Finite-Time Feedforward Decoupling and Precise Decer Towards Large-Signal Stability

IEEE Transactions on Smart Grid 11, 391-402 DOI: 10.1109/tsg.2019.2923536

Citation Report

#	Article	IF	CITATIONS
1	Research on Linear Active Disturbance Rejection Control in DC/DC Boost Converter. Electronics (Switzerland), 2019, 8, 1249.	3.1	14
2	Stability Implications for the Design Process of an Industrial DC Microgrid. , 2020, , .		3
3	Influencing factors of the decoupling relationship between CO2 emission and economic development in China's power industry. Energy, 2020, 209, 118341.	8.8	51
4	Research and Simulation of DC Microgrid Three-Phase AC-DC Converter Control Strategy Based on Double Loop. IEEE Access, 2020, 8, 186448-186461.	4.2	5
5	Design and Implementation of Decentralized Control for Distributed generation based Off-grid System. , 2020, , .		1
6	A Composite Finite-Time Controller for Decentralized Power Sharing and Stabilization of Hybrid Fuel Cell/Supercapacitor System With Constant Power Load. IEEE Transactions on Industrial Electronics, 2021, 68, 1388-1400.	7.9	20
7	Voltage Restoration and Adjustable Current Sharing for DC Microgrid With Time Delay via Distributed Secondary Control. IEEE Transactions on Sustainable Energy, 2021, 12, 1068-1077.	8.8	38
8	Optimal Placement of Constant Power Loads at Different Buses of a DC Microgrid Ensuring Maximum Stability Margins. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021, 9, 510-519.	5.4	9
9	Voltage Regulation of DC-DC Buck Converters Feeding CPLs via Deep Reinforcement Learning. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69, 1777-1781.	3.0	28
10	A Composite Algorithm for Permanent Magnet Linear Synchronous Motor with Rapidly Varying Loads: Using Finite-time Tracking and Observer. , 2021, , .		0
11	Coupling Analysis for the Design of Industrial DC Microgrids. , 2021, , .		0
12	Finite-Time Nonlinear Observer Design for Uncertain DC Microgrids Feeding Constant Power Loads. , 2021, , .		2
13	An Adaptive Fuzzy Passivity-based Control Strategy for Grid-Tied Packed E-Cell Converter. , 2021, , .		1
14	A Novel Adaptive Stabilization Strategy for Autonomous DC Microgrids. , 2020, , .		1
15	Mathematical modelling and fuzzy knowledge-based decoupled control scheme for real-time interacting level control- MIMO system. International Journal of Modelling and Simulation, 2023, 43, 75-86.	3.3	2
16	Toward Balancing Dynamic Performance and System Stability for DC Microgrids: A New Decentralized Adaptive Control Strategy. IEEE Transactions on Smart Grid, 2022, 13, 3439-3451.	9.0	15
17	Ensuring Transient Stability With Guaranteed Region of Attraction in DC Microgrids. IEEE Transactions on Power Systems, 2023, 38, 681-691.	6.5	2
18	Decentralized composite generalized predictive control strategy for DC microgrids with high PV penetration. International Journal of Robust and Nonlinear Control, 2022, 32, 7793-7808.	3.7	4

#	Article	IF	CITATIONS
19	Learning-Based Optimal Large-Signal Stabilization for DC/DC Boost Converters Feeding CPLs via Deep Reinforcement Learning. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2023, 11, 5592-5601.	5.4	5
20	On the Robustness Enhancement of DRL Controller for DC-DC Converters in Practical Applications. , 2022, , .		2
21	Implementation of Transferring Reinforcement Learning for DC–DC Buck Converter Control via Duty Ratio Mapping. IEEE Transactions on Industrial Electronics, 2023, 70, 6141-6150.	7.9	7
22	Discrete-Time Distributed Secondary Control for DC Microgrids via Virtual Voltage Drop Averaging. IEEE Transactions on Sustainable Energy, 2023, 14, 272-282.	8.8	3
23	Power Feasible Region Ensuring Transient Stability of Droop-Based Multiconverters DC System. IEEE Transactions on Power Electronics, 2023, 38, 5442-5455.	7.9	0
24	Power Sharing Control and Voltage Restoration in DC Microgrid Using PI Fuzzy. , 2022, , .		1
25	A Variable Self-Tuning Horizon Mechanism for Generalized Dynamic Predictive Control on DC/DC Boost Converters Feeding CPLs. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2023, 11, 1650-1660.	5.4	5
26	SoC Balancing Strategy for Distributed Energy Storage System Based on Event-Triggered Mechanism in DC Microgrids. , 2022, , .		1
27	DC-based microgrid: Topologies, control schemes, and implementations. AEJ - Alexandria Engineering Journal, 2023, 70, 61-92.	6.4	24
28	Voltage Regulation of DC-DC Buck Converters Feeding CPLs via Automatic Curriclum Learning. , 2022, ,		0
29	A Method for Charging Electric Vehicles With Battery-Supercapacitor Hybrid Energy Storage Systems to Improve Voltage Quality and Battery Lifetime in Islanded Building-Level DC Microgrids. IEEE Transactions on Sustainable Energy, 2023, 14, 1895-1908.	8.8	5
30	Robustness enhancement of DRL controller for DC–DC buck convertersfusing ESO. Journal of Control and Decision, 0, , 1-10.	1.6	0
32	A Generalized Dynamic Nonsmooth Control Design for DC Microgrids based on Deep Reinforcement Learning. , 2023, , .		0
33	A Decentralized Power Allocation Strategy via an Adaptive Integral Droop Approach in DC Microgrids. , 2023, , .		0
34	A Comprehensive Review on DC Microgrid Controlling Techniques. , 2023, , .		2
35	A Novel Output-Constrained Controller for DC/DC Buck Converter Feeding Constant Power Loads in DC Microgrids. , 2023, , .		0