 32, 104034.	0.9	4
151	Microstructure and lithium storage properties of Fe2O3 in N-doped carbon nanosheets. Solid State Ionics, 2022, 383, 115981.	1.3	4
152	Fe2O3-MWNTs Composite with Reinforced Concrete Structure as High-performance Anode Material for Lithium-ion Batteries. Chemical Research in Chinese Universities, 2023, 39, 240-245.	1.3	2
153	Multi-functional yolk-shell structured materials and their applications for high-performance lithium ion battery and lithium sulfur battery. Energy Storage Materials, 2022, 53, 684-743.	9.5	28
154	Construction of N-doped porous carbon-coated Fe3O4 with efficient ion transfer performance for enhanced-performance lithium storage. Electrochimica Acta, 2022, 428, 140935.	2.6	3
155	Holy cross-moon shaped dual band perfect metamaterial absorber for C-band application. Materials Today Communications, 2022, 33, 104309.	0.9	3
156	An Efficient Structure Manipulation Strategy of Preparing Vanadium Carbide, V8C7/C, for Improving Lithium and Zinc Storage. Journal of Electronic Materials, 2022, 51, 6047-6055.	1.0	0
157	Liquid Processing of Interfacially Grown Ironâ€Oxide Flowers into 2Dâ€Platelets Yields Lithiumâ€lon Battery Anodes with Capacities of Twice the Theoretical Value. Small, 2022, 18, .	5.2	14
158	Synergetic Contributions from the Components of Flexible <scp>3D</scp> Structured C/Ag/ <scp>ZnO</scp> / <scp>CC</scp> Anode Materials for Lithiumâ€ion Batteries. Energy and Environmental Materials, 2023, 6, .	7.3	1
159	Fe2O3 nanoparticles anchored on thermally oxidized MWCNTs as anode material for lithium-ion battery. Nanotechnology, 0, , .	1.3	2
160	High-performance lithium-ion batteries with different hollow-degree Fe3O4@C hollow nanostructures. Applied Surface Science, 2023, 608, 155093.	3.1	6
161	Building oxygen-vacancy in Co3O4â^'x nanocrystal towards ultrahigh pseudocapacitance. Journal of Alloys and Compounds, 2022, 929, 167299.	2.8	1
162	Regulation of MIL-88B(Fe) to design FeS2 core-shelled hollow sphere as high-rate anode for a full sodium-ion battery. Chemical Engineering Journal, 2023, 453, 139735.	6.6	15
163	Hollow porous Co3O4/NC@rGO derived from reuleaux tetrahedral ZIF-67 as a promising anode material for Li-ion batteries. Journal of Materials Research and Technology, 2022, 21, 4452-4461.	2.6	7

	CITATION REPORT			
#	Article		IF	Citations
164	Constructing 3D sandwich-like carbon coated Fe2O3/helical carbon nanofibers compo superior lithium-ion batteries anode. Journal of Electroanalytical Chemistry, 2023, 929	site as a , 117098.	1.9	5
165	Layer-by-layer anodes with an orientation-arranged structure induced by magnetic field high-performance lithium ion batteries. Sustainable Energy and Fuels, 2022, 7, 201-20	l for 8.	2.5	4
166	Integrated structure design and synthesis of a pitaya-like SnO ₂ /N-doped for high-rate lithium storage capability. Nanoscale, 2023, 15, 1669-1675.	carbon composite	2.8	4
167	Photoinduced Cu+/Cu2+ interconversion for enhancing energy conversion and storage of CuO based Li-ion battery. Journal of Energy Chemistry, 2023, 79, 83-91.	e performances	7.1	12
168	Curcumin nanoparticles combined with 3D printed bionic tumor models for breast car Biofabrication, 2023, 15, 014105.	cer treatment.	3.7	5
169	Defect-rich conversion-based manganese oxide nanofibers: An ultra-high rate capable a next-generation binder-free rechargeable batteries. Journal of Alloys and Compounds, 2 169913.		2.8	2
170	Particulate modification of lithium-ion battery anode materials and electrolytes. Partice 83, 129-141.	uology, 2023,	2.0	10
171	Influence of Samarium on Structural, Morphological, and Electrical Properties of Lithiu Oxide. Advances in Materials Science and Engineering, 2023, 2023, 1-10.	m Manganese	1.0	0
172	Preparation of hollow core-shell structured Ti3C2@Ti2SnC/CNFs with stable electroch performance as anode material for lithium ion battery. Ceramics International, 2023, 4		2.3	2