State of the Art and Prospects in Metal–Organic Fram Nanocatalysis

Chemical Reviews 120, 1438-1511

DOI: 10.1021/acs.chemrev.9b00223

Citation Report

#	Article	IF	CITATIONS
1	Recent Advances in Polymeric Nanocomposites of Metal-Organic Frameworks (MOFs). Polymers, 2019, 11, 1627.	2.0	22
2	An Asymmetric Supercapacitor Based on a Non-Calcined 3D Pillared Cobalt(II) Metal–Organic Framework with Long Cyclic Stability. Inorganic Chemistry, 2019, 58, 16100-16111.	1.9	111
3	On the potential for nanoscale metal–organic frameworks for energy applications. Journal of Materials Chemistry A, 2019, 7, 21545-21576.	5.2	88
4	Creation and stabilisation of tuneable open metal sites in thiocyanato-bridged heterometallic coordination polymers to be used as heterogeneous catalysts. Dalton Transactions, 2019, 48, 17063-17069.	1.6	12
5	A dual factor activated metal–organic framework hybrid nanoplatform for photoacoustic imaging and synergetic photo-chemotherapy. Nanoscale, 2019, 11, 20630-20637.	2.8	39
6	Facile Preparation of Pd/UiO-66-v for the Conversion of Furfuryl Alcohol to Tetrahydrofurfuryl Alcohol under Mild Conditions in Water. Nanomaterials, 2019, 9, 1698.	1.9	14
7	One-pot synthesis of bimetallic metal–organic frameworks (MOFs) as acid–base bifunctional catalysts for tandem reaction. Catalysis Science and Technology, 2020, 10, 315-322.	2.1	50
8	Design and Functions of Macromolecular Electron-Reservoir Complexes and Devices. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30, 111-120.	1.9	4
9	Synthesis of micro/nanoscaled metal–organic frameworks and their direct electrochemical applications. Chemical Society Reviews, 2020, 49, 301-331.	18.7	685
10	Recent Advances in the Synthesis and Application of Polymer Compartments for Catalysis. Polymers, 2020, 12, 2190.	2.0	26
11	A Singleâ€Source Precursor Route toward Smallâ€Sized Nickel Particles Embedded into SiO 2 Sheet as Magnetic Separable Catalyst. ChemistrySelect, 2020, 5, 11708-11712.	0.7	1
12	2D/3D coordination polymers based on di-, tri-, tetranuclear and polymeric chain units with a tricarboxylate ligand: Structures, magnetic and luminescent properties. Inorganica Chimica Acta, 2020, 513, 119944.	1.2	4
13	Mixed-Ligand Strategy for the Construction of Photochromic Metal–Organic Frameworks Driven by Electron-Transfer Between Nonphotoactive Units. Crystal Growth and Design, 2020, 20, 7350-7355.	1.4	103
14	Advanced transition metal/nitrogen/carbon-based electrocatalysts for fuel cell applications. Science China Chemistry, 2020, 63, 1517-1542.	4.2	56
15	Ionic liquid-mediated catalytic oxidation of \hat{l}^2 -caryophyllene by ultrathin 2D metal-organic framework nanosheets under 1 atm O2. Molecular Catalysis, 2020, 496, 111196.	1.0	3
16	Single-molecule mapping of catalytic reactions on heterostructures. Nano Today, 2020, 34, 100957.	6.2	15
17	Hypoxia-responsive fluorescent nanoprobe for imaging and cancer therapy. TrAC - Trends in Analytical Chemistry, 2020, 131, 116010.	5.8	17
18	Spatial Confinement in Copper-Porphyrin Frameworks Enhances Carbon Dioxide Reduction to Hydrocarbons. Cell Reports Physical Science, 2020, 1, 100182.	2.8	27

#	ARTICLE	IF	Citations
19	Theoretical Investigations on the Effect of the Functional Group of Pd@UiO-66 for Formic Acid Dehydrogenation. Journal of Physical Chemistry C, 2020, 124, 23738-23744.	1.5	6
20	Reticular Materials for Artificial Photoreduction of CO ₂ . Advanced Energy Materials, 2020, 10, 2002091.	10.2	92
21	PtNi bimetallic structure supported on UiO-67 metal-organic framework (MOF) during CO oxidation. Journal of Catalysis, 2020, 391, 522-529.	3.1	7
22	Role of the metal cation in the dehydration of the microporous metal–organic frameworks CPO-27-M. Microporous and Mesoporous Materials, 2020, 309, 110503.	2.2	14
23	Structural Dynamics and Adsorption Properties of the Breathing Microporous Aliphatic Metal–Organic Framework. Inorganic Chemistry, 2020, 59, 15724-15732.	1.9	18
24	Double-shelled hollow bimetallic phosphide nanospheres anchored on nitrogen-doped graphene for boosting water electrolysis. Journal of Materials Chemistry A, 2020, 8, 22222-22229.	5.2	51
25	Removal of inorganic arsenic from water using metal organic frameworks. Journal of Environmental Sciences, 2020, 97, 162-168.	3.2	14
26	Designing Magnetic NanoMOFs for Biomedicine: Current Trends and Applications. Magnetochemistry, 2020, 6, 39.	1.0	13
27	Coordination polymers as heterogeneous catalysts in hydrogen evolution and oxygen evolution reactions. Chemical Communications, 2020, 56, 10824-10842.	2.2	61
28	Reversible Color and Shape Changes of Nanostructured Fibers of a Macrocyclic π-Extended Thiophene Hexamer Promoted by Adsorption and Desorption of Organic Vapor. Journal of the American Chemical Society, 2020, 142, 13662-13666.	6.6	9
29	Recent advances in metal–organic frameworks for electrocatalytic hydrogen evolution and overall water splitting reactions. Dalton Transactions, 2020, 49, 12483-12502.	1.6	50
30	Conductive Metal–Organic Frameworks: Design, Synthesis, and Applications. Small Methods, 2020, 4, 2000396.	4.6	92
31	Ni/carbon aerogels derived from water induced self-assembly of Ni-MOF for adsorption and catalytic conversion of oily wastewater. Chemical Engineering Journal, 2020, 402, 126205.	6.6	51
32	Energetic decomposition yields efficient bimetallic Cu MOF-derived catalysts. Journal of Materials Chemistry A, 2020, 8, 15066-15073.	5.2	17
33	Construction of Flexibleâ€onâ€Rigid Hybridâ€Phase Metal–Organic Frameworks for Controllable Multiâ€Drug Delivery. Angewandte Chemie, 2020, 132, 18234-18242.	1.6	8
34	Removal of nitrogen-containing compounds from microalgae derived biofuel by adsorption over functionalized metal organic frameworks. Fuel, 2020, 280, 118622.	3.4	31
35	Copper and nickel immobilized on cytosine@MCMâ€41: as highly efficient, reusable and organic–inorganic hybrid nanocatalysts for the homoselective synthesis of tetrazoles and pyranopyrazoles. Applied Organometallic Chemistry, 2020, 34, e5919.	1.7	52
36	Weak interactions in imidazoleâ€containing zinc(II)â€based metal–organic frameworks. Journal of the Chinese Chemical Society, 2020, 67, 2182-2188.	0.8	2

3

#	ARTICLE	IF	CITATIONS
37	Structure-dependent iron-based metal–organic frameworks for selective CO ₂ -to-CH ₄ photocatalytic reduction. Journal of Materials Chemistry A, 2020, 8, 25850-25856.	5.2	64
38	Transition Metal and Metal–N <i>_x</i> Codoped MOFâ€Derived Fentonâ€Like Catalysts: A Comparative Study on Single Atoms and Nanoparticles. Small, 2020, 16, e2005060.	5.2	72
39	Metal–Organic Framework-Derived Fe-Doped Ni ₃ Fe/NiFe ₂ O ₄ Heteronanoparticle-Decorated Carbon Nanotube Network as a Highly Efficient and Durable Bifunctional Electrocatalyst. ACS Applied Materials & Samp; Interfaces, 2020, 12, 55782-55794.	4.0	52
40	Structure couture and appraisal of catalytic activity of carbon nitride (g-C3N4) based materials towards sustainability. Current Research in Green and Sustainable Chemistry, 2020, 3, 100039.	2.9	22
41	Sulfonic Acids Supported on UiO-66 as Heterogeneous Catalysts for the Esterification of Fatty Acids for Biodiesel Production. Catalysts, 2020, 10, 1271.	1.6	14
42	Rational Design of a Zn ^{II} MOF with Multiple Functional Sites for Highly Efficient Fixation of CO ₂ under Mild Conditions: Combined Experimental and Theoretical Investigation. Chemistry - A European Journal, 2020, 26, 17445-17454.	1.7	42
43	Transition metal-based metal-organic frameworks for oxygen evolution reaction. Coordination Chemistry Reviews, 2020, 424, 213488.	9.5	137
44	MOF-based atomically dispersed metal catalysts: Recent progress towards novel atomic configurations and electrocatalytic applications. Coordination Chemistry Reviews, 2020, 422, 213483.	9.5	105
45	Mechanistic Insight into the Catalytic NO Oxidation by the MIL-100 MOF Platform: Toward the Prediction of More Efficient Catalysts. ACS Catalysis, 2020, 10, 9445-9450.	5.5	22
46	Functional metal–organic frameworks as effective sensors of gases and volatile compounds. Chemical Society Reviews, 2020, 49, 6364-6401.	18.7	784
47	Hierarchically macro–meso–microporous metal–organic framework for photocatalytic oxidation. Chemical Communications, 2020, 56, 10754-10757.	2.2	13
48	Two-dimensional Metal-Organic Frameworks as Electrocatalysts for Oxygen Evolution Reaction. Chemical Research in Chinese Universities, 2020, 36, 504-510.	1.3	22
49	Synergistic effects of Pt-embedded, MIL-53-derived catalysts (Pt@Al2O3) and NaBH4 for water-mediated hydrogenolysis of biomass-derived furfural to 1,5-pentanediol at near-ambient temperature. Journal of Catalysis, 2020, 390, 46-56.	3.1	43
50	Solarâ€Driven Nitrogen Fixation Catalyzed by Stable Radicalâ€Containing MOFs: Improved Efficiency Induced by a Structural Transformation. Angewandte Chemie - International Edition, 2020, 59, 20666-20671.	7.2	71
51	Recent Advances in MOFâ€Derived Single Atom Catalysts for Electrochemical Applications. Advanced Energy Materials, 2020, 10, 2001561.	10.2	265
52	Vertical graphene nano-antennas for solar-to-hydrogen energy conversion. Solar Energy, 2020, 208, 379-387.	2.9	13
53	Surface Coordination Chemistry of Atomically Dispersed Metal Catalysts. Chemical Reviews, 2020, 120, 11810-11899.	23.0	325
54	Using nature's blueprint to expand catalysis with Earth-abundant metals. Science, 2020, 369, .	6.0	306

#	ARTICLE	IF	Citations
55	Implanting FeCo/C nanocages with tunable electromagnetic parameters in anisotropic wood carbon aerogels for efficient microwave absorption. Journal of Materials Chemistry A, 2020, 8, 18863-18871.	5.2	94
56	Utilization of counter anions for charge transportation in the electrical device fabrication of Zn(ii) metal–organic frameworks. Dalton Transactions, 2020, 49, 17005-17016.	1.6	7
57	State-of-the-art advancements in photo-assisted CO ₂ hydrogenation: recent progress in catalyst development and reaction mechanisms. Journal of Materials Chemistry A, 2020, 8, 24868-24894.	5.2	40
58	Recent advances in catalytic and autocatalytic production of biomass-derived 5-hydroxymethylfurfural. Renewable and Sustainable Energy Reviews, 2020, 134, 110317.	8.2	69
59	Diatomite-Metal-Organic Framework Composite with Hierarchical Pore Structures for Adsorption/Desorption of Hydrogen, Carbon Dioxide and Water Vapor. Materials, 2020, 13, 4700.	1.3	13
60	A decennary update on applications of metal nanoparticles (MNPs) in the synthesis of nitrogen- and oxygen-containing heterocyclic scaffolds. RSC Advances, 2020, 10, 32740-32820.	1.7	55
61	An in situ approach to functionalize metal–organic frameworks with tertiary aliphatic amino groups. Chemical Communications, 2020, 56, 13177-13180.	2.2	10
62	Recent Advances in Affinity MOF-Based Sorbents with Sample Preparation Purposes. Molecules, 2020, 25, 4216.	1.7	27
63	Solarâ€Driven Nitrogen Fixation Catalyzed by Stable Radicalâ€Containing MOFs: Improved Efficiency Induced by a Structural Transformation. Angewandte Chemie, 2020, 132, 20847-20852.	1.6	46
64	ZIF-8-based <i>vs.</i> ZIF-8-derived Au and Pd nanoparticles as efficient catalysts for the Ullmann homocoupling reaction. Inorganic Chemistry Frontiers, 2020, 7, 3945-3952.	3.0	13
65	High-Performance Zinc–Air Batteries with Scalable Metal–Organic Frameworks and Platinum Carbon Black Bifunctional Catalysts. ACS Applied Materials & Samp; Interfaces, 2020, 12, 42696-42703.	4.0	41
66	Accelerated ageing reactions: towards simpler, solvent-free, low energy chemistry. Green Chemistry, 2020, 22, 5881-5901.	4.6	43
67	Metal phosphonates incorporating metalloligands: assembly, structures and properties. Chemical Communications, 2020, 56, 12090-12108.	2.2	36
68	Framework Copper Catalyzed Oxidative Synthesis of Quinazolinones: A Benign Approach Using Cu ₃ (BTC) ₂ MOF as an Efficient and Reusable Catalyst. ChemistrySelect, 2020, 5, 10041-10047.	0.7	13
69	Evolution of metal organic frameworks as electrocatalysts for water oxidation. Chemical Communications, 2020, 56, 11735-11748.	2.2	35
70	Sterically Hindered Phosphonium Salts: Structure, Properties and Palladium Nanoparticle Stabilization. Nanomaterials, 2020, 10, 2457.	1.9	7
71	Structural Characterization of a Highâ€Nuclearity Niobium(V) Carboxylate Cluster Based on Pivalic Acid. Helvetica Chimica Acta, 2020, 103, e2000186.	1.0	3
72	Stabilities and Electronic Structures of Transition Metal (Cu, Ag, Au, Ni, Pd, Pt) Cluster-Confined UiO-66. Journal of Physical Chemistry C, 2020, 124, 28123-28131.	1.5	9

#	Article	IF	Citations
73	Linker Substituents Control the Thermodynamic Stability in Metal–Organic Frameworks. Journal of the American Chemical Society, 2020, 142, 21720-21729.	6.6	36
74	Structural Diversity of Zirconium Metal–Organic Frameworks and Effect on Adsorption of Toxic Chemicals. Journal of the American Chemical Society, 2020, 142, 21428-21438.	6.6	95
75	Laccase immobilization with metal-organic frameworks: Current status, remaining challenges and future perspectives. Critical Reviews in Environmental Science and Technology, 2022, 52, 1282-1324.	6.6	17
76	Application of MOF-based materials in electrochemical sensing. Dalton Transactions, 2020, 49, 17121-17129.	1.6	66
77	Hierarchically Nanoporous Titanium-Based Coordination Polymers for Photocatalytic Synthesis of Benzimidazole. ACS Applied Nano Materials, 2020, 3, 10720-10731.	2.4	8
78	Recent Progress in Synthesis of Nano- and Atomic-Sized Catalysts. ACS Symposium Series, 2020, , 95-128.	0.5	2
79	Highly Efficient and Recyclable ZIF-67 Catalyst for the Degradation of Tetracycline. Catalysis Letters, 2020, 150, 3017-3022.	1.4	29
80	Encapsulation of Phosphorescent Pt(II) Complexes in Zn-Based Metal–Organic Frameworks toward Oxygen-Sensing Porous Materials. Inorganic Chemistry, 2020, 59, 7252-7264.	1.9	34
81	Metal organic frameworks for biomass conversion. Chemical Society Reviews, 2020, 49, 3638-3687.	18.7	176
82	Structural analysis of and selective CO ₂ adsorption in mixed-ligand hydroxamate-based metal–organic frameworks. Dalton Transactions, 2020, 49, 9948-9952.	1.6	11
83	High-performance metal-organic framework-perovskite hybrid as an important component of the air-electrode for rechargeable Zn-Air battery. Journal of Power Sources, 2020, 468, 228377.	4.0	52
84	General approach to construct hierarchical-structured porous Co–Ni bimetallic oxides for efficient oxygen evolution. Inorganic Chemistry Frontiers, 2020, 7, 2611-2620.	3.0	7
85	Monodispersed mesoporous SiO2@metal-organic framework (MSN@MIL-101(Fe)) composites as sorbent for extraction and preconcentration of phytohormones prior to HPLC-DAD analysis. Mikrochimica Acta, 2020, 187, 367.	2.5	15
87	Emerging trends in porous materials for CO ₂ capture and conversion. Chemical Society Reviews, 2020, 49, 4360-4404.	18.7	473
88	Self-adjusting binding pockets enhance H ₂ and CH ₄ adsorption in a uranium-based metal–organic framework. Chemical Science, 2020, 11, 6709-6716.	3.7	25
89	Self-assembly of block copolymers towards mesoporous materials for energy storage and conversion systems. Chemical Society Reviews, 2020, 49, 4681-4736.	18.7	311
90	Fabricating Dualâ€Atom Iron Catalysts for Efficient Oxygen Evolution Reaction: A Heteroatom Modulator Approach. Angewandte Chemie - International Edition, 2020, 59, 16013-16022.	7.2	151
91	Transition Metal Ions Regulated Structural and Catalytic Behaviors of Coordination Polymers. Crystal Growth and Design, 2020, 20, 5277-5288.	1.4	19

#	Article	IF	CITATIONS
92	Boosting the Oxygen Evolution Electrocatalysis Performance of Iron Phosphide via Architectural Design and Electronic Modulation. ACS Sustainable Chemistry and Engineering, 2020, 8, 9206-9216.	3.2	15
93	Synthesis, Crystal Structures and Luminescence Properties of Three New Cadmium 3D Coordination Polymers. Molecules, 2020, 25, 2465.	1.7	4
94	Metal–Organic Framework-Derived NiS/Fe ₃ O ₄ Heterostructure-Decorated Carbon Nanotubes as Highly Efficient and Durable Electrocatalysts for Oxygen Evolution Reaction. ACS Applied Materials & Durable 2020, 12, 31552-31563.	4.0	78
95	In Situ Construction of Pt–Ni NF@Niâ€MOFâ€74 for Selective Hydrogenation of <i>p</i> à€Nitrostyrene by Ammonia Borane. Chemistry - A European Journal, 2020, 26, 12539-12543.	1.7	9
96	In situ encapsulated Co/MnOx nanoparticles inside quasi-MOF-74 for the higher alcohols synthesis from syngas. Applied Catalysis B: Environmental, 2020, 278, 119262.	10.8	70
97	CO2 controls the oriented growth of metal-organic framework with highly accessible active sites. Nature Communications, 2020, 11, 1431.	5.8	51
98	Mitigation of Pressure-Induced Amorphization in Metal–Organic Framework ZIF-8 upon EPR Control. ACS Applied Materials & Diterfaces, 2020, 12, 16655-16661.	4.0	36
99	Two-dimensional metal–organic framework nanosheets: synthetic methodologies and electrocatalytic applications. Journal of Materials Chemistry A, 2020, 8, 15271-15301.	5.2	79
100	A periodic table of metal-organic frameworks. Coordination Chemistry Reviews, 2020, 414, 213295.	9.5	84
101	Self-Assembly and Ionic-Lattice-like Secondary Structure of a Flexible Linear Polymer of Highly Charged Inorganic Building Blocks. Journal of the American Chemical Society, 2020, 142, 7295-7300.	6.6	12
102	Tuning Catalytic Sites on Zr ₆ O ₈ Metal–Organic Framework Nodes via Ligand and Defect Chemistry Probed with ⟨i>tertbutyl Alcohol Dehydration to Isobutylene. Journal of the American Chemical Society, 2020, 142, 8044-8056.	6.6	83
103	Hierarchical porous ZIF-8 for hydrogen production <i>via</i> the hydrolysis of sodium borohydride. Dalton Transactions, 2020, 49, 4416-4424.	1.6	48
104	Thermodynamics of Transition Metal Ion Binding to Proteins. Journal of the American Chemical Society, 2020, 142, 6365-6374.	6.6	28
105	A Woven Supramolecular Metalâ€Organic Framework Comprising a Ruthenium Bis(terpyridine) Complex and Cucurbit[8]uril: Enhanced Catalytic Activity toward Alcohol Oxidation. ChemPlusChem, 2020, 85, 1498-1503.	1.3	13
106	Co@N-doped carbon nanomaterial derived by simple pyrolysis of mixed-ligand MOF as an active and stable oxygen evolution electrocatalyst. Applied Surface Science, 2020, 529, 147081.	3.1	36
107	Electrochemical sensors for environmental gas analysis. Current Opinion in Electrochemistry, 2020, 22, 145-153.	2.5	35
108	An electrochemical sensor for bacterial lipopolysaccharide detection based on dual functional Cu2+-modified metal–organic framework nanoparticles. Mikrochimica Acta, 2020, 187, 415.	2.5	18
109	Machine learning and high-throughput computational screening of hydrophobic metal–organic frameworks for capture of formaldehyde from air. Green Energy and Environment, 2021, 6, 759-770.	4.7	35

#	Article	IF	CITATIONS
110	2D MOFs with Ni(II), Cu(II), and Co(II) as Efficient Oxygen Evolution Electrocatalysts: Rationalization of Catalytic Performance <i>vs</i> Structure of the MOFs and Potential of the Redox Couples. ACS Applied Materials & Date:	4.0	64
111	Multifunctional zeolitic imidazolate framework-8 for real-time monitoring ATP fluctuation in mitochondria during photodynamic therapy. Nanoscale, 2020, 12, 15663-15669.	2.8	36
112	Construction of Flexibleâ€onâ€Rigid Hybridâ€Phase Metal–Organic Frameworks for Controllable Multiâ€Drug Delivery. Angewandte Chemie - International Edition, 2020, 59, 18078-18086.	7.2	86
113	Fabricating Dualâ€Atom Iron Catalysts for Efficient Oxygen Evolution Reaction: A Heteroatom Modulator Approach. Angewandte Chemie, 2020, 132, 16147-16156.	1.6	19
114	Towards high-performance heterogeneous palladium nanoparticle catalysts for sustainable liquid-phase reactions. Reaction Chemistry and Engineering, 2020, 5, 1556-1618.	1.9	21
115	Low-crystalline mixed Fe-Co-MOFs for efficient oxygen evolution electrocatalysis. Journal of Materials Science, 2020, 55, 13951-13963.	1.7	37
116	Highly Active Heterogeneous PdCl 2 /MOF Catalyst for Suzuki–Miyaura Crossâ€Coupling Reactions of Aryl Chloride. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2020, 646, 1336-1341.	0.6	9
117	Construction and electrochemical reversibility of two copper(II) coordination polymers assembled from p-terphenyl-2,2′',5′''-tetracarboxylate acid. Inorganic Chemistry Communication, 2020, 114, 107	8 ¹ 4 ⁸ 3.	1
118	Surfaceâ€Deactivated Core–Shell Metal–Organic Framework by Simple Ligand Exchange for Enhanced Size Discrimination in Aerobic Oxidation of Alcohols. Chemistry - A European Journal, 2020, 26, 7568-7572.	1.7	34
119	FeNi ₃ –Fe ₃ O ₄ Heterogeneous Nanoparticles Anchored on 2D MOF Nanosheets/1D CNT Matrix as Highly Efficient Bifunctional Electrocatalysts for Water Splitting. ACS Sustainable Chemistry and Engineering, 2020, 8, 3820-3831.	3.2	80
120	Design and Remarkable Efficiency of the Robust Sandwich Cluster Composite Nanocatalysts ZIF-8@Au ₂₅ @ZIF-67. Journal of the American Chemical Society, 2020, 142, 4126-4130.	6.6	141
121	Nanocatalysts and other nanomaterials for water remediation from organic pollutants. Coordination Chemistry Reviews, 2020, 408, 213180.	9.5	389
122	Advances and prospects of rare earth metal-organic frameworks in catalytic applications. Journal of Rare Earths, 2020, 38, 801-818.	2.5	66
123	An effective "precursor-transformation―route toward the high-yield synthesis of ZIF-8 tubes. Chemical Communications, 2020, 56, 2913-2916.	2.2	35
124	Easy Processing of Metal–Organic Frameworks into Pellets and Membranes. Applied Sciences (Switzerland), 2020, 10, 798.	1.3	6
125	Facile Fabrication of Hierarchical MOF–Metal Nanoparticle Tandem Catalysts for the Synthesis of Bioactive Molecules. ACS Applied Materials & Early; Interfaces, 2020, 12, 23002-23009.	4.0	27
126	Recent Advances in Nobleâ€Metalâ€Free Catalysts for Electrocatalytic Synthesis of Ammonia under Ambient Conditions. Chemistry - an Asian Journal, 2020, 15, 1791-1807.	1.7	8
127	Metal–Organic Framework-Based Catalysts with Single Metal Sites. Chemical Reviews, 2020, 120, 12089-12174.	23.0	692

#	Article	IF	CITATIONS
128	Synthesis and Immobilization of Metal Nanoparticles Using Photoactive Polymerâ€Decorated Zeolite L Crystals and Their Application in Catalysis. Advanced Synthesis and Catalysis, 2020, 362, 2245-2253.	2.1	2
129	Synthesis of Bi-, Ter-, and Quaterpyridinecarboxylates via Propargylisoxazole–Pyridine Rearrangement. Journal of Organic Chemistry, 2020, 85, 6109-6122.	1.7	7
130	Insights into the Electronic Properties and Charge Transfer Mechanism of a Porphyrin Ruthenium-Based Metal–Organic Framework. Chemistry of Materials, 2020, 32, 4194-4204.	3.2	31
131	Striking dual functionality of a novel Pd@Eu-MOF nanocatalyst in C(sp ²)–C(sp ²) bond-forming and CO ₂ fixation reactions. Dalton Transactions, 2020, 49, 6368-6376.	1.6	20
132	The synthesis of interface-modulated ultrathin Ni(<scp>ii</scp>) MOF/g-C ₃ N ₄ heterojunctions as efficient photocatalysts for CO ₂ reduction. Nanoscale, 2020, 12, 10010-10018.	2.8	64
133	Incorporation of Active Metal Species in Crystalline Porous Materials for Highly Efficient Synergetic Catalysis. Small, 2021, 17, e2003971.	5.2	31
134	Superior photoelectrocatalytic performance of ternary structural BiVO4/GQD/g-C3N4 heterojunction. Journal of Colloid and Interface Science, 2021, 586, 785-796.	5.0	32
135	A remarkable adsorbent for removal of nitrogenous compounds from fuel: A metal–organic framework functionalized both on metal and ligand. Chemical Engineering Journal, 2021, 404, 126491.	6.6	29
136	<i>In situ</i> Nanoscale Infrared Spectroscopy of Water Adsorption on Nanoislands of Surfaceâ€Anchored Metalâ€Organic Frameworks. Angewandte Chemie - International Edition, 2021, 60, 1620-1624.	7.2	29
137	[M ₂ (μâ€OH) ₂ (DHBQ) ₃] (M = Zr, Hf) ‷Two New Isostructural Coordination Polymers based on the Unique M ₂ O ₁₄ Inorganic Building Unit and 2,5â€Dioxidoâ€ <i>p</i> i>à€benzoquinone as Linker Molecule. Zeitschrift Fur Anorganische Und Allgemeine Chemie. 2021. 647. 436-441.	0.6	5
138	Ultrathin nanoflake-assembled hierarchical BiOBr microflower with highly exposed {001} facets for efficient photocatalytic degradation of gaseous ortho-dichlorobenzene. Applied Catalysis B: Environmental, 2021, 281, 119478.	10.8	112
139	The Active Sites Engineering of Catalysts for CO 2 Activation and Conversion. Solar Rrl, 2021, 5, 2000443.	3.1	7
140	Heterogeneous Fenton catalysts: A review of recent advances. Journal of Hazardous Materials, 2021, 404, 124082.	6.5	412
141	Synthesis, structure and fluorescent sensing for nitrobenzene of a Zn-based MOF. Journal of Molecular Structure, 2021, 1223, 129217.	1.8	26
142	Organic carboxylate-based MOFs and derivatives for electrocatalytic water oxidation. Coordination Chemistry Reviews, 2021, 428, 213619.	9.5	122
143	Metal-organic framework-derived nanomaterials in environment related fields: Fundamentals, properties and applications. Coordination Chemistry Reviews, 2021, 429, 213618.	9.5	94
144	A porous multifunctional and magnetic layered graphene oxide/3D mesoporous MOF nanocomposite for rapid adsorption of uranium(VI) from aqueous solutions. Journal of Industrial and Engineering Chemistry, 2021, 93, 322-332.	2.9	77
145	Nitrogen-doped macro-meso-micro hierarchical ordered porous carbon derived from ZIF-8 for boosting supercapacitor performance. Applied Surface Science, 2021, 540, 148352.	3.1	52

#	Article	IF	CITATIONS
146	Iron-based catalysts for persulfate-based advanced oxidation process: Microstructure, property and tailoring. Chemical Engineering Journal, 2021, 421, 127845.	6.6	85
147	Interplay between oxygen doping and ultra-microporosity improves the CO2/N2 separation performance of carbons derived from aromatic polycarboxylates. Carbon, 2021, 173, 989-1002.	5.4	16
148	Variability in the Formation and Framework Polymorphism of Metalâ€organic Frameworks based on Yttrium(III) and the Bifunctional Organic Linker 2,5â€Dihydroxyterephthalic Acid. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2021, 647, 15-25.	0.6	1
149	2D Trimetal-organic framework derived metal carbon hybrid catalyst for urea electro-oxidation and 4-nitrophenol reduction. Chemosphere, 2021, 267, 129243.	4.2	23
150	Complex Hollow Bowlâ€Like Nanostructures: Synthesis, Application, and Perspective. Advanced Functional Materials, 2021, 31, 2007801.	7.8	35
151	Metal-organic framework-derived porous carbon templates for catalysis. , 2021, , 73-121.		0
152	Recent advances of metal-organic frameworks and their composites towardÂoxygen evolution electrocatalysis. Materials Today Energy, 2021, 19, 100597.	2.5	34
153	Photoluminescence Enhancement by Light Harvesting of Metal–Organic Frameworks Surrounding Semiconductor Quantum Dots. Chemistry of Materials, 2021, 33, 1607-1617.	3.2	24
154	Tailored Catalytic Nanoframes from Metal–Organic Frameworks by Anisotropic Surface Modification and Etching for the Hydrogen Evolution Reaction. Angewandte Chemie - International Edition, 2021, 60, 4747-4755.	7.2	92
155	Efficient hydrolytic cleavage of phosphodiester with a lanthanide-based metal-organic framework. Journal of Solid State Chemistry, 2021, 293, 121820.	1.4	5
156	Nanoarchitectonics Revolution and Evolution: From Small Science to Big Technology. Small Science, 2021, 1, 2000032.	5.8	58
157	Polyoxometalate/metal–organic framework hybrids and their derivatives for hydrogen and oxygen evolution electrocatalysis. Materials Today Energy, 2021, 19, 100618.	2.5	39
158	A hydrolytically stable cage-based metal–organic framework containing two types of building blocks for the adsorption of iodine and dyes. Inorganic Chemistry Frontiers, 2021, 8, 1083-1092.	3.0	55
159	The applications and prospects of hydrophobic metal–organic frameworks in catalysis. Dalton Transactions, 2021, 50, 39-58.	1.6	34
160	The rational design of Cu _{2â^'x} Se@(Co,Cu)Se ₂ coreâ€"shell structures as bifunctional electrocatalysts for neutral-pH overall water splitting. Nanoscale, 2021, 13, 1134-1143.	2.8	12
161	Fabrication of HRP/Bi2WO6 photoenzyme-coupled artificial catalytic system for efficiently degrading bisphenol A. Chinese Chemical Letters, 2021, 32, 2047-2051.	4.8	31
162	Nanoboxes endow non-noble-metal-based electrocatalysts with high efficiency for overall water splitting. Journal of Materials Chemistry A, 2021, 9, 857-874.	5.2	100
163	Bioresponsive metal–organic frameworks: Rational design and function. Coordination Chemistry Reviews, 2021, 431, 213682.	9.5	17

#	ARTICLE	IF	Citations
164	Zero-to-one (or more) nanoarchitectonics: how to produce functional materials from zero-dimensional single-element unit, fullerene. Materials Advances, 2021, 2, 582-597.	2.6	30
165	Recent progress in lanthanide metal–organic frameworks and their derivatives in catalytic applications. Inorganic Chemistry Frontiers, 2021, 8, 590-619.	3.0	74
166	Design and preparation of ultra-thin 2D Ag-NiMOF ferroelectric nanoplatelets for PVDF based dielectric composites. Materials and Design, 2021, 197, 109241.	3.3	25
167	Tailored Catalytic Nanoframes from Metal–Organic Frameworks by Anisotropic Surface Modification and Etching for the Hydrogen Evolution Reaction. Angewandte Chemie, 2021, 133, 4797-4805.	1.6	18
168	Inquiry for the multifunctional design of metal–organic frameworks: in situ equipping additional open metal sites (OMSs) inducing high CO2 capture/conversion abilities. Materials Chemistry Frontiers, 2021, 5, 1398-1404.	3.2	10
169	Recent progress in the development of biomass-derived nitrogen-doped porous carbon. Journal of Materials Chemistry A, 2021, 9, 3703-3728.	5.2	167
170	Rational design of porous organic molecules (POMs) based on B-heterocyclic carbenes. Molecular Systems Design and Engineering, 2021, 6, 132-138.	1.7	5
171	Visible Light–Initiated Synergistic/Cascade Reactions over Metal–Organic Frameworks. Solar Rrl, 2021, 5, 2000454.	3.1	24
172	Fabrication and characterization of highly efficient three component CuBTC/graphene oxide/PSF membrane for gas separation application. International Journal of Hydrogen Energy, 2021, 46, 2244-2254.	3.8	35
173	Atomicâ€Level Modulation of Electronic Density at Cobalt Singleâ€Atom Sites Derived from Metal–Organic Frameworks: Enhanced Oxygen Reduction Performance. Angewandte Chemie - International Edition, 2021, 60, 3212-3221.	7.2	445
174	Atomicâ€Level Modulation of Electronic Density at Cobalt Singleâ€Atom Sites Derived from Metal–Organic Frameworks: Enhanced Oxygen Reduction Performance. Angewandte Chemie, 2021, 133, 3249-3258.	1.6	44
175	One-dimensional nitrogen-doped carbon frameworks embedded with zinc-cobalt nanoparticles for efficient overall water splitting. Journal of Colloid and Interface Science, 2021, 585, 800-807.	5.0	23
176	Carbon supports on preparing iron-nitrogen dual-doped carbon (Fe-N/C) electrocatalysts for microbial fuel cells: mini-review. Chemosphere, 2021, 273, 128570.	4.2	13
177	In situ Nanoscale Infrared Spectroscopy of Water Adsorption on Nanoislands of Surfaceâ€Anchored Metalâ€Organic Frameworks. Angewandte Chemie, 2021, 133, 1644-1648.	1.6	5
178	Metal–organic frameworks and their derivatives for electrically-transduced gas sensors. Coordination Chemistry Reviews, 2021, 426, 213479.	9.5	145
179	Porous crystalline frameworks for thermocatalytic CO ₂ reduction: an emerging paradigm. Energy and Environmental Science, 2021, 14, 320-352.	15.6	61
180	Recent advances in process engineering and upcoming applications of metal–organic frameworks. Coordination Chemistry Reviews, 2021, 426, 213544.	9.5	243
181	Reticular materials for electrochemical reduction of CO2. Coordination Chemistry Reviews, 2021, 427, 213564.	9.5	29

#	Article	IF	Citations
182	Recent Progress in Functional Materials for Selective Detection and Removal of Mercury (II) Ions. Advanced Functional Materials, 2021 , 31 , .	7.8	109
183	Visible light initiated oxidative coupling of alcohols and <i>>o</i> -phenylenediamines to synthesize benzimidazoles over MIL-101(Fe) promoted by plasmonic Au. Green Chemistry, 2021, 23, 4161-4169.	4.6	33
184	Structural and electronic modulation of conductive MOFs for efficient oxygen evolution reaction electrocatalysis. Journal of Materials Chemistry A, 2021, 9, 11248-11254.	5.2	33
185	A new zeolitic lithium aluminum imidazolate framework. Dalton Transactions, 2021, 50, 7933-7937.	1.6	2
186	Nanocomposite synthesis strategies based on the transformation of well-tailored metal–organic frameworks. Chemical Communications, 2021, 57, 6960-6974.	2.2	5
187	Pillararenes: fascinating planar chiral macrocyclic arenes. Chemical Communications, 2021, 57, 9029-9039.	2.2	61
188	Highly luminescent and catalytically active suprastructures of magic-sized semiconductor nanoclusters. Nature Materials, 2021, 20, 650-657.	13.3	42
189	Long afterglow MOFs: a frontier study on synthesis and applications. Materials Chemistry Frontiers, 2021, 5, 6824-6849.	3.2	26
190	Chapter 11. Stabilising and Characterising Homogeneous Catalysts in MOFs. Monographs in Supramolecular Chemistry, 2021, , 340-369.	0.2	0
191	Multiâ€Scale Design of Metal–Organic Frameworkâ€Derived Materials for Energy Electrocatalysis. Advanced Energy Materials, 2022, 12, 2003410.	10.2	81
192	Preparation of a magnetic metal–organic square and metal–organic cubes using 4,5-bis(2-imidazolinyl)imidazolate: slow magnetization relaxation behavior in mixed-valent octamanganese(<scp>ii</scp> / <scp>iii</scp>) clusters. Dalton Transactions, 2021, 50, 5452-5464.	1.6	5
193	Direct Pyrolysis of a Manganeseâ€Triazolate Metal–Organic Framework into Airâ€Stable Manganese Nitride Nanoparticles. Advanced Science, 2021, 8, 2003212.	5.6	13
194	Modified metal-organic frameworks as photocatalysts. , 2021, , 231-270.		3
195	Ba-MOFs with tetrazole-based acetic acids: unusual configuration, novel topology and high proton conductivity. Dalton Transactions, 2021, 50, 11975-11985.	1.6	12
196	Heterometallic coordination polymers as heterogeneous electrocatalysts. Inorganic Chemistry Frontiers, 2021, 8, 2634-2649.	3.0	38
197	Three-Dimensional MOFs@MXene Aerogel Composite Derived MXene Threaded Hollow Carbon Confined CoS Nanoparticles toward Advanced Alkali-Ion Batteries. ACS Nano, 2021, 15, 3228-3240.	7.3	189
198	Organic molecular sieve membranes for chemical separations. Chemical Society Reviews, 2021, 50, 5468-5516.	18.7	170
199	Metal–Organic Framework-Based Enzyme Biocomposites. Chemical Reviews, 2021, 121, 1077-1129.	23.0	372

#	Article	IF	CITATIONS
200	Hierarchical confinement of PtZn alloy nanoparticles and single-dispersed Zn atoms on COF@MOF-derived carbon towards efficient oxygen reduction reaction. Journal of Materials Chemistry A, 2021, 9, 13625-13630.	5.2	33
201	Metal–organic framework based catalytic nanoreactors: synthetic challenges and applications. Materials Chemistry Frontiers, 2021, 5, 3986-4021.	3.2	14
202	Electrochemically controlled Au nanoparticle nucleation at a micro liquid/liquid interface using ferrocene as reducing agent. Electrochemistry Communications, 2021, 122, 106894.	2.3	9
203	Highly-dispersed Ge quantum dots in carbon frameworks for ultra-long-life sodium ion batteries. Materials Chemistry Frontiers, 2021, 5, 7778-7786.	3.2	16
204	Metal–organic framework (MOF)-derived catalysts for chemoselective hydrogenation of nitroarenes. New Journal of Chemistry, 2021, 45, 18268-18276.	1.4	18
205	Rapid spatially-resolved post-synthetic patterning of metal–organic framework films. Chemical Communications, 2021, 57, 4706-4709.	2.2	7
206	Early instability of MIL-125-NH ₂ in aqueous solution and mediation of the visible photogeneration of an NADH cofactor. New Journal of Chemistry, 2021, 45, 10277-10286.	1.4	5
207	Synthesis and characterization of new coordination compounds by the use of 2-pyridinemethanol and di- or tricarboxylic acids. CrystEngComm, 2021, 23, 5489-5497.	1.3	3
208	H2S Stability of Metal–Organic Frameworks: A Computational Assessment. ACS Applied Materials & Lamp; Interfaces, 2021, 13, 4813-4822.	4.0	6
209	Monolithic metal–organic frameworks for carbon dioxide separation. Faraday Discussions, 2021, 231, 51-65.	1.6	12
210	<scp>CO₂</scp> / <scp>N₂</scp> and <scp>O₂</scp> / <scp>N₂</scp> Separation Using <scp>Mixedâ€Matrix</scp> Membranes with <scp>MOF</scp> â€₹4 Nanocrystals Synthesized Via Microwave Reactions. Bulletin of the Korean Chemical Society, 2021, 42, 459-462.	1.0	25
211	Multicolour lanthanide(<scp>iii</scp>) porous 1D coordination polymers: tunable wide spectrum emission and efficient Cu ^{II} sensing. Dalton Transactions, 2021, 50, 13002-13011.	1.6	7
212	Highly Efficient Silver Catalyst Supported by a Spherical Covalent Organic Framework for the Continuous Reduction of 4-Nitrophenol. ACS Applied Materials & Samp; Interfaces, 2021, 13, 3209-3220.	4.0	76
214	Surfactant-assisted synthesis of titanium nanoMOFs for thin film fabrication. Chemical Communications, 2021, 57, 9040-9043.	2.2	4
215	Enhanced stability and colorimetric detection on Ag(<scp>i</scp>) ions of a methylthio-functionalized Zn(<scp>ii</scp>) metal–organic framework. Journal of Materials Chemistry C, 2021, 9, 5088-5092.	2.7	9
216	A Cu(<scp>ii</scp>)-MOF based on a propargyl carbamate-functionalized isophthalate ligand. RSC Advances, 2021, 11, 20429-20438.	1.7	5
217	Long Afterglow of a Nonporous Coordination Polymer with Tunable Room-Temperature Phosphorescence by the Doping of Dye Molecules. Inorganic Chemistry, 2021, 60, 846-851.	1.9	20
218	Catalytically active sites of MOF-derived electrocatalysts: synthesis, characterization, theoretical calculations, and functional mechanisms. Journal of Materials Chemistry A, 2021, 9, 20320-20344.	5.2	37

#	Article	IF	CITATIONS
219	A novel and efficient method of MOF-derived electrocatalyst for HER performance through doping organic ligands. Materials Chemistry Frontiers, 2021, 5, 7833-7842.	3.2	8
220	2D metal–organic framework-based materials for electrocatalytic, photocatalytic and thermocatalytic applications. Nanoscale, 2021, 13, 3911-3936.	2.8	176
221	A binary all-nanoporous composite membrane constructed <i>via</i> vapor phase transformation for high-permeance gas separation. Inorganic Chemistry Frontiers, 2021, 8, 5016-5023.	3.0	7
222	From metal–organic framework powders to shaped solids: recent developments and challenges. Materials Advances, 2021, 2, 7139-7186.	2.6	50
223	Metal organic framework-based nanocomposites for alcohol fuel cells. , 2021, , 353-370.		4
224	Epoxy Functional Composites Based on Lanthanide Metal–Organic Frameworks for Luminescent Polymer Materials. ACS Applied Materials & Lamp; Interfaces, 2021, 13, 7625-7634.	4.0	26
225	Noble-metal-free Co@Co2P/N-doped carbon nanotube polyhedron as an efficient catalyst for hydrogen generation from ammonia borane. International Journal of Hydrogen Energy, 2021, 46, 9030-9039.	3.8	22
226	A Simple in vivo Assay Using Amphipods for the Evaluation of Potential Biocompatible Metal-Organic Frameworks. Frontiers in Bioengineering and Biotechnology, 2021, 9, 584115.	2.0	28
227	Parameterization of Monovalent Ions for the OPC3, OPC, TIP3P-FB, and TIP4P-FB Water Models. Journal of Chemical Information and Modeling, 2021, 61, 869-880.	2.5	81
228	Design Strategies for Enhanced Conductivity in Metal–Organic Frameworks. ACS Central Science, 2021, 7, 445-453.	5.3	72
229	Palladium Nanoparticles Immobilized on a Resorcin[4]arene-Based Metal–Organic Framework for Hydrogenation of Nitroarenes. ACS Applied Nano Materials, 2021, 4, 2278-2284.	2.4	17
230	In Situ Growth of Ni-Based Metal–Organic Framework Nanosheets on Carbon Nanotube Films for Efficient Oxygen Evolution Reaction. Inorganic Chemistry, 2021, 60, 3439-3446.	1.9	19
231	Binding Site Effect in Metalâ€Organic Frameworks for Property Regulation of Metal Nanoparticles. Small Structures, 2021, 2, 2000119.	6.9	12
232	Rareâ€Earthâ€Based Metal–Organic Frameworks as Multifunctional Platforms for Catalytic Conversion. Small, 2021, 17, e2005371.	5.2	47
233	Parallel Lipid Peroxide Accumulation Strategy Based on Bimetal–Organic Frameworks for Enhanced Ferrotherapy. Chemistry - A European Journal, 2021, 27, 4307-4311.	1.7	11
234	Metal–Organic Frameworks Derived Functional Materials for Electrochemical Energy Storage and Conversion: A Mini Review. Nano Letters, 2021, 21, 1555-1565.	4.5	351
235	Recent advances in AlEgenâ€based crystalline porous materials for chemical sensing. Aggregate, 2021, 2, e34.	5.2	27
236	Thermo-induced nanocomposites with improved catalytic efficiency for oxygen evolution. Science China Materials, 2021, 64, 1556-1562.	3.5	7

#	Article	IF	CITATIONS
237	Recent Advances in Catalytic Confinement Effect within Micro/Mesoâ€Porous Crystalline Materials. Small, 2021, 17, e2005334.	5.2	62
238	Artificial Bioaugmentation of Biomacromolecules and Living Organisms for Biomedical Applications. ACS Nano, 2021, 15, 3900-3926.	7.3	28
239	Zn–Co Zeolitic Imidazolate Framework Nanoparticles Intercalated in Graphene Nanosheets for Room-Temperature NO ₂ Sensing. ACS Applied Nano Materials, 2021, 4, 3998-4006.	2.4	13
240	Attosecond state-resolved carrier motion in quantum materials probed by soft x-ray XANES. Applied Physics Reviews, 2021, 8, .	5.5	30
241	Invisible Silver Guests Boost Order in a Framework That Cyclizes and Deposits Ag ₃ Sb Nanodots. Inorganic Chemistry, 2021, 60, 5757-5763.	1.9	4
242	Insights into the Structure–Activity Relationship in Aerobic Alcohol Oxidation over a Metal–Organic-Framework-Supported Molybdenum(VI) Catalyst. Journal of the American Chemical Society, 2021, 143, 4302-4310.	6.6	48
243	Modulating Metal–Organic Frameworks as Advanced Oxygen Electrocatalysts. Advanced Energy Materials, 2021, 11, 2003291.	10.2	105
244	Metal Organic Frameworks (MOFs) as Photocatalysts for the Degradation of Agricultural Pollutants in Water. ACS ES&T Engineering, 2021, 1, 804-826.	3.7	82
245	Recent advances in vacancy engineering of metalâ€organic frameworks and their derivatives for electrocatalysis. SusMat, 2021, 1, 66-87.	7.8	230
246	Co–Cu Bimetallic Metal Organic Framework Catalyst Outperforms the Pt/C Benchmark for Oxygen Reduction. Journal of the American Chemical Society, 2021, 143, 4064-4073.	6.6	175
247	Structural and Hydrolytic Stability of Coordinatively Unsaturated Metal–Organic Frameworks M ₃ (BTC) ₂ (M = Cu, Co, Mn, Ni, and Zn): A Combined DFT and Experimental Study. Journal of Physical Chemistry C, 2021, 125, 5832-5847.	1.5	11
248	Functional UiO-66 Series Membranes with High Perm Selectivity of Monovalent and Bivalent Anions for Electrodialysis Applications. Industrial & Engineering Chemistry Research, 2021, 60, 4086-4096.	1.8	15
249	MOF-on-MOF hybrids: Synthesis and applications. Coordination Chemistry Reviews, 2021, 432, 213743.	9.5	231
250	A Metal–Organic Framework Nanorodâ€Assembled Superstructure and Its Derivative: Unraveling the Fast Potassium Storage Mechanism in Nitrogenâ€Modified Micropores. Small, 2021, 17, e2100135.	5.2	19
251	Abundant Co-Nx sites onto hollow MOF-Derived nitrogen-doped carbon materials for enhanced oxygen reduction. Journal of Power Sources, 2021, 492, 229632.	4.0	34
252	Recent Advances on the Applications of Luminescent Pb2+-Containing Metal–Organic Frameworks in White-Light Emission and Sensing. Frontiers in Chemistry, 2021, 9, 636431.	1.8	5
253	MOFâ^Guest complex derived Cu/C nanocomposites with multiple heterogeneous interfaces for excellent electromagnetic waves absorption. Composites Part B: Engineering, 2021, 211, 108643.	5.9	83
254	Micro/Nanoâ€Scaled Metalâ€Organic Frameworks and Their Derivatives for Energy Applications. Advanced Energy Materials, 2022, 12, 2003970.	10.2	64

#	Article	IF	CITATIONS
255	Molecular Scalpel to Chemically Cleave Metal–Organic Frameworks for Induced Phase Transition. Journal of the American Chemical Society, 2021, 143, 6681-6690.	6.6	103
256	Ni-Co@carbon nanosheet derived from nickelocene doped Co-BDC for efficient oxygen evolution reaction. Applied Surface Science, 2021, 545, 148975.	3.1	17
257	Stabilization of supramolecular membrane protein–lipid bilayer assemblies through immobilization in a crystalline exoskeleton. Nature Communications, 2021, 12, 2202.	5.8	35
258	Mixed Metal Metal–Organic Frameworks Derived Carbon Supporting ZnFe ₂ O ₄ /C for High-Performance Magnetic Particle Imaging. Nano Letters, 2021, 21, 2730-2737.	4.5	31
259	Metal–Organic Framework-Based Composites for Protein Delivery and Therapeutics. ACS Biomaterials Science and Engineering, 2022, 8, 4028-4038.	2.6	15
260	Rare-Earth Metal–Organic Framework@Graphene Oxide Composites As High-Efficiency Microwave Absorbents. Crystal Growth and Design, 2021, 21, 2668-2679.	1.4	15
261	Metal–Organic Frameworks as Heterogeneous Electrocatalysts for Water Splitting and CO ₂ Fixation. Crystal Growth and Design, 2021, 21, 3123-3142.	1.4	24
262	Hybrid chemoenzymatic heterogeneous catalysts. Current Opinion in Green and Sustainable Chemistry, 2021, 28, 100437.	3.2	23
263	Metal-organic framework nanosheets and their composites for heterogeneous thermal catalysis: Recent progresses and challenges. Chinese Chemical Letters, 2021, 32, 3307-3321.	4.8	23
264	Hybridization of Emerging Crystalline Porous Materials: Synthesis Dimensionality and Electrochemical Energy Storage Application. Advanced Energy Materials, 2022, 12, 2100321.	10.2	41
265	MXenes as Superexcellent Support for Confining Single Atom: Properties, Synthesis, and Electrocatalytic Applications. Small, 2021, 17, e2007113.	5.2	52
266	Single-Atom Ni Heterogeneous Catalysts Supported UiO-66 Structure: Synthesis and Catalytic Activities. Journal of Nanomaterials, 2021, 2021, 1-16.	1.5	9
267	Progress in Metal-Organic Frameworks Facilitated Mercury Detection and Removal. Chemosensors, 2021, 9, 101.	1.8	33
268	Unconventional inorganic precursors determine the growth of metal-organic frameworks. Coordination Chemistry Reviews, 2021, 434, 213804.	9.5	42
269	Programmable Logic in Metal–Organic Frameworks for Catalysis. Advanced Materials, 2021, 33, e2007442.	11.1	129
270	In situ formation of Co3O4 nanoparticles embedded N-doped porous carbon nanocomposite: a robust material for electrocatalytic detection of anticancer drug flutamide and supercapacitor application. Mikrochimica Acta, 2021, 188, 196.	2.5	21
271	Removal of phenol from aqueous solution using MOF/GO: Synthesis, characteristic, adsorption performance and mechanism. International Journal of Environmental Analytical Chemistry, 2023, 103, 3853-3864.	1.8	19
272	Recent Advances in Metal–Organic Frameworks Derived Nanocomposites for Photocatalytic Applications in Energy and Environment. Advanced Science, 2021, 8, e2100625.	5.6	118

#	Article	IF	CITATIONS
273	HKUST-1 Metal Organic Framework as an Efficient Dual-Function Catalyst: Aziridination and One-Pot Ring-Opening Transformation for Formation of β-Aryl Sulfonamides with C–C, C–N, C–S, and C–O Bonds. Inorganic Chemistry, 2021, 60, 7794-7802.	1.9	19
274	Exploiting Supramolecular Dynamics in Metal–Phenolic Networks to Generate Metal–Oxide and Metal—Carbon Networks. Angewandte Chemie - International Edition, 2021, 60, 14586-14594.	7.2	35
275	Exploiting Supramolecular Dynamics in Metal–Phenolic Networks to Generate Metal–Oxide and Metal–Carbon Networks. Angewandte Chemie, 2021, 133, 14707-14715.	1.6	5
276	Modeling Adsorption and Optical Properties for the Design of CO2 Photocatalytic Metal-Organic Frameworks. Molecules, 2021, 26, 3060.	1.7	4
277	Synthesizing novel NH4CoxNi1-xF3 as electroactive material for supercapacitors using 2-methylimidazole: Study of reaction durations. Journal of Power Sources, 2021, 494, 229754.	4.0	39
278	Halogenâ€Bonded Organic Framework (XOF) Based on Iodoniumâ€Bridged Nâ‹â‹â‹â‹l ⁺ â‹â‹â‹ Type of Diphase Periodic Organic Network. Angewandte Chemie - International Edition, 2021, 60, 14831-14835.	N Interac	ctions: A 58
279	Selective removal of anionic ions from aqueous environment using iron-based metal-organic frameworks and their mechanistic investigations. Journal of Molecular Liquids, 2021, 329, 115367.	2.3	21
280	Diatom Silica/Polysaccharide Elastomeric Hydrogels: Adhesion and Interlocking Synergy. ACS Applied Materials & Samp; Interfaces, 2021, 13, 21703-21713.	4.0	17
281	Turning metal-organic frameworks into efficient single-atom catalysts via pyrolysis with a focus on oxygen reduction reaction catalysts. EnergyChem, 2021, 3, 100056.	10.1	51
282	Synthesis of fluorescent terbium-based metal-organic framework for quantitative detection of nitrite and ferric ions in water samples. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 253, 119553.	2.0	18
283	In situ construction MoS2-Pt nanosheets on 3D MOF-derived S, N-doped carbon substrate for highly efficient alkaline hydrogen evolution reaction. Chemical Engineering Journal, 2021, 412, 127556.	6.6	51
284	Common Strategy: Mounting the Rod-like Ni-Based MOF on Hydrangea-Shaped Nickel Hydroxide for Superior Electrocatalytic Methanol Oxidation Reaction. ACS Applied Materials & Samp; Interfaces, 2021, 13, 26472-26481.	4.0	51
285	Metal-organic Framework (MOF) Based Materials for Electrochemical Hydrogen Production: A Mini Review. International Journal of Electrochemical Science, 0, , ArticleID:210530.	0.5	2
286	Advances in Functional Metalâ€Organic Frameworks Based Onâ€Demand Drug Delivery Systems for Tumor Therapeutics. Advanced NanoBiomed Research, 2021, 1, 2100014.	1.7	24
287	Band gap engineering of metal-organic frameworks for solar fuel productions. Coordination Chemistry Reviews, 2021, 435, 213785.	9.5	57
288	Oxidative denitrogenation of liquid fuel over W2N@carbon catalyst derived from a phosphotungstinic acid encapsulated metal–azolate framework. Applied Catalysis B: Environmental, 2021, 285, 119842.	10.8	31
289	Highly Efficient Hydrogenation of Furfural to Furfuryl Alcohol Catalyzed by Pt Supported on Bi-Metallic MIL-100 (Fe, Mn/Co) MOFs Derivates Prepared by Hydrothermal Polyol Reduction Method. Catalysis Letters, 0, , 1.	1.4	6
290	Recyclable and Magnetically Functionalized Metal–Organic Framework Catalyst: IL/Fe ₃ O ₄ @HKUST-1 for the Cycloaddition Reaction of CO ₂ with Epoxides. ACS Applied Materials & Diterfaces, 2021, 13, 22836-22844.	4.0	25

#	Article	IF	CITATIONS
291	Coordinationâ€Driven Selective Formation of <i>D</i> ₂ Symmetric Octanuclear Organometallic Cages. Chemistry - A European Journal, 2021, 27, 9524-9528.	1.7	4
292	Design of cobalt catalysed carbon nanotubes in bimetallic zeolitic imidazolate frameworks. Applied Surface Science, 2021, 547, 149134.	3.1	33
293	Laserâ€Induced Annealing of Metal–Organic Frameworks on Conductive Substrates for Electrochemical Water Splitting. Advanced Functional Materials, 2021, 31, 2102648.	7.8	47
294	Halogenâ€Bonded Organic Framework (XOF) Based on Iodoniumâ€Bridged Nâ‹â‹â‹â‹l ⁺ â‹â‹â‹â‹a‹a‹a‹a‹	N Intera 1.6	ctions: A
295	Metal-organic frameworks as highly efficient electrodes for long cycling stability supercapacitors. International Journal of Hydrogen Energy, 2021, 46, 18179-18206.	3.8	55
296	Insights into Catalytic Hydrolysis of Organophosphonates at M–OH Sites of Azolate-Based Metal Organic Frameworks. Journal of the American Chemical Society, 2021, 143, 9893-9900.	6.6	45
297	High-Resolution Imaging of Unstained Polymer Materials. ACS Applied Polymer Materials, 2021, 3, 2849-2864.	2.0	5
298	A compendium on metal organic framework materials and their derivatives as electrocatalyst for methanol oxidation reaction. Molecular Catalysis, 2021, 510, 111710.	1.0	16
299	Penguin with bow tie-like bimetallic metal organic framework as colorimetric biosensing for H2O2 and L-cysteine. Journal of Coordination Chemistry, 2021, 74, 1891-1906.	0.8	1
300	Asymmetric catalysis using metal-organic frameworks. Coordination Chemistry Reviews, 2021, 437, 213845.	9.5	80
301	A Practice of Reticular Chemistry: Construction of a Robust Mesoporous Palladium Metal–Organic Framework via Metal Metathesis. Journal of the American Chemical Society, 2021, 143, 9901-9911.	6.6	60
302	Self-Optimized Metal–Organic Framework Electrocatalysts with Structural Stability and High Current Tolerance for Water Oxidation. ACS Catalysis, 2021, 11, 7132-7143.	5 . 5	77
303	Naphthalenedicarboxylate based metal organic frameworks: Multifaceted material. Coordination Chemistry Reviews, 2021, 437, 213862.	9.5	9
304	Factors Affecting Hydrogen Adsorption in Metal–Organic Frameworks: A Short Review. Nanomaterials, 2021, 11, 1638.	1.9	31
305	Templated interfacial synthesis of metal-organic framework (MOF) nano- and micro-structures with precisely controlled shapes and sizes. Communications Chemistry, 2021, 4, .	2.0	29
306	Selectivity Control in the Oxidative Ring-Opening of Dimethylfuran Mediated by Zeolitic-Imidazolate Framework-8 Nanoparticles. ACS Sustainable Chemistry and Engineering, 2021, 9, 8090-8096.	3.2	4
307	Computational catalysis for metal-organic frameworks: An overview. Coordination Chemistry Reviews, 2021, 436, 213777.	9.5	34
308	In-situ generated Ni-MOF/LDH heterostructures with abundant phase interfaces for enhanced oxygen evolution reaction. Applied Catalysis B: Environmental, 2021, 286, 119906.	10.8	133

#	Article	IF	CITATIONS
309	Supramolecular Assemblies Showing Thermally Activated Delayed Fluorescence. Small Science, 0, , 2100022.	5.8	4
310	Engineering Co/MnO heterointerface inside porous graphitic carbon for boosting the low-temperature CO2methanation. Applied Catalysis B: Environmental, 2021, 287, 119959.	10.8	36
311	Lanthanide Coordination Polymers through Design for Exceptional Catalytic Performances in CO ₂ Cycloaddition Reactions. ACS Sustainable Chemistry and Engineering, 2021, 9, 8581-8591.	3.2	23
312	Using Postsynthetic X-Type Ligand Exchange to Enhance CO ₂ Adsorption in Metal–Organic Frameworks with Kuratowski-Type Building Units. Inorganic Chemistry, 2021, 60, 11784-11794.	1.9	11
313	In situ growth of NiFe MOF/NF by controlling solvent mixtures as efficient electrocatalyst in oxygen evolution. Inorganic Chemistry Communication, 2021, 128, 108605.	1.8	11
314	Enhancing the activity, selectivity, and recyclability of Rh/PPh3 system-catalyzed hydroformylation reactions through the development of a PPh3-derived quasi-porous organic cage as a ligand. Chinese Journal of Catalysis, 2021, 42, 1216-1226.	6.9	13
315	Cooperative Motion in Water–Methanol Clusters Controls the Reaction Rates of Heterogeneous Photocatalytic Reactions. Journal of the American Chemical Society, 2021, 143, 10940-10947.	6.6	12
316	A Close Look at Molecular Self-Assembly with the Transmission Electron Microscope. Chemical Reviews, 2021, 121, 14232-14280.	23.0	33
317	Molybdenum nitride@porous carbon, derived from phosphomolybdic acid loaded metal-azolate framework-6: A highly effective catalyst for oxidative desulfurization. Applied Catalysis B: Environmental, 2021, 288, 119988.	10.8	70
318	Impact of Pore Size and Defects on the Selective Adsorption of Acetylene in Alkyneâ€Functionalized Nickel(II)â€Pyrazolateâ€Based MOFs. Chemistry - A European Journal, 2021, 27, 11837-11844.	1.7	10
319	Recent Advances in the Application of Two-Dimensional Nanomaterials for Neural Tissue Engineering and Regeneration. ACS Biomaterials Science and Engineering, 2021, 7, 3503-3529.	2.6	57
320	High energy density supercapacitor electrode materials based on mixed metal MOF and its derived C@bimetal hydroxide embedded onto porous support. Synthetic Metals, 2021, 277, 116775.	2.1	8
321	Recent advances in porphyrin-based MOFs for cancer therapy and diagnosis therapy. Coordination Chemistry Reviews, 2021, 439, 213945.	9.5	82
322	Bimetal-organic framework-derived carbon nanocubes with 3D hierarchical pores as highly efficient oxygen reduction reaction electrocatalysts for microbial fuel cells. Science China Materials, 2021, 64, 2926-2937.	3.5	14
323	Metal–Organic Framework-Based Hierarchically Porous Materials: Synthesis and Applications. Chemical Reviews, 2021, 121, 12278-12326.	23.0	633
324	Cation-exchanged conductive Mn2DSBDC metal–organic frameworks: Synthesis, structure, and THz conductivity. Polyhedron, 2021, 203, 115182.	1.0	7
325	Gas Adsorption in R ₂ â€MOFâ€5 Difunctionalized with Alkyl Groups. European Journal of Inorganic Chemistry, 2021, 2021, 3185-3190.	1.0	6
326	Molecular Bottom-Up Approaches for the Synthesis of Inorganic and Hybrid Nanostructures. Inorganics, 2021, 9, 58.	1.2	15

#	Article	IF	CITATIONS
327	Bismuth-based metal–organic frameworks and their derivatives: Opportunities and challenges. Coordination Chemistry Reviews, 2021, 439, 213902.	9.5	62
328	Large Polycyclic Aromatic Hydrocarbons as Graphene Quantum Dots: from Synthesis to Spectroscopy and Photonics. Advanced Optical Materials, 2021, 9, 2100508.	3.6	18
329	Synthesis and characterization of the magnetic supported metal-organic framework catalysts (CuCoBTC@MAC and CuBTC@MAC) for the hydrogen production from sodium borohydride. Materials Chemistry and Physics, 2021, 267, 124599.	2.0	6
330	Chiral UiO-MOFs based QCM sensors for enantioselective discrimination of hazardous biomolecule. Journal of Hazardous Materials, 2021, 413, 125467.	6.5	19
331	Highly Dispersive Ni@C and Co@C Nanoparticles Derived from Metal–Organic Monolayers for Enhanced Photocatalytic CO ₂ Reduction. Inorganic Chemistry, 2021, 60, 10738-10748.	1.9	18
332	Lab-on-Eyeglasses to Monitor Kidneys and Strengthen Vulnerable Populations in Pandemics: Machine Learning in Predicting Serum Creatinine Using Tear Creatinine. Analytical Chemistry, 2021, 93, 10661-10671.	3.2	16
333	Deployment of MIL-88B(Fe)/TiO ₂ Nanotube-Supported Ti Wires as Reusable Electrochemiluminescence Microelectrodes for Noninvasive Sensing of H ₂ O ₂ from Single Cancer Cells. Analytical Chemistry, 2021, 93, 11312-11320.	3.2	28
334	Developing metalâ€organic frameworkâ€based composite for innovative fuel cell application: An overview. International Journal of Energy Research, 2022, 46, 471-504.	2.2	26
335	Advances and Prospects in Metal–Organic Frameworks as Key Nexus for Chemocatalytic Hydrogen Production. Small, 2021, 17, e2102201.	5.2	12
336	Water-Driven Structural Transformation in Cobalt Trimesate Metal-Organic Frameworks. Energies, 2021, 14, 4751.	1.6	8
337	Glassy Metal–Organicâ€Frameworkâ€Based Quasiâ€Solidâ€State Electrolyte for Highâ€Performance Lithiumâ€Metal Batteries. Advanced Functional Materials, 2021, 31, 2104300.	7.8	69
338	Defect engineering-induced porosity in graphene quantum dots embedded metal-organic frameworks for enhanced benzene and toluene adsorption. Journal of Hazardous Materials, 2021, 416, 125973.	6.5	27
339	Current Trends and Approaches to Boost the Performance of Metal Organic Frameworks for Carbon Dioxide Methanation through Photo/Thermal Hydrogenation: A Review. Industrial & Engineering Chemistry Research, 2021, 60, 13149-13179.	1.8	34
340	Metal–organic frameworks containing uncoordinated nitrogen: Preparation, modification, and application in adsorption. Materials Today, 2021, 51, 566-585.	8.3	50
341	Strategies for the enhanced water splitting activity over metal–organic frameworks-based electrocatalysts and photocatalysts. Materials Today Nano, 2021, 15, 100124.	2.3	28
343	Co-Heteroatom-Based MOFs for Bifunctional Electrocatalysts for Oxygen and Hydrogen Evolution Reactions. Inorganic Chemistry, 2021, 60, 13434-13439.	1.9	6
344	On the Roles of Electron Transfer in Catalysis by Nanoclusters and Nanoparticles. Chemistry - A European Journal, 2021, 27, 16291-16308.	1.7	8
345	In situ formation of amorphous Fe-based bimetallic hydroxides from metal-organic frameworks as efficient oxygen evolution catalysts. Chinese Journal of Catalysis, 2021, 42, 1370-1378.	6.9	37

#	Article	IF	CITATIONS
346	Confinement of Ultrasmall Bimetallic Nanoparticles in Conductive Metal–Organic Frameworks via Siteâ€Specific Nucleation. Advanced Materials, 2021, 33, e2101216.	11.1	23
347	Crystal structure, sorption properties, and electronic structure of flexible MOF, (Ni-4,4′azopyridine)[Ni(CN)4]. Solid State Sciences, 2021, 118, 106646.	1.5	5
348	Inâ€situ Immobilization of a Polyoxometalate <scp>Metalâ€Organic</scp> Framework (<scp>NENU</scp> â€3) on Functionalized Reduced Graphene Oxide for Hydrazine Sensing. Chinese Journal of Chemistry, 2021, 39, 2889-2897.	2.6	10
349	Honeycomb-like 2D metal-organic polyhedral framework exhibiting selectively adsorption of CO2. Journal of Solid State Chemistry, 2021, 300, 122230.	1.4	5
350	A hydrolytically stable Zn(II) coordination polymer based on a new imidazolyl-pyrazolyl heterotopic ligand as a scavenger of MnO4â^ and a luminescent sensor for MnO4â^ and Cr2O72â^. Inorganic Chemistry Communication, 2021, 130, 108720.	1.8	3
351	Cu-TCPP nanosheets blended polysulfone ultrafiltration membranes with enhanced antifouling and photo-tunable porosity. Separation and Purification Technology, 2021, 268, 118688.	3.9	24
353	Highly Dispersed Indium Oxide Nanoparticles Supported on Carbon Nanorods Enabling Efficient Electrochemical CO ₂ Reduction. Small Science, 2021, 1, 2100029.	5.8	34
354	Robust and Versatile Coatings Engineered via Simultaneous Covalent and Noncovalent Interactions. Angewandte Chemie, 2021, 133, 20387-20392.	1.6	2
355	Robust and Versatile Coatings Engineered via Simultaneous Covalent and Noncovalent Interactions. Angewandte Chemie - International Edition, 2021, 60, 20225-20230.	7.2	14
356	Complex Formation of Copper(II) Ions with Phthalate Ions in Non-Aqueous Solvents. Russian Journal of General Chemistry, 2021, 91, 1604-1606.	0.3	0
357	Suppressing Defect Formation in Metal–Organic Framework Membranes via Plasma-Assisted Synthesis for Gas Separations. ACS Applied Materials & Samp; Interfaces, 2021, 13, 41904-41915.	4.0	23
358	Electrospun graphene oxide/MIL-101(Fe)/poly(acrylonitrile-co-maleic acid) nanofiber: A high-efficient and reusable integrated photocatalytic adsorbents for removal of dye pollutant from water samples. Journal of Colloid and Interface Science, 2021, 597, 196-205.	5.0	42
359	Oxidative desulfurization of liquid fuel with tungsten-nitride@porous carbon, derived from MAF-6(Zn) loaded with phosphotungstic acid and melamine. Chemical Engineering Journal, 2021, 419, 129485.	6.6	34
360	The Surge of Metal–Organic-Framework (MOFs)-Based Electrodes as Key Elements in Electrochemically Driven Processes for the Environment. Molecules, 2021, 26, 5713.	1.7	12
361	Controlled Growth and Selfâ€Assembly of Multiscale Organic Semiconductor. Advanced Materials, 2022, 34, e2102811.	11,1	24
362	Metal–Organic Framework Photonic Balls: Single Object Analysis for Local Thermal Probing. Advanced Materials, 2021, 33, e2104450.	11.1	29
363	C2s/C1 hydrocarbon separation: The major step towards natural gas purification by metal-organic frameworks (MOFs). Coordination Chemistry Reviews, 2021, 442, 213998.	9.5	64
364	Multifunctional Two-Dimensional Metal–Organic Frameworks for Radionuclide Sequestration and Detection. ACS Applied Materials & Detection.	4.0	6

#	Article	IF	CITATIONS
365	Facile synthesis of perovskite ZIF67 derivative using ammonia fluoride and comparison with post-treated ZIF67 derivatives on energy storage ability. Electrochimica Acta, 2021, 389, 138680.	2.6	41
366	Ultrafine Fe-modulated Ni nanoparticles embedded within nitrogen-doped carbon from Zr-MOFs-confined conversion for efficient oxygen evolution reaction. Frontiers of Chemical Science and Engineering, $0, 1$.	2.3	0
367	Sonoâ€Controllable and ROSâ€Sensitive CRISPRâ€Cas9 Genome Editing for Augmented/Synergistic Ultrasound Tumor Nanotherapy. Advanced Materials, 2021, 33, e2104641.	11.1	85
368	PdZn alloys decorated 3D hierarchical porous carbon networks for highly efficient and stable hydrogen production from aldehyde solution. International Journal of Hydrogen Energy, 2021, 46, 33429-33437.	3.8	6
369	Metal-organic frameworks based photocatalysts: Architecture strategies for efficient solar energy conversion. Chemical Engineering Journal, 2021, 419, 129459.	6.6	78
370	Templated fabrication of perfectly aligned metal-organic framework-supported iron-doped copper-cobalt selenide nanostructure on hollow carbon nanofibers for an efficient trifunctional electrode material. Applied Catalysis B: Environmental, 2021, 293, 120209.	10.8	64
371	Aqueous Protein–Polymer Bioconjugation via Photoinduced RAFT Polymerization Using High Loading Heterogeneous Catalyst. ACS Applied Materials & Interfaces, 2021, 13, 44488-44496.	4.0	19
372	Pair sites on Al3O nodes of the metal-organic framework MIL-100: Cooperative roles of defect and structural vacancy sites in methanol dehydration catalysis. Journal of Catalysis, 2021, 404, 128-138.	3.1	16
373	Porous metal-organic framework (MOF)-based and MOF-derived electrocatalytic materials for energy conversion. Materials Today Energy, 2021, 21, 100816.	2.5	45
374	Recent Advances and Prospects in Colloidal Nanomaterials. Jacs Au, 2021, 1, 1849-1859.	3.6	20
375	Transport-Relevant Pore Limiting Diameter for Molecular Separations in Metal–Organic Framework Membranes. Journal of Physical Chemistry C, 2021, 125, 20416-20425.	1.5	6
376	Triazine crystalline framework complexes with flexible arms bearing carboxylate coordinating moieties: Synthesis, structure, spectroscopy and photocatalytic property. Polyhedron, 2021, 205, 115314.	1.0	5
377	Semiconductorâ€based Photoanodes Modified with Metalâ€Organic Frameworks and Molecular Catalysts as Cocatalysts for Enhanced Photoelectrochemical Water Oxidation Reaction. ChemCatChem, 2021, 13, 5058-5072.	1.8	2
378	From MOF-199 Microrods to CuO Nanoparticles for Room-Temperature Desulfurization: Regeneration and Repurposing Spent Adsorbents as Sustainable Approaches. ACS Omega, 2021, 6, 25631-25641.	1.6	26
379	NiCo bimetal organic frames derived well-matched electrocatalyst pair for highly efficient overall urea solution electrolysis. Journal of Alloys and Compounds, 2021, 874, 159945.	2.8	16
380	Structural Transformation of Heterogeneous Materials for Electrocatalytic Oxygen Evolution Reaction. Chemical Reviews, 2021, 121, 13174-13212.	23.0	262
381	Elaboration of Porous Salts. Journal of the American Chemical Society, 2021, 143, 14956-14961.	6.6	25
382	Glucose Detection Devices and Methods Based on Metal–Organic Frameworks and Related Materials. Advanced Functional Materials, 2021, 31, 2106023.	7.8	78

#	Article	IF	CITATIONS
383	Structural insights into new luminescent 2D lanthanide coordination polymers using an N, N′-disubstituted benzimidazole zwitterion. Influence of the ligand. Inorganica Chimica Acta, 2021, 525, 120441.	1.2	8
384	Copper-doped ruthenium oxide as highly efficient electrocatalysts for the evolution of oxygen in acidic media. Journal of Alloys and Compounds, 2022, 892, 162113.	2.8	20
385	Insights on Luminescent Micro―and Nanospheres of Infinite Coordination Polymers. Chemistry - A European Journal, 2021, , .	1.7	3
386	MOF-derived NiCoZnP nanoclusters anchored on hierarchical N-doped carbon nanosheets array as bifunctional electrocatalysts for overall water splitting. Chemical Engineering Journal, 2021, 422, 130533.	6.6	79
387	Dicyandiamide-assisted HKUST-1 derived Cu/N-doped porous carbon nanoarchitecture for electrochemical detection of acetaminophen. Environmental Research, 2021, 201, 111500.	3.7	12
388	Advances and challenges in metal ion separation from water. Trends in Chemistry, 2021, 3, 819-831.	4.4	14
389	A review of methods for extraction, removal, and stimulated degradation of microplastics. Journal of Water Process Engineering, 2021, 43, 102209.	2.6	22
390	Zeolotic imidazolate frameworks (ZIFs) derived porous carbon: A review from crystal growth & Samp; green synthesis to oxygen reduction reaction activity. International Journal of Hydrogen Energy, 2021, 46, 33782-33800.	3.8	40
391	Hydrogen generation from sodium borohydride hydrolysis promoted by MOF-derived carbon supported cobalt catalysts. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 626, 127033.	2.3	17
392	A self-supporting bifunctional catalyst electrode made of amorphous and porous CoP3 nanoneedle array: exhaling during overall water splitting. Electrochimica Acta, 2021, 393, 138986.	2.6	7
393	Recent advances in sensing applications of metal nanoparticle/metal–organic framework composites. TrAC - Trends in Analytical Chemistry, 2021, 143, 116395.	5.8	50
394	Post-modification preparation of dual-emission Eu3+@ZnII MOFs-based hybrid material and its application in highly sensitive ratiometric sensing for asthma wonder drug-procaterol enhanced by HCO3- and temperature. Sensors and Actuators B: Chemical, 2021, 344, 130199.	4.0	12
395	Cyclodextrin-metal-organic frameworks (CD-MOFs): main aspects and perspectives in food applications. Current Opinion in Food Science, 2021, 41, 8-15.	4.1	25
396	Selective oxidation of benzyl alcohol to benzaldehyde with air using ZIF-67 derived catalysts. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 629, 127520.	2.3	10
397	Boron nitride quantum dots decorated MIL-100(Fe) for boosting the photo-generated charge separation in photocatalytic refractory antibiotics removal. Environmental Research, 2021, 202, 111661.	3.7	21
398	Bionanomaterials based on protein self-assembly: Design and applications in biotechnology. Biotechnology Advances, 2021, 52, 107835.	6.0	26
399	Direct electrochemistry of silver nanoparticles-decorated metal-organic frameworks for telomerase activity sensing via allosteric activation of an aptamer hairpin. Analytica Chimica Acta, 2021, 1184, 339036.	2.6	11
400	Fine tuning of pore architecture and morphology of stiffened Zeolitic Imidazolate Frameworks synthesized using fast current driven method and mixed ligand strategy. Microporous and Mesoporous Materials, 2021, 327, 111409.	2.2	10

#	Article	IF	CITATIONS
401	Recent advances in catalytic systems for CO2 conversion to substitute natural gas (SNG): Perspective and challenges. Journal of Energy Chemistry, 2021, 62, 377-407.	7.1	91
402	Preparation of high performance Co3O4/Al2O3 catalysts by doping Al into ZIF-67: Effect of Al sources on Fischer-Tropsch synthesis. Applied Surface Science, 2021, 570, 151127.	3.1	6
403	Water-stable zirconium-based metal-organic frameworks armed polyvinyl alcohol nanofibrous membrane with enhanced antibacterial therapy for wound healing. Journal of Colloid and Interface Science, 2021, 603, 243-251.	5.0	25
404	Controlled thermal treatment of NH2-MIL-125(Ti) for drastically enhanced photocatalytic reduction of Cr(VI). Separation and Purification Technology, 2021, 277, 119643.	3.9	29
405	Encapsulation of colloidal semiconductor quantum dots into metal-organic frameworks for enhanced antibacterial activity through interfacial electron transfer. Chemical Engineering Journal, 2021, 426, 130832.	6.6	28
406	Rationally designed metal–organic framework templated iron-molybdenum sulfide for high energy density hybrid supercapacitors. Applied Surface Science, 2021, 570, 151051.	3.1	15
407	The synergistic effect of NiCo nanoparticles and metal organic framework: Enhancing the oxygen evolution reaction of carbon nanohorn-based catalysts. Journal of Alloys and Compounds, 2021, 885, 160889.	2.8	13
408	Nanosilver deposited on a porphyrin-benzothiadiazole functionalized nitrogen and sulfur rich porous organic polymer for reduction of 4-nitrophenol. Microporous and Mesoporous Materials, 2021, 328, 111468.	2.2	2
409	Defective C3N4 frameworks coordinated diatomic copper catalyst: Towards mild oxidation of methane to C1 oxygenates. Applied Catalysis B: Environmental, 2021, 299, 120682.	10.8	32
410	Fully supercritical CO2 preparation of a nanostructured MOF composite with application in cutaneous drug delivery. Journal of Supercritical Fluids, 2021, 178, 105379.	1.6	12
411	Enrichment of diamide insecticides from environmental water samples using metal-organic frameworks as adsorbents for determination by liquid chromatography tandem mass spectrometry. Journal of Hazardous Materials, 2022, 422, 126839.	6.5	24
412	Reticular chemistry approach to explore the catalytic CO2-epoxide cycloaddition reaction over tetrahedral coordination Lewis acidic sites in a Rutile-type Zinc-phosphonocarboxylate framework. Chemical Engineering Journal, 2022, 427, 131759.	6.6	20
413	Adsorptive removal of herbicides with similar structures from water over nitrogen-enriched carbon, derived from melamine@metal-azolate framework-6. Environmental Research, 2022, 204, 111991.	3.7	7
414	Ultraviolet/ozone treatment for boosting OER activity of MOF nanoneedle arrays. Chemical Engineering Journal, 2022, 427, 131498.	6.6	26
415	Microporous polythiophene (MPT)-guest complex derived magnetic metal sulfides/carbon nanocomposites for broadband electromagnetic wave absorption. Journal of Materials Science and Technology, 2022, 100, 206-215.	5.6	48
416	Oxidative modification of metal-organic framework-derived carbon: An effective strategy for adsorptive elimination of carbazole and benzonitrile. Fuel, 2022, 307, 121764.	3.4	16
417	Hierarchical structured CoP nanosheets/carbon nanofibers bifunctional eletrocatalyst for high-efficient overall water splitting. Journal of Energy Chemistry, 2022, 64, 503-510.	7.1	74
418	In2S3 nanoparticles coupled to In-MOF nanorods: The structural and electronic modulation for synergetic photocatalytic degradation of Rhodamine B. Environmental Research, 2022, 203, 111874.	3.7	28

#	Article	IF	CITATIONS
419	Mechanism investigation for ultra-efficient photocatalytic water disinfection based on rational design of indirect Z-scheme heterojunction black phosphorus QDs/Cu2O nanoparticles. Journal of Hazardous Materials, 2022, 424, 127281.	6.5	24
420	Mechanism investigation and product selectivity control on CO-assisted direct conversion of methane into C1 and C2 oxygenates catalyzed by zeolite-supported Rh. Applied Catalysis B: Environmental, 2022, 300, 120742.	10.8	18
421	Hierarchical N-doped CNTs grafted onto MOF-derived porous carbon nanomaterials for efficient oxygen reduction. Journal of Colloid and Interface Science, 2022, 606, 1833-1841.	5.0	30
422	Ferrocene decorated unusual mercury(<scp>ii</scp>) dithiocarbamate coordination polymers: crystallographic and computational studies. CrystEngComm, 2021, 23, 2414-2423.	1.3	8
423	Metal–organic frameworks as catalytic selectivity regulators for organic transformations. Chemical Society Reviews, 2021, 50, 5366-5396.	18.7	130
424	Extending photocatalysis to the visible and NIR: the molecular strategy. Nanoscale, 2021, 13, 9147-9159.	2.8	26
425	Revisiting anodic alumina templates: from fabrication to applications. Nanoscale, 2021, 13, 2227-2265.	2.8	153
426	Atomic regulation of metal–organic framework derived carbon-based single-atom catalysts for the electrochemical CO ₂ reduction reaction. Journal of Materials Chemistry A, 2021, 9, 23382-23418.	5.2	46
427	The chemistry and applications of hafnium and cerium(<scp>iv</scp>) metal–organic frameworks. Chemical Society Reviews, 2021, 50, 4629-4683.	18.7	135
428	Prussian Blue Analogs and Their Derived Nanomaterials for Electrochemical Energy Storage and Electrocatalysis. Small Methods, 2021, 5, e2001000.	4.6	81
429	Constructing Ni/NiS Heteronanoparticle-Embedded Metal–Organic Framework-Derived Nanosheets for Enhanced Water-Splitting Catalysis. ACS Sustainable Chemistry and Engineering, 2021, 9, 1920-1931.	3.2	72
430	Smart sensors for volatile organic compounds (VOCs) and their possible application as end of service life indicator (ESLI) for respirator cartridges. Advances in Chemical Engineering, 2021, 57, 197-231.	0.5	1
431	Aliphatic amine mediated assembly of $[M6(mna)6]$ (M = Cu/Ag) into extended two-dimensional structures: synthesis, structure and Lewis acid catalytic studies. New Journal of Chemistry, 2021, 45, 6503-6511.	1.4	2
432	A mesoporous ionic solid with 272 Aul6Agl3Cull3 complex cations in a super huge crystal lattice. Chemical Science, 2021, 12, 11045-11055.	3.7	4
433	Hf-Based UiO-66 as Adsorptive Compound and Oxidative Catalyst for Denitrogenation Processes. Compounds, 2021, 1, 3-14.	1.0	8
434	Carbon support tuned electrocatalytic activity of a single-site metal–organic framework toward the oxygen reduction reaction. Chemical Science, 2021, 12, 7908-7917.	3.7	26
435	Expanding the NUIG MOF family: synthesis and characterization of new MOFs for selective CO ₂ adsorption, metal ion removal from aqueous systems, and drug delivery applications. Dalton Transactions, 2021, 50, 6997-7006.	1.6	11
436	Self-assembled CoSe ₂ –FeSe ₂ heteronanoparticles along the carbon nanotube network for boosted oxygen evolution reaction. Nanoscale, 2021, 13, 9651-9658.	2.8	38

#	Article	IF	CITATIONS
437	Recent strategies to improve the photoactivity of metal–organic frameworks. Dalton Transactions, 2021, 50, 2342-2349.	1.6	64
438	Controlled assembly of cobalt embedded N-doped graphene nanosheets (Co@NGr) by pyrolysis of a mixed ligand Co(<scp>ii</scp>) MOF as a sacrificial template for high-performance electrocatalysts. RSC Advances, 2021, 11, 21179-21188.	1.7	9
439	Terephthalate and trimesate metal–organic frameworks of Mn, Co, and Ni: exploring photostability by spectroscopy. RSC Advances, 2021, 11, 8951-8962.	1.7	14
440	Water Photo-Electrooxidation Using Mats of TiO2 Nanorods, Surface Sensitized by a Metal–Organic Framework of Nickel and 1,2-Benzene Dicarboxylic Acid. Hydrogen, 2021, 2, 58-75.	1.7	7
441	Hydrogen generation from ammonia borane hydrolysis catalyzed by ruthenium nanoparticles supported on Co–Ni layered double oxides. Sustainable Energy and Fuels, 2021, 5, 2301-2312.	2.5	17
442	Room-temperature preparation of MIL-68 and its derivative In2S3 for enhanced photocatalytic Cr(VI) reduction and organic pollutant degradation under visible light. Journal of Alloys and Compounds, 2020, 837, 155567.	2.8	32
443	Zn-BTC MOF as an Adsorbent for Iodine Uptake and Organic Dye Degradation. Crystal Growth and Design, 2020, 20, 7833-7839.	1.4	85
444	Industrial carbon dioxide capture and utilization: state of the art and future challenges. Chemical Society Reviews, 2020, 49, 8584-8686.	18.7	610
445	A novel ligand with –NH ₂ and –COOH-decorated Co/Fe-based oxide for an efficient overall water splitting: dual modulation roles of active sites and local electronic structure. Catalysis Science and Technology, 2020, 10, 6266-6273.	2.1	7
446	Selective signalling of alcohols by a molecular lattice and mechanism of single-crystal-to-single-crystal transformations. Inorganic Chemistry Frontiers, 2020, 7, 3165-3175.	3.0	10
447	Unraveling the mechanism of CO ₂ capture and separation by porous liquids. RSC Advances, 2020, 10, 42706-42717.	1.7	22
448	From isolated Ti-oxo clusters to infinite Ti-oxo chains and sheets: recent advances in photoactive Ti-based MOFs. Journal of Materials Chemistry A, 2020, 8, 15245-15270.	5.2	209
449	Cyclodextrins as a Key Piece in Nanostructured Materials: Quantitation and Remediation of Pollutants. Nanomaterials, 2021, 11, 7.	1.9	13
450	Emerging Metal-Organic Framework Nanomaterials for Cancer Theranostics. Nanotechnology in the Life Sciences, 2021, , 231-274.	0.4	1
451	Porous materials confining noble metals for the catalytic reduction of nitroaromatics: controllable synthesis and enhanced mechanism. Environmental Science: Nano, 2021, 8, 3067-3097.	2.2	22
452	Steric effects in the hydrogen evolution reaction based on the TMX ₄ active center: Fe–BHT as a case study. Physical Chemistry Chemical Physics, 2021, 23, 25239-25245.	1.3	4
453	<i>Ab initio</i> molecular dynamics with enhanced sampling in heterogeneous catalysis. Catalysis Science and Technology, 2022, 12, 12-37.	2.1	29
454	New Ln-MOFs based on mixed organic ligands: synthesis, structure and efficient luminescence sensing of the Hg ²⁺ ions in aqueous solutions. Dalton Transactions, 2021, 50, 15612-15619.	1.6	20

#	Article	IF	CITATIONS
455	Microwave-Assisted Air Epoxidation of Mixed Biolefins over a Spherical Bimetal ZnCo-MOF Catalyst. ACS Applied Materials & Samp; Interfaces, 2021, 13, 8474-8487.	4.0	27
456	Recent developments in magnetic nanoparticles and nano-composites for wastewater treatment. Journal of Environmental Chemical Engineering, 2021, 9, 106553.	3.3	42
457	Recent Progress of Metal Organic Frameworksâ€Based Electrocatalysts for Hydrogen Evolution, Oxygen Evolution, and Oxygen Reduction Reaction. Energy and Environmental Materials, 2022, 5, 1084-1102.	7.3	24
458	Killing Two Birds with One Stone: Selective Oxidation of Small Organic Molecule as Anodic Reaction to Boost CO ₂ Electrolysis. Small Structures, 2022, 3, 2100134.	6.9	25
459	Polyoxometalate@Metal–Organic Framework Composites as Effective Photocatalysts. ACS Catalysis, 2021, 11, 13374-13396.	5.5	121
460	2D Ti-based metal–organic framework photocatalysis for red light-driven selective aerobic oxidation of sulfides. Chemical Engineering Journal, 2022, 430, 133071.	6.6	28
461	Advances in Nanomaterials-Based Electrochemical Biosensors for Foodborne Pathogen Detection. Nanomaterials, 2021, 11, 2700.	1.9	26
462	Energy Band Alignment and Redoxâ€Active Sites in Metalloporphyrinâ€Spaced Metalâ€Catechol Frameworks for Enhanced CO ₂ Photoreduction. Angewandte Chemie, 2022, 134, .	1.6	3
463	Bimetallic metal-organic framework derived 3D hierarchical NiO/Co3O4/C hollow microspheres on biodegradable garbage bag for sensitive, selective, and flexible enzyme-free electrochemical glucose detection. Chemical Engineering Journal, 2022, 430, 133157.	6.6	43
464	Recent advances in hollow metal-organic frameworks and their composites for heterogeneous thermal catalysis. Science China Chemistry, 2021, 64, 1854-1874.	4.2	13
465	Interrogating Light-initiated Dynamics in Metal–Organic Frameworks with Time-resolved Spectroscopy. Chemical Reviews, 2022, 122, 132-166.	23.0	22
466	Fabrication of Metal Nanoparticle Composites by Slow Chemical Reduction of Metal–Organic Frameworks. Inorganic Chemistry, 2021, 60, 16447-16454.	1.9	10
467	Design and synthesis of noble metal–based electrocatalysts using metal–organic frameworks and derivatives. Materials Today Nano, 2022, 17, 100144.	2.3	17
468	Mechanochemistry of Group 4 Element-Based Metal–Organic Frameworks. Inorganic Chemistry, 2021, 60, 16079-16084.	1.9	9
469	Supramolecular Strategies for the Recycling of Homogeneous Catalysts. Chemistry - an Asian Journal, 2021, 16, 3851-3863.	1.7	16
470	Energy Band Alignment and Redoxâ€Active Sites in Metalloporphyrinâ€Spaced Metalâ€Catechol Frameworks for Enhanced CO ₂ Photoreduction. Angewandte Chemie - International Edition, 2022, 61, .	7.2	23
471	Molecular Cleavage of Metalâ€Organic Frameworks and Application to Energy Storage and Conversion. Advanced Materials, 2021, 33, e2104341.	11.1	73
472	Selective ATP Detection via Activation of MoS ₂ -Based Artificial Nanozymes Inhibited by ZIF-90 Nanoparticles. ACS Applied Nano Materials, 2021, 4, 11545-11553.	2.4	12

#	Article	IF	CITATIONS
473	Solventless synthesis of ZIF-L and ZIF-8 with hydraulic press and high temperature. Microporous and Mesoporous Materials, 2021, 328, 111487.	2.2	17
474	Synthesis of Bimetal Doped Metal-Organic Framework (MOF-5): An Electrocatalyst with Low Noble Metal Content and High Electrochemical Activity. ECS Journal of Solid State Science and Technology, 2020, 9, 075002.	0.9	8
475	Stateâ€ofâ€theâ€Art Advancements in Photocatalytic Hydrogenation: Reaction Mechanism and Recent Progress in Metalâ€Organic Framework (MOF)â€Based Catalysts. Advanced Science, 2022, 9, e2103361.	5.6	47
476	Recent Advances in MOFâ€Based Materials for Photocatalytic Nitrogen Fixation. European Journal of Inorganic Chemistry, 2022, 2022, .	1.0	15
477	Accelerate Synthesis of Metal–Organic Frameworks by a Robotic Platform and Bayesian Optimization. ACS Applied Materials & amp; Interfaces, 2021, 13, 53485-53491.	4.0	28
478	Modulating Polymer Dynamics via Supramolecular Interaction with Ultrasmall Nanocages for Recyclable Gas Separation Membranes with Intrinsic Microporosity. Nano Letters, 2021, 21, 9021-9029.	4.5	19
479	Homo- and heterometallic oxalate-based complexes obtained using [Cr(C2O4)3]3â€" building block â€" two polymorphs of a solvate. Polyhedron, 2021, 211, 115556.	1.0	1
480	Synchronous Construction of the Hierarchical Pores and High Hydrophobicity of Stable Metal–Organic Frameworks through a Dual Coordination-Competitive Strategy. Langmuir, 2021, 37, 13116-13124.	1.6	2
481	Highly stable and methanol tolerant oxygen reduction reaction electrocatalyst Co/CoO/SnO@N-C nanocubes by one-step introduction of functional components. International Journal of Hydrogen Energy, 2022, 47, 917-927.	3.8	8
482	N-doped porous carbocatalyst engineering via modulating the crystalline size of ZIF-8 for continuous H2S selective oxidation. Applied Materials Today, 2021, 25, 101228.	2.3	9
483	Dual-Metal <i>N</i> -Heterocyclic Carbene Complex (M = Au and Pd)-Functionalized UiO-67 MOF for Alkyne Hydration–Suzuki Coupling Tandem Reaction. Journal of Organic Chemistry, 2021, 86, 1818-1826.	1.7	15
484	Amine-functionalized metal–organic framework integrated bismuth tungstate (Bi ₂ WO ₆ /NH ₂ -UiO-66) composite for the enhanced solar-driven photocatalytic degradation of ciprofloxacin molecules. New Journal of Chemistry, 2021, 45, 22650-22660.	1.4	9
485	A molecularly imprinted nanoreactor based on biomimetic mineralization of bi-enzymes for specific detection of urea and its analogues. Sensors and Actuators B: Chemical, 2022, 350, 130909.	4.0	13
486	Synthesis, characterization and \hat{I}^3 -rays irradiation of cobalt-based metal-organic framework for adsorption of Ce(III) and Eu(III) from aqueous solution. Radiation Physics and Chemistry, 2022, 190, 109811.	1.4	17
487	Metal-organic frameworks bearing free carboxylic acids: Preparation, modification, and applications. Coordination Chemistry Reviews, 2022, 450, 214237.	9.5	66
488	Improved photocatalytic CO2 and epoxides cycloaddition via the synergistic effect of Lewis acidity and charge separation over Zn modified UiO-bpydc. Applied Catalysis B: Environmental, 2022, 301, 120793.	10.8	42
489	MOF-74/polystyrene-derived Ni-doped hierarchical porous carbon for structure-oriented extraction of polycyclic aromatic hydrocarbons and their metabolites from human biofluids. Journal of Hazardous Materials, 2022, 424, 127465.	6.5	22
490	A three-dimensional CoNi-MOF nanosheet array-based immunosensor for sensitive monitoring of human chorionic gonadotropin with core–shell ZnNi-MOF@Nile Blue nanotags. Analyst, The, 2020, 145, 8097-8103.	1.7	13

#	Article	IF	CITATIONS
491	Research Progress on MXenes: Preparation, Property and Application in Tumor Theranostics. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2022, 37, 361.	0.6	2
492	Opportunities and Challenges in Biomedical Applications of Metal–Organic Frameworks. Journal of Inorganic and Organometallic Polymers and Materials, 2021, 31, 4443-4462.	1.9	25
493	Stability Enhancements on Methylammonium Leadâ€Based Perovskite Nanoparticles: the Smart Use of Host Matrices. Israel Journal of Chemistry, 0, , .	1.0	1
494	Closing the Anthropogenic Chemical Carbon Cycle toward a Sustainable Future via CO ₂ Valorization. Advanced Energy Materials, 2021, 11, 2102767.	10.2	35
495	Reductive N-alkylation of primary amides using nickel-nanoparticles. Tetrahedron, 2021, , 132526.	1.0	0
496	Gas sorption properties and kinetics of porous bismuth-based metal-organic frameworks and the selective CO2 and SF6 sorption on a new bismuth trimesate-based structure UU-200. Microporous and Mesoporous Materials, 2022, 329, 111548.	2.2	19
497	In-Situ Formed Micropores as Footholds Enabling Well-Dispersed High-Density Fe-Nx Active Sites for Oxygen Reduction Reaction. Journal of Physical Chemistry $C,0,$, .	1.5	5
498	One-Step Construction of V ₅ S ₈ Nanoparticles Embedded in Amorphous Carbon Nanorods for High-Capacity and Long-Life Potassium Ion Half/Full Batteries. ACS Applied Materials & Diterfaces, 2021, 13, 54308-54314.	4.0	12
499	Highly dispersed Pd clusters/nanoparticles encapsulated in MOFs via in situ auto-reduction method for aqueous phenol hydrogenation. Journal of Materials Science and Technology, 2022, 109, 167-175.	5.6	14
500	One–dimensional metal–organic frameworks for electrochemical applications. Advances in Colloid and Interface Science, 2021, 298, 102562.	7.0	45
501	Crystal structure of 4,4′-bipyridin-1,1′-dium poly[bis(μ ₄ -benzene-1,3,5-triyltris(hydrogen) Tj C ₁₁ H ₁₁ NO ₉ P ₃ Zn. Zeitschrift Fur Kristallographie -	ETQq0 0 (0.1	Ü
500	New Crystal Structures, 2020, 235, 1443-1444. STRUCTURE AND LUMINESCENT PROPERTIES OF COORDINATION POLYMERS CONTAINING LEAD(II) AND	0.0	4
502	THIOPHENE LIGANDS. Journal of Structural Chemistry, 2020, 61, 1800-1809.	0.3	4
503	Pickering emulsions stabilized by metal–organic frameworks, graphitic carbon nitride and graphene oxide. Soft Matter, 2021, 18, 10-18.	1.2	12
504	Continuous-flow syntheses of alloy nanoparticles. Materials Horizons, 2022, 9, 547-558.	6.4	17
505	Target-modulated competitive binding and exonuclease I-powered strategy for the simultaneous and rapid detection of biological targets. Biosensors and Bioelectronics, 2022, 198, 113817.	5. 3	10
506	Self-Assembly of a 3D Hollow BiOBr@Bi-MOF Heterostructure with Enhanced Photocatalytic Degradation of Dyes. ACS Applied Materials & Samp; Interfaces, 2021, 13, 56171-56180.	4.0	88
507	Electrochemical Ammonia Synthesis via NO Reduction on 2Dâ€MOF. ChemPhysChem, 2022, 23, .	1.0	16
508	MOF-inorganic nanocomposites: Bridging a gap with inorganic materials. Applied Materials Today, 2022, 26, 101283.	2.3	8

#	Article	IF	Citations
509	Metal-containing covalent organic framework: a new type of photo/electrocatalyst. Rare Metals, 2022, 41, 1160-1175.	3.6	16
510	Transformations of Polymers of 4,4'-Dipyridyl and Cobalt(II) and Manganese(II) Cymantrenates in the Presence of N-Donors of Different Denticity. Russian Journal of Inorganic Chemistry, 2021, 66, 1660-1668.	0.3	3
511	Construction of a Luminescent Cadmium-Based Metal–Organic Framework for Highly Selective Discrimination of Ferric Ions. Molecules, 2021, 26, 6847.	1.7	6
512	ZnO Supported on a Zr-Based Metal–Organic Framework for Selective CO ₂ Hydrogenation to Methanol. ACS Applied Energy Materials, 2021, 4, 13567-13574.	2.5	12
513	Aqueous zirconiumâ€MOF syntheses assisted by αâ€eyclodextrin: towards deeper understanding of the beneficial role of cyclodextrin. European Journal of Inorganic Chemistry, 0, , .	1.0	3
514	Heterostructures Made of Upconversion Nanoparticles and Metal–Organic Frameworks for Biomedical Applications. Advanced Science, 2022, 9, e2103911.	5.6	49
515	One-pot synthesis of oxygen-vacancy-rich Cu-doped UiO-66 for collaborative adsorption and photocatalytic degradation of ciprofloxacin. Science of the Total Environment, 2022, 815, 151962.	3.9	31
516	A Novel Cerium(IV)â€Based Metalâ€Organic Framework for CO ₂ Chemical Fixation and Photocatalytic Overall Water Splitting. ChemSusChem, 2022, 15, .	3.6	19
517	Revealing the impact of small pores on oxygen reduction on carbon electrocatalysts: A journey through recent findings. Carbon, 2022, 188, 289-304.	5.4	24
518	Zn/Co-ZIF reinforced sugarcane bagasse aerogel for highly efficient catalytic activation of peroxymonosulfate. Journal of Environmental Chemical Engineering, 2021, 9, 106885.	3.3	17
519	Unique Functions and Applications of Rigid Dendrimers Featuring Radial Aromatic Chains. Accounts of Chemical Research, 2021, 54, 4486-4497.	7.6	9
520	A review on adsorbents for the remediation of wastewater: Antibacterial and adsorption study. Journal of Environmental Chemical Engineering, 2021, 9, 106907.	3.3	25
521	Self-supporting CoP-C nanosheet arrays derived from a metal–organic framework as synergistic catalysts for efficient water splitting. Dalton Transactions, 2021, 50, 17549-17558.	1.6	8
522	Core-Shell N-Doped-Co-MOF@polydopamine Decorated With Ag Nanoparticles Composite for Nonenzymatic Glucose Sensors. SSRN Electronic Journal, 0, , .	0.4	0
523	Valorisation of glycerol through catalytic hydrogenolysis routes for sustainable production of value-added C ₃ chemicals: current and future trends. Sustainable Energy and Fuels, 2022, 6, 596-639.	2.5	18
524	A Podâ€ike Coreâ€Shell Catalyst with High Reduction Performance Under Mild Conditions. European Journal of Inorganic Chemistry, 0, , e202100996.	1.0	1
525	Combinational application of metal–organic frameworksâ€based nanozyme and nucleic acid delivery in cancer therapy. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2022, 14, e1773.	3.3	16
526	Synergetic PtNP@Co3O4 hollow nanopolyhedrals as peroxidase-like nanozymes for the dual-channel homogeneous biosensing of prostate-specific antigen. Analytical and Bioanalytical Chemistry, 2022, 414, 1921-1932.	1.9	32

#	Article	IF	CITATIONS
527	A remarkable adsorbent for denitrogenation of liquid fuel: Ethylenediaminetetraacetic acid-grafted metal–organic framework, MOF-808. Separation and Purification Technology, 2022, 284, 120248.	3.9	14
528	Heterostructural CoFe2O4/CoO nanoparticles-embedded carbon nanotubes network for boosted overall water-splitting performance. Electrochimica Acta, 2022, 404, 139745.	2.6	34
529	Recent advances on cobalt metal organic frameworks (MOFs) for photocatalytic CO2 reduction to renewable energy and fuels: A review on current progress and future directions. Energy Conversion and Management, 2022, 253, 115180.	4.4	64
530	Urea and thiourea based coordination polymers and metal-organic frameworks: Synthesis, structure and applications. Coordination Chemistry Reviews, 2022, 453, 214314.	9.5	24
531	Carbon Dioxide Emissions, Capture, Storage and Utilization: Review of Materials, Processes and Technologies. Progress in Energy and Combustion Science, 2022, 89, 100965.	15.8	200
532	Improved strength and water vapor permeability of polyacrylate/SiO2 nanocomposites: Molecular simulations and experimental analysis. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 637, 128236.	2.3	6
533	Fabrication of NH2-MIL-125(Ti) nanodots on carbon fiber/MoS2-based weavable photocatalysts for boosting the adsorption and photocatalytic performance. Journal of Colloid and Interface Science, 2022, 611, 706-717.	5.0	43
534	MOF derived nano-materials: A recent progress in strategic fabrication, characterization and mechanistic insight towards divergent photocatalytic applications. Coordination Chemistry Reviews, 2022, 456, 214392.	9.5	86
535	Highly-stable cobalt metal organic framework with sheet-like structure for ultra-efficient water oxidation at high current density. Journal of Colloid and Interface Science, 2022, 611, 599-608.	5.0	43
536	A Zn(II)-Based Sql Type 2D Coordination Polymer as a Highly Sensitive and Selective Turn-On Fluorescent Probe for Al3+. Molecules, 2021, 26, 7392.	1.7	6
537	A spherical multishell hollow carbon-based catalyst with a controllable N-species content for the oxygen reduction reaction in air-breathing cathode microbial fuel cells. Reaction Chemistry and Engineering, $0, , .$	1.9	3
538	One-step solvent-free aerobic oxidation of aliphatic alcohols to esters using a tandem Sc–RuâŠ,MOF catalyst. Green Chemistry, 2022, 24, 1474-1480.	4.6	4
539	Trimesic Acid-Based Co(II) MOFs as Colorimetric Sensor for Detection of Ammonia Gas. IEEE Sensors Journal, 2022, 22, 3903-3910.	2.4	10
540	Freestanding 3D Ordered Hierarchical Porous Carbon Aerogel Cathodes for Efficient Electrocatalytic Dechlorination of 1,2-Dichloroethane to Ethylene. ACS Sustainable Chemistry and Engineering, 2022, 10, 2234-2240.	3.2	8
541	Atomic Co–N ₄ and Co nanoparticles confined in COF@ZIF-67 derived core–shell carbon frameworks: bifunctional non-precious metal catalysts toward the ORR and HER. Journal of Materials Chemistry A, 2021, 10, 228-233.	5.2	61
542	Modulating the Chemical Microenvironment of Pt Nanoparticles within Ultrathin Nanosheets of Isoreticular MOFs for Enhanced Catalytic Activity. Inorganic Chemistry, 2022, 61, 2538-2545.	1.9	10
543	Magnetic Separation of Pollutants for Environmental Remediation. Handbook of Environmental Chemistry, 2022, , $1.$	0.2	0
544	Guanineâ€Based Gâ€Quadruplexes Templated by Various Cations toward Potential Use as Singleâ€lon Conductors. ChemSusChem, 2022, 15, .	3.6	1

#	Article	lF	Citations
545	Binder-free mechanochemical metal–organic framework nanocrystal coatings. Nanoscale, 2022, 14, 2221-2229.	2.8	11
546	Adsorption and photocatalytic properties of porphyrin loaded MIL-101 (Cr) in methylene blue degradation. Environmental Science and Pollution Research, 2022, 29, 34406-34418.	2.7	6
547	A review of Ni based powder catalyst for urea oxidation in assisting water splitting reaction. , 2022, 1, 100030 .		90
548	Study on the synthesis and host–guest luminescence properties of a novel Cd(ii)-picolinate coordination polymer. New Journal of Chemistry, 0, , .	1.4	1
549	There is still plenty of room for layer-by-layer assembly for constructing nanoarchitectonics-based materials and devices. Physical Chemistry Chemical Physics, 2022, 24, 4097-4115.	1.3	75
550	Modified Metalâ^'Organic Frameworks for Electrochemical Applications. Small Structures, 2022, 3, .	6.9	20
551	Metal–Organic Frameworks (MOFs) and Materials Derived from MOFs as Catalysts for the Development of Green Processes. Catalysts, 2022, 12, 136.	1.6	12
552	Copper-based metal-organic framework for environmental applications. , 2022, , 701-717.		2
553	Architecture engineering of nanostructured catalyst via layer-by-layer adornment of multiple nanocatalysts on silica nanorod arrays for hydrogenation of nitroarenes. Scientific Reports, 2022, 12, 2.	1.6	10
554	Single Nano-Sized Metal–Organic Framework for Bio-Nanoarchitectonics with In Vivo Fluorescence Imaging and Chemo-Photodynamic Therapy. Nanomaterials, 2022, 12, 287.	1.9	11
555	<tt>PoreMatMod.jl</tt> : Julia Package for <i>in Silico</i> Postsynthetic Modification of Crystal Structure Models. Journal of Chemical Information and Modeling, 2022, 62, 423-432.	2.5	3
556	Controlled biocide release from smart delivery systems. , 2022, , 31-147.		0
557	Application of organic frame materials in cancer therapy through regulation of tumor microenvironment. Smart Materials in Medicine, 2022, 3, 230-242.	3.7	25
558	The synthesis of a copper metalâ€organic framework Cu 3 TDPAT and its application in a Moritaâ€Baylisâ€Hillman (MBH) reaction. Applied Organometallic Chemistry, 0, , .	1.7	1
559	MOFs-Graphene Composites Synthesis and Application for Electrochemical Supercapacitor: A Review. Polymers, 2022, 14, 511.	2.0	27
560	Metal-organic framework-derived Mg-Zn hybrid nanocatalyst for biodiesel production. Advanced Powder Technology, 2022, 33, 103365.	2.0	17
561	Twoâ€Dimensional Metal–Organic Framework Nanosheets: Synthesis and Applications in Electrocatalysis and Photocatalysis. ChemSusChem, 2022, 15, .	3.6	33
562	Inducing Structural Diversity in Anionic Metal–Tetraoxolene Coordination Polymers Using Templating Methyl Viologen Countercations. Crystal Growth and Design, 2022, 22, 1319-1332.	1.4	1

#	Article	IF	CITATIONS
563	Polymer-supported first-row transition metal schiff base complexes: Efficient catalysts for epoxidation of alkenes. Reactive and Functional Polymers, 2022, 171, 105142.	2.0	12
564	Design of new porous supramolecular arrays from flavyliums derivative linker. A theoretical assemble toward surface properties. Computational Materials Science, 2022, 204, 111202.	1.4	0
565	Recent advances in catalytic conversion of biomass derived 5-hydroxymethylfurfural into 2,5-furandicarboxylic acid. Biomass and Bioenergy, 2022, 158, 106358.	2.9	31
566	Microscale synthesis system for regulation and prediction of metal organic framework morphologies. Materials Today Chemistry, 2022, 23, 100767.	1.7	5
567	Metalloporphyrin-anchored 2D MOF nanosheets as highly accessible heterogeneous photocatalysts towards cytocompatible living radical polymerization. Chemical Engineering Journal, 2022, 434, 134692.	6.6	18
568	Metal-organic frameworks-derived Ni2P@C Nanocomposite as a high-performance catalyst for hydrazine electrooxidation. Journal of Alloys and Compounds, 2022, 902, 163746.	2.8	4
569	Evaluating diabetic ketoacidosis <i>via</i> a MOF sensor for fluorescence imaging of phosphate and pH. Chemical Communications, 2022, 58, 3023-3026.	2.2	12
570	Nano-Porous Composites of Activated Carbon–Metal Organic Frameworks (Fe-BDC@AC) for Rapid Removal of Cr (VI): Synthesis, Adsorption, Mechanism, and Kinetics Studies. Journal of Inorganic and Organometallic Polymers and Materials, 2022, 32, 1924-1934.	1.9	25
571	Porous Coordination Polymers as Active Fillers for Solid Polymer Electrolytes of Lithium-Ion Batteries. Materials Performance and Characterization, 2022, 11, 34-45.	0.2	0
572	Singleâ€Atom Nanozymes for Biomedical Applications: Recent Advances and Challenges. Chemistry - an Asian Journal, 2022, 17, .	1.7	19
573	Cu-based MOF-derived architecture with Cu/Cu2O nanospheres anchored on porous carbon nanosheets for efficient capacitive deionization. Environmental Research, 2022, 210, 112909.	3.7	11
574	Phosphine Oxide Porous Organic Polymers Incorporating Cobalt(II) Ions: Synthesis, Characterization, and Investigation of H ₂ Production. ACS Omega, 2022, 7, 6104-6112.	1.6	8
575	Visible-Light Driven CO ₂ Reduction to CO by Co ₃ O ₄ Supported on Tungsten Oxide. Journal of Physical Chemistry C, 2022, 126, 3017-3028.	1.5	10
576	Water-stable metal organic framework-199@polyaniline with high-performance removal of copper II. Environmental Science and Pollution Research, 2022, 29, 44883-44892.	2.7	12
577	Mechanism-Guided Design of Metal–Organic Framework Composites for Selective Photooxidation of a Mustard Gas Simulant under Solvent-Free Conditions. ACS Catalysis, 2022, 12, 363-371.	5 . 5	30
578	Metal-OrganicÂFrameworks-Derived Nickel-Iron Oxyhydroxide with Highly Active Edge Sites ForÂElectrochemical Oxygen Evolution. SSRN Electronic Journal, 0, , .	0.4	0
579	An amino-type halogen-bonded organic framework for the selective adsorption of aliphatic acid vapors: insight into the competitive interactions of halogen bonds and hydrogen bonds. Journal of Materials Chemistry A, 2022, 10, 10586-10592.	5.2	14
580	Porous organic–inorganic hybrid materials for catalysis, energy and environmental applications. Chemical Communications, 2022, 58, 3429-3460.	2.2	35

#	Article	IF	CITATIONS
581	Two-step pyrolysis of Mn MIL-100 MOF into MnO nanoclusters/carbon and the effect of N-doping. Journal of Materials Chemistry A, 2022, 10, 8172-8177.	5.2	7
583	Ferrocene-Modified Uio-66-Nh2 Hybrids with G-C3n4 as Enhanced Photocatalysts for Degradation of Bisphenol a Under Visible Light. SSRN Electronic Journal, 0, , .	0.4	0
584	$\label{thm:connected} \mbox{Highly Connected Framework Materials from Flexible Tetra-Isophthalate Ligands. CrystEngComm, 0, , .}$	1.3	3
585	Metal organic framework/polyelectrolyte composites for water vapor sorption applications. Dalton Transactions, 2022, , .	1.6	2
587	Coordination polymers based on aluminum and indium halides together with pyrazine. Australian Journal of Chemistry, 2022, 75, 676-683.	0.5	4
588	Upconverted/Downshifted NaLnF ₄ and Metal-Organic Framework Heterostructures Boosting NIR-II Imaging-Guided Photodynamic Immunotherapy Toward Tumors. SSRN Electronic Journal, 0, , .	0.4	0
589	A versatile biomimetic multienzyme cascade nanoplatform based on boronic acid-modified metal–organic framework for colorimetric biosensing. Journal of Materials Chemistry B, 2022, 10, 3444-3451.	2.9	12
590	A Powerful and Multifunctional Catalyst for Organic Synthesis, Transformation, and Environmental Remediation: A Polyimidazole Supported Trimetallic Catalyst. SSRN Electronic Journal, 0, , .	0.4	0
591	Dual Mofs Heterojunction: Mil-53 Coated with Amorphous Uio-66 for Enhanced Photocatalytic Oxidation of Tetracycline and Methylene Blue. SSRN Electronic Journal, 0, , .	0.4	0
592	Fabrication of a polyoxotungstate/metal–organic framework/phosphorus-doped reduced graphene oxide nanohybrid modified glassy carbon electrode by electrochemical reduction and its electrochemical properties. RSC Advances, 2022, 12, 9210-9222.	1.7	5
593	Structural regulation of Co-based coordination polymers by adjusting solvent polarity toward electrocatalytic hydrogen evolution performance. New Journal of Chemistry, 2022, 46, 7355-7365.	1.4	2
594	Fe-CoP/C composite nanoplate derived from 2D porphyrin MOF as an efficient catalyst for oxygen evolution reaction. New Journal of Chemistry, 2022, 46, 8271-8276.	1.4	6
595	Ordered carbonaceous frameworks: a new class of carbon materials with molecular-level design. Chemical Communications, 2022, 58, 3578-3590.	2.2	14
596	Zwitterionic Luminescent 2D Metal–Organic Framework Nanosheets (LMONs): Selective Turn-On Fluorescence Sensing of Dihydrogen Phosphate. Inorganic Chemistry, 2022, 61, 3942-3950.	1.9	12
597	Rational design of nanocarriers for mitochondria-targeted drug delivery. Chinese Chemical Letters, 2022, 33, 4146-4156.	4.8	26
598	SYNTHESIS AND STRUCTURES OF COORDINATION POLYMERS BASED ON A BRIDGING LIGAND WITH THE THIENOTHIOPHENE BACKBONE. Journal of Structural Chemistry, 2022, 63, 227-234.	0.3	4
599	Crystal structures of lanthanide terephthalate tetrahydrate, R ₂ (C ₈ H ₄ O ₄) ₃ (H ₂ O) ₄ R = Laâ \in Er. Powder Diffraction, 0, , 1-11.	,0.4	0
600	Advances for CO ₂ Photocatalytic Reduction in Porous Ti-Based Photocatalysts. ACS ES&T Engineering, 2022, 2, 942-956.	3.7	16

#	Article	IF	CITATIONS
601	Exploiting the Fracture in Metalâ€Organic Frameworks: A General Strategy for Bifunctional Atomâ€Precise Nanocluster/ZIFâ€8(300°C) Composites. Small, 2022, 18, e2107459.	5 . 2	11
602	Metal–organic frameworkâ€derived phosphide nanomaterials for electrochemical applications. , 2022, 4, 246-281.		48
603	Engineered assembly of water-dispersible nanocatalysts enables low-cost and green CO2 capture. Nature Communications, 2022, 13, 1249.	5.8	42
604	A Facile and General Approach to Enhance Water Resistance of Metal-Organic Frameworks by the Post-Modification with Aminopropyltriethoxylsilane. Nanomaterials, 2022, 12, 1134.	1.9	3
605	Regulation of the Structure of Zirconium-Based Porphyrinic Metal–Organic Framework as Highly Electrochemiluminescence Sensing Platform for Thrombin. Analytical Chemistry, 2022, 94, 5707-5714.	3.2	43
606	Finely dispersed AgPd bimetallic nanoparticles on a polydopamine modified metal organic framework for diverse catalytic applications. Journal of Catalysis, 2022, 411, 1-14.	3.1	14
607	Hollow structured Cu@ZrO2 derived from Zr-MOF for selective hydrogenation of CO2 to methanol. Journal of Energy Chemistry, 2022, 71, 277-287.	7.1	44
608	MOF-Derived Porous Carbon-Supported Bimetallic Fischer–Tropsch Synthesis Catalysts. Industrial & Lamp; Engineering Chemistry Research, 2022, 61, 3941-3951.	1.8	7
609	Boosting Reactive Oxygen Species Generation by Regulating Excitonic Effects in Porphyrinic Covalent Organic Frameworks. Journal of Physical Chemistry Letters, 2022, 13, 2814-2823.	2.1	9
610	Kinetic Probes of the Origin of Activity in MOF-Based C–H Oxidation Catalysis. ACS Catalysis, 2022, 12, 3858-3867.	5 . 5	12
611	A new MnxOy/carbon nanorods derived from bimetallic Zn/Mn metal–organic framework as an efficient oxygen reduction reaction electrocatalyst for alkaline Zn-Air batteries. Journal of Solid State Electrochemistry, 2022, 26, 1163-1173.	1,2	3
612	Ordered heterogeneity of molecular photosensitizer toward enhanced photocatalysis. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2118278119.	3.3	12
613	Designing Sites in Heterogeneous Catalysis: Are We Reaching Selectivities Competitive With Those of Homogeneous Catalysts?. Chemical Reviews, 2022, 122, 8594-8757.	23.0	118
614	Regioselective Ring-Opening of Spiro-Epoxyoxindoles by a Dual-Ligand Zinc-Based Metal–Organic Framework as an Efficient Heterogeneous Catalyst. ACS Applied Nano Materials, 2022, 5, 3712-3721.	2.4	26
615	Semiconducting Metal–Organic Frameworks Decorated with Spatially Separated Dual Cocatalysts for Efficient Uranium(VI) Photoreduction. Advanced Functional Materials, 2022, 32, .	7.8	94
616	Supramolecular Arrangement Built from Zinc and Cadmium Complexes with 4′-(4-Substituted)-2,2′:6′,2″-Terpyridine: Crystallographic Investigation, Luminescence and Thermal Properties. Journal of Inorganic and Organometallic Polymers and Materials, 2022, 32, 2279-2297.	1.9	5
617	Understanding Solvothermal Growth of Metal–Organic Framework Colloids for CO ₂ Capture Applications. Langmuir, 2022, 38, 4415-4424.	1.6	11
618	In Situ Monitoring of Dynamic Photocatalysis of Metal–Organic Frameworks by Three-Dimensional Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy. Analytical Chemistry, 2022, 94, 5699-5706.	3.2	11

#	Article	IF	CITATIONS
619	Novel 2D Zn-porphyrin metal organic frameworks revived CdS for photocatalysis of hydrogen production. International Journal of Hydrogen Energy, 2022, 47, 13340-13350.	3.8	34
620	Merging Charge Transfer into Metal–Organic Frameworks to Achieve High Reduction Potentials via Multiphoton Excitation. ACS Applied Materials & Samp; Interfaces, 2022, 14, 15307-15316.	4.0	9
621	Construction and Sensing Amplification of Raspberry-Shaped MOF@MOF. Inorganic Chemistry, 2022, 61, 4705-4713.	1.9	13
622	Role of Molecular Simulations in the Design of Metal–Organic Frameworks for Gas-Phase Thermocatalysis: A Perspective. Journal of Physical Chemistry C, 2022, 126, 6111-6118.	1.5	2
623	Facile in Situ Transformation of NiOOH into MOF-74(Ni)/NiO OH Heterogeneous Composite for Enchancing Electrocatalytic Methanol Oxidation. Molecules, 2022, 27, 2113.	1.7	4
624	Recent advances on the nanoporous catalysts for the generation of renewable fuels. Journal of Materials Research and Technology, 2022, 17, 3277-3336.	2.6	16
625	Synthesis, Structure and Fluorescent Probes for Sensitive Detection for Nitrobenzene of a Cd-MOF. Journal of Inorganic and Organometallic Polymers and Materials, 2022, 32, 2763-2770.	1.9	6
626	Real-time electrochemical quantification of H2O2 in living cancer cells using Bismuth based MOF. Journal of Electroanalytical Chemistry, 2022, 914, 116255.	1.9	13
627	Materials Nanoarchitectonics from Atom to Living Cell: A Method for Everything. Bulletin of the Chemical Society of Japan, 2022, 95, 774-795.	2.0	65
628	Keggin-type SiW12 encapsulated in MIL-101(Cr) as efficient heterogeneous photocatalysts for nitrogen fixation reaction. Journal of Colloid and Interface Science, 2022, 621, 406-415.	5.0	32
629	Meso/microporous MOF@graphene oxide composite aerogels prepared by generic supercritical CO2 technology. Microporous and Mesoporous Materials, 2022, 335, 111825.	2.2	9
630	A nanocaged cadmium-organic framework with high catalytic activity on the chemical fixation of CO2 and deacetalization-knoevenagel condensation. Microporous and Mesoporous Materials, 2022, 335, 111791.	2.2	21
631	In Situ Construction of a Co/ZnO@C Heterojunction Catalyst for Efficient Hydrogenation of Biomass Derivative under Mild Conditions. ACS Applied Materials & Samp; Interfaces, 2022, 14, 17195-17207.	4.0	14
632	Upconverted/downshifted NaLnF4 and metal-organic framework heterostructures boosting NIR-II imaging-guided photodynamic immunotherapy toward tumors. Nano Today, 2022, 43, 101439.	6.2	43
633	Metal-organic framework-derived multifunctional photocatalysts. Chinese Journal of Catalysis, 2022, 43, 971-1000.	6.9	64
634	Colorless Magnetic Colloidal Particles Based on an Amorphous Metalâ€Organic Framework Using Holmium as the Metal Species ChemNanoMat, 2022, 8, .	1.5	2
635	In Situ Fabrication of NiS ₂ -Decorated Graphitic Carbon Nitride/Metal–Organic Framework Nanostructures for Photocatalytic H ₂ Evolution. ACS Applied Nano Materials, 2022, 5, 5416-5424.	2.4	11
636	Catalytic Hydrogenation of CO2 to Methanol: A Review. Catalysts, 2022, 12, 403.	1.6	45

#	Article	IF	CITATIONS
637	Encapsulation of Nitrilase in Zeolitic Imidazolate Framework-90 to Improve Its Stability and Reusability. Applied Biochemistry and Biotechnology, 2022, 194, 3527-3540.	1.4	6
638	Two-dimensional assembly made up of ZIF-8 particles for the high-efficient capture of the iodine and dyes. Journal of Hazardous Materials, 2022, 430, 128501.	6.5	31
639	Construction of 2D Zn-MOF/BiVO4 S-scheme heterojunction for efficient photocatalytic CO2 conversion under visible light irradiation. Chinese Journal of Catalysis, 2022, 43, 1331-1340.	6.9	55
640	Enhanced bioelectrochemical performance of microbial fuel cell with titanium dioxide-attached dual metal organic frameworks grown on zinc aluminum - layered double hydroxide as cathode catalyst. Bioresource Technology, 2022, 351, 126989.	4.8	12
641	Nitrogen-rich dual linker MOF catalyst for room temperature fixation of CO2 via cyclic carbonate synthesis: DFT assisted mechanistic study. Journal of CO2 Utilization, 2022, 59, 101951.	3.3	11
642	Cu-MOF@PVP/PVDF hybrid composites as tunable proton-conducting materials. Journal of Solid State Chemistry, 2022, 310, 123070.	1.4	9
643	Metal-organic frameworks template-directed growth of layered double hydroxides: A fantastic conversion of functional materials. Coordination Chemistry Reviews, 2022, 460, 214467.	9.5	60
644	A general strategy for overcoming the trade-off between ultrasmall size and high loading of MOF-derived metal nanoparticles by millisecond pyrolysis. Nano Energy, 2022, 97, 107125.	8.2	17
645	Comparative analysis of separation methods used for the elimination of pharmaceuticals and personal care products (PPCPs) from water – A critical review. Separation and Purification Technology, 2022, 290, 120797.	3.9	41
646	Fabrication of Bi2Sn2O7@MIL-100(Fe) composite photocatalyst with enhanced superoxide-radical-dominated photocatalytic activity for ciprofloxacin degradation. Journal of Molecular Structure, 2022, 1258, 132657.	1.8	16
647	The metal-organic framework supported gold nanoparticles as a highlyÂsensitive platform for electrochemical detection of methyl mercury species in the aqueous environment. Journal of Hazardous Materials, 2022, 431, 128608.	6.5	17
648	Dual confinement strategy based on metal-organic frameworks to synthesize MnOx@ZrO2 catalysts for toluene catalytic oxidation. Fuel, 2022, 320, 123983.	3.4	11
649	Pd–WO heterostructures immobilized by MOFs-derived carbon cage for formic acid dehydrogenation. Applied Catalysis B: Environmental, 2022, 309, 121278.	10.8	59
650	Controllably regulating ion transport in lithium metal batteries via pore effect of metal–organic framework-based separators. Applied Surface Science, 2022, 589, 152885.	3.1	20
651	Influence of metal-organic framework MOF-76(Gd) activation/carbonization on the cycle performance stability in Li-S battery. Journal of Energy Storage, 2022, 51, 104419.	3.9	19
652	Fe–O–Zr in MOF for effective photo-Fenton Bisphenol A degradation: Boosting mechanism of electronic transmission. Chemosphere, 2022, 299, 134481.	4.2	20
653	Development of physicochemically stable Z-scheme MIL-88A/g-C3N4 heterojunction photocatalyst with excellent charge transfer for improving acid red 1 dye decomposition efficiency. Applied Surface Science, 2022, 590, 152954.	3.1	12
654	Syntheses of tetrahedral imidazolate frameworks with auxiliary ligand in DMSO. Journal of Solid State Chemistry, 2022, 311, 123101.	1.4	1

#	ARTICLE	IF	CITATIONS
655	Molecular-fingerprint machine-learning-assisted design and prediction for high-performance MOFs for capture of NMHCs from air., 2022, 1, 100026.		18
656	Tailoring the crystal forms of the Ni-MOF catalysts for enhanced photocatalytic CO2-to-CO performance. Applied Catalysis B: Environmental, 2022, 309, 121232.	10.8	74
657	Sugar-cubic Fe2O3/nitrogen-doped graphene nanocomposite as high-performance anode material for oxygen evolution reaction. Journal of Alloys and Compounds, 2022, 910, 164852.	2.8	6
658	Thiadiazole-functionalized metal-organic frameworks multifunction-architectonics for dual-target sensing of ethylamine and gossypol. Chemical Engineering Journal, 2022, 441, 136049.	6.6	18
659	MOF-on-MOF nanoarchitecturing of Fe2O3@ZnFe2O4 radial-heterospindles towards multifaceted superiorities for acetone detection. Chemical Engineering Journal, 2022, 442, 136094.	6.6	31
660	Hofmann-Type Metal–Organic Framework Nanosheets for Oxygen Evolution. ACS Applied Nano Materials, 2021, 4, 14161-14168.	2.4	7
661	Phosphate group functionalized magnetic metal–organic framework nanocomposite for highly efficient removal of U(VI) from aqueous solution. Scientific Reports, 2021, 11, 24328.	1.6	11
662	Flower‣ike Nanozymes with Large Accessibility of Single Atom Catalysis Sites for ROS Generation Boosted Tumor Therapy. Advanced Functional Materials, 2022, 32, .	7.8	35
663	Recent Advances in the Marriage of Catalyst Nanoparticles and Mesoporous Supports. Advanced Materials Interfaces, 2022, 9, .	1.9	10
664	Unsaturated Ni ^{II} Centers Mediated the Coordination Activation of Benzylamine for Enhancing Photocatalytic Activity over Ultrathin Ni MOF-74 Nanosheets. ACS Applied Materials & Interfaces, 2021, 13, 61286-61295.	4.0	23
665	Semiconducting MOF@ZnS Heterostructures for Photocatalytic Hydrogen Peroxide Production: Heterojunction Coverage Matters. Advanced Functional Materials, 2022, 32, .	7.8	59
666	Polydopamineâ€drug conjugate nanocomposites based on <scp>ZIF</scp> â€8 for targeted cancer photothermalâ€chemotherapy. Journal of Biomedical Materials Research - Part A, 2022, 110, 954-963.	2.1	14
667	Applications of Metalâ€Organic Frameworks in Water Treatment: A Review. Small, 2022, 18, e2105715.	5.2	94
668	PdZn intermetallic compound stabilized on ZnO/nitrogen-decorated carbon hollow spheres for catalytic semihydrogenation of alkynols. Nano Research, 2022, 15, 3090-3098.	5.8	14
669	Mixed-Ligand Uranyl Squarate Coordination Polymers: Structure Regulation and Redox Activity. Inorganic Chemistry, 2022, 61, 302-316.	1.9	2
670	FriedlÃ ¤ der, Knoevenagel, and Michael Reactions Employing the Same MOF: Synthesis, Structure, and		

#	Article	IF	CITATIONS
673	Single-atom catalysts for photocatalytic hydrogen evolution: A review. International Journal of Hydrogen Energy, 2022, 47, 17583-17599.	3.8	37
674	Synthesis, Characterization and Bioactivity of Three Tetrazole Carboxylate Based Co(II) Complexes. European Journal of Inorganic Chemistry, 0, , .	1.0	1
675	Four Cd(II)–based metal organic frameworks: Syntheses, structures and fluorescent probes for highly selective, sensitive detection for nitrobenzene. Journal of Solid State Chemistry, 2022, 311, 123144.	1.4	1
676	Surface modification of metal-organic frameworks under sublimated iron-atmosphere by controlled carbonization for boosted oxygen evolution reaction. Nano Research, 2022, 15, 5884-5894.	5.8	12
677	Synergistic combination: Promising nanoplatform Wâ€POM NCs@ HKUSTâ€1 for photothermal and chemodynamic reinforced antiâ€tumor therapy. Applied Organometallic Chemistry, 2022, 36, .	1.7	4
678	Solvent directs the dimensionality of Cu-dicyanoimidazoles. Solid State Sciences, 2022, 128, 106885.	1.5	0
679	Phosphorus or nitrogen – the first phosphatriptycene in coordination polymer chemistry. Dalton Transactions, 2022, 51, 7828-7837.	1.6	6
680	Recent progress on mixed transition metal nanomaterials based on metal–organic frameworks for energy-related applications. Journal of Materials Chemistry A, 2022, 10, 9788-9820.	5.2	28
681	MOF-based electrocatalysts for oxygen evolution reactions. , 2022, , 107-134.		3
682	Supramolecular Effects and Systems in Catalysis. A Review. Doklady Chemistry, 2022, 502, 1-27.	0.2	3
683	Zeolitic imidazolate framework 67 based metal oxides derivatives as electrocatalysts for oxygen evolution reaction., 2022,, 471-495.		1
684	Design of nanostructured sulfur cathodes for high-performance lithium–sulfur batteries. , 2022, , 425-452.		0
685	Construction of cucurbit[<i>n</i>]uril-based supramolecular frameworks <i>via</i> host–guest inclusion and functional properties thereof. Inorganic Chemistry Frontiers, 2022, 9, 2753-2809.	3.0	11
686	Shaping MOF oxime oxidation catalysts as three-dimensional porous aerogels through structure-directing growth inside chitosan microspheres. Green Chemistry, 2022, 24, 4533-4543.	4.6	16
687	Ultrathin Metal-Organic Framework Hybrid Nanosheets Enabled Active Oxygen Evolution Electrocatalysis in Alkaline Media. SSRN Electronic Journal, 0, , .	0.4	0
688	Insights into Mass Transfer Barriers in Metal–Organic Frameworks. Chemistry of Materials, 2022, 34, 4134-4141.	3.2	16
689	Metal–Organic Framework Surface Functionalization Enhancing the Activity and Stability of Palladium Nanoparticles for Carbon–Halogen Bond Activation. Inorganic Chemistry, 2022, 61, 6995-7004.	1.9	11
690	Design and prediction of metal organic framework-based mixed matrix membranes for CO2 capture via machine learning. Cell Reports Physical Science, 2022, 3, 100864.	2.8	29

#	Article	IF	Citations
691	From Lychee Seeds to Hierarchical Fe ₃ O ₄ /Carbon Composite Anodes for Lithium-Ion Batteries: A High Additional Value Conversion-Based Self-Assembly Strategy. Energy & Energy Fuels, 2022, 36, 5027-5035.	2.5	2
692	Metal-Organic Frameworks Decorated Cu2O Heterogeneous Catalysts for Selective Oxidation of Styrene. Catalysts, 2022, 12, 487.	1.6	10
693	2D Layer Structure in Two New Cu(II) Crystals: Structural Evolvement and Properties. Crystals, 2022, 12, 585.	1.0	0
694	The morphology, crystal structure and oxygen evolution reaction electrocatalysis performance of scandium-doped MIL-101(Fe). Journal of Solid State Chemistry, 2022, 312, 123202.	1.4	2
695	Coupling Ruthenium Bipyridyl and Cobalt Imidazolate Units in a Metal–Organic Framework for an Efficient Photosynthetic Overall Reaction in Diluted CO ₂ . Journal of the American Chemical Society, 2022, 144, 8676-8682.	6.6	42
696	Photo-Induced Preparation of Ag@MOF-801 Composite Based Heterogeneous Nanocatalyst for the Production of Biodiesel. Catalysts, 2022, 12, 533.	1.6	13
697	Ferrocene-modified Uio-66-NH2 hybrids with g-C3N4 as enhanced photocatalysts for degradation of bisphenol A under visible light. Journal of Hazardous Materials, 2022, 436, 129052.	6. 5	27
698	MOFâ€Supported Copper Complexâ€Catalyzed Synthesis of Unsymmetrical 1,3â€Diynes Without External Additives. ChemCatChem, 0, , .	1.8	1
699	Shedding Light on the Lewis Acid Catalysis in Organic Transformations Using a Zn-MOF Microflower and Its ZnO Nanorod. Catalysis Letters, 2023, 153, 887-902.	1.4	11
700	Eosin Y-Containing Metal–Organic Framework as a Heterogeneous Catalyst for Direct Photoactivation of Inert C–H Bonds. Inorganic Chemistry, 2022, 61, 7256-7265.	1.9	8
701	Metal Ion-Directed Functional Metal–Phenolic Materials. Chemical Reviews, 2022, 122, 11432-11473.	23.0	108
702	Trimetallic Layered Hydroxide Anchored on a Bimetallic NiCo-MOF Derivative as a Self-Supporting Electrode Material for Boosting Supercapacitance. Energy & Samp; Fuels, 2022, 36, 5492-5501.	2.5	12
703	Facile construction of Fe3+/Fe2+ mediated charge transfer pathway in MIL-101 for effective tetracycline degradation. Journal of Cleaner Production, 2022, 359, 131808.	4.6	17
704	Advance and prospect of metal-organic frameworks for perovskite photovoltaic devices. Organic Electronics, 2022, 106, 106546.	1.4	24
705	Porous materials for capture and catalytic conversion of CO2 at low concentration. Coordination Chemistry Reviews, 2022, 465, 214576.	9.5	74
706	An innovative S-scheme AgCl/MIL-100(Fe) heterojunction for visible-light-driven degradation of sulfamethazine and mechanism insight. Journal of Hazardous Materials, 2022, 435, 129061.	6.5	45
707	Hydrophobicity Modulation on a Ferriporphyrin-Based Metal–Organic Framework for Enhanced Ambient Electrocatalytic Nitrogen Fixation. SSRN Electronic Journal, 0, , .	0.4	0
	Three-step post-synthetic modification metal-organic framework as a ratiometric fluorescent probe		

#	ARTICLE	IF	CITATIONS
709	Lanthanide doped metal-organic frameworks as a ratiometric fluorescence biosensor for visual and ultrasensitive detection of serotonin. Journal of Solid State Chemistry, 2022, 312, 123231.	1.4	9
710	Mixed-Linker Isoreticular Zn(II) Metal–Organic Frameworks as Brønsted Acid–Base Bifunctional Catalysts for Knoevenagel Condensation Reactions. Inorganic Chemistry, 2022, 61, 8339-8348.	1.9	27
711	A colorimetric assay for cholesterol based on the encapsulation of multienzyme in leaf-shape crossed ZIF-L. Chinese Chemical Letters, 2023, 34, 107510.	4.8	2
712	Zirconium Metal–Organic Cages: Synthesis and Applications. Accounts of Chemical Research, 2022, 55, 1546-1560.	7.6	48
713	Applications of metal nanoparticles/metal-organic frameworks composites in sensing field. Chinese Chemical Letters, 2023, 34, 107527.	4.8	18
714	Bottom-up Synthesis of Highly Active Catalyst by Coal-derived Carbon Quantum Dots for Oxygen Evolution Reaction. Materials Letters, 2022, , 132470.	1.3	1
715	Discrete Arsonate-Grafted Inverted-Keggin 12-Molybdate Ion [Mo ₁₂ O ₃ H ₂ -C _{H_{-C_{H_{-C_{-C_{H_{-C_{-C_{H_{-C}}	sub ≀.6 <td>b>ld_{4<}</td>	b> ld _{4<}
716	Methane storage in flexible and dynamical metal–organic frameworks. Chemical Physics Reviews, 2022, 3, .	2.6	7
717	Polydopamine-modified HKUST-1 as nanofiller of PPS@PA membrane with well improved desalination performance. Polymer, 2022, 253, 124988.	1.8	7
718	Unveiling High Intrinsic Activity of Co3mo Alloy and Metallic Ni Embedded in Conimo-O Nanosheets Arrays for Hydrogen Evolution Reaction. SSRN Electronic Journal, 0, , .	0.4	0
719	Co-Mof-Derived Zif@Ni-Co-B150 as an Efficient Electrocatalyst for Oxygen Evolution Reaction. SSRN Electronic Journal, 0, , .	0.4	0
720	e°få^¶é‡'属有机框架èŠ,ç,¹æ‹"扑构型璔¨äºŽä¿f进苯èfºé«~æ•^å,¬åŒ–氧化. Scientia Sinica C	Chimoiæa, 20	0229,.
721	Au Nanoparticles Supported by Porous Aromatic Frameworksâ€"Efficient and Recyclable Catalysts for Nitro Reduction. Catalysts, 2022, 12, 588.	1.6	2
722	<scp>Cageâ€Ligand</scp> Strategy for the Construction of Zr ₄ (embonate) ₆ â€"Based <scp>MOFs</scp> with <scp>Thirdâ€Order Nonlinearâ€Optical</scp> Properties. Chinese Journal of Chemistry, 2022, 40, 2067-2071.	2.6	7
723	Confinement Matters: Stabilization of CdS Nanoparticles inside a Postmodified MOF toward Photocatalytic Hydrogen Evolution. ACS Applied Materials & Samp; Interfaces, 2022, 14, 25220-25231.	4.0	41
724	Metal–organic framework ZIF-8 loaded with rhodium nanoparticles as a catalyst for hydroformylation. Mendeleev Communications, 2022, 32, 320-322.	0.6	6
725	Supramolecular Isomerism in Cobalt(II) Coordination Polymers Built from 3,5-Bis(trifluoromethyl)benzoate and 4,4′-Bipyridine. Crystal Growth and Design, 2022, 22, 4463-4471.	1.4	1
726	Design and synthesis of hollow Ce/Zr-UiO-66 nanoreactors for synergistic and efficient catalysis. Journal of Solid State Chemistry, 2022, 312, 123306.	1.4	7

#	ARTICLE	IF	CITATIONS
727	Core-shell composite N-doped-Co-MOF@polydopamine decorated with Ag nanoparticles for nonenzymatic glucose sensors. Journal of Electroanalytical Chemistry, 2022, 918, 116491.	1.9	15
728	Singleâ€Crystal Capacitive Sensors with Micropatterned Electrodes via Spaceâ€Confined Growth of the Metal–Organic Framework HKUSTâ€1. Advanced Functional Materials, 0, , 2204065.	7.8	4
729	Advances in Environmental Applications of Metal–Organic Frameworks. ACS Symposium Series, 0, , 25-52.	0.5	0
730	Metalâ^'Organic Frameworks as Photocatalysts for Hydrogen Evolution. ACS Symposium Series, 0, , 499-511.	0.5	0
731	Ultrasensitive Electrochemical Sensor for Rutin Based on Metal-Organic Framework Cau-1/Mwcnts-Cooh Nanotubes Composites. SSRN Electronic Journal, 0, , .	0.4	4
732	Unveiling High Intrinsic Activity of Co3mo Alloy and Metallic Ni Embedded in Conimo-O Nanosheets Arrays for Hydrogen Evolution Reaction. SSRN Electronic Journal, 0, , .	0.4	0
733	Chapter 8. Nanocatalysis With Sustainability. RSC Nanoscience and Nanotechnology, 2022, , 220-254.	0.2	1
734	Carbon-efficient conversion of natural gas and natural-gas condensates to chemical products and intermediate feedstocks ⟨i>via⟨ i> catalytic metal–organic framework (MOF) chemistry. Energy and Environmental Science, 2022, 15, 2819-2842.	15.6	6
735	Highly-Selective Mof-303 Membrane for Alcohol Dehydration. SSRN Electronic Journal, 0, , .	0.4	0
736	Impacts of targeting different hydration free energy references in the development of ion potentials. Physical Chemistry Chemical Physics, 0, , .	1.3	0
737	TheÂOrientedÂDesignÂOf Transition Metal Oxide Hollow Multishelled Micro-PolyhedronÂDerived from Bimetal-Organic Frameworks for Electrochemical DetectionÂOfÂMulti-Pesticide Residues. SSRN Electronic Journal, 0, , .	0.4	0
738	Graphene-based polymer composites in corrosion protection applications., 2022,, 559-581.		0
739	Frontiers in ion imprinting of alkali- and alkaline-earth metal ions $\hat{a} \in \mathbb{C}$ Recent advancements and application to environmental, food and biomedical analysis. TrAC - Trends in Analytical Chemistry, 2022, 156, 116711.	5 . 8	10
740	Borate particulate photocatalysts for photocatalytic applications: A review. International Journal of Hydrogen Energy, 2022, 47, 25608-25630.	3.8	68
741	Hydrophobicity modulation on a ferriporphyrin-based metal–organic framework for enhanced ambient electrocatalytic nitrogen fixation. Applied Catalysis B: Environmental, 2022, 316, 121673.	10.8	26
742	Potential Applications of Nickelâ€Based Metalâ€Organic Frameworks and their Derivatives. Chemical Record, 2022, 22, .	2.9	38
743	Solid-State Reaction Synthesis of Nanoscale Materials: Strategies and Applications. Chemical Reviews, 2022, 122, 12748-12863.	23.0	35
744	Hybrid Metal–Organic Frameworks Encapsulated Hybrid Ni-Doped CdS Nanoparticles for Visible-Light-Driven CO ₂ Reduction. ACS Applied Materials & Amp; Interfaces, 2022, 14, 28123-28132.	4.0	11

#	Article	IF	CITATIONS
7 45	Metalâ€Organic Frameworksâ€Derived Nickel–Iron Oxyhydroxide with Highly Active Edge Sites for Electrochemical Oxygen Evolution. Small Structures, 2022, 3, .	6.9	3
746	In-situ construction of abundant active centers on hierarchically porous carbon electrode toward high-performance phosphate electrosorption: Synergistic effect of electric field and capture sites. Green Energy and Environment, 2024, 9, 126-137.	4.7	12
747	Improvement of anti-corrosion performance of an epoxy coating using hybrid UiO-66-NH2/carbon nanotubes nanocomposite. Scientific Reports, 2022, 12, .	1.6	12
748	From a Dense Structure to Open Frameworks: The Structural Plethora of Alkali Metal Iron Fluorophosphates. Inorganic Chemistry, 0, , .	1.9	2
749	A powerful and multifunctional catalyst for organic synthesis, transformation, and environmental remediation: A polylmidazole supported trimetallic catalyst. Applied Catalysis B: Environmental, 2022, 316, 121629.	10.8	5
750	Pd and Ni NPs@Eu-MOF, an economically advantageous nanocatalyst for C(sp2)-C(sp2) cross-coupling reactions. Key role of Ni and of the metal nanoparticles. Polyhedron, 2022, 223, 115950.	1.0	3
751	2D metal–organic frameworks and their derivatives for the oxygen evolution reaction. Journal of Alloys and Compounds, 2022, 919, 165823.	2.8	18
752	Photocatalytic active metal–organic framework and its derivatives for solar-driven environmental remediation and renewable energy. Coordination Chemistry Reviews, 2022, 468, 214639.	9.5	45
753	Metal–organic frameworks and derived materials as photocatalysts for water splitting and carbon dioxide reduction. Coordination Chemistry Reviews, 2022, 469, 214664.	9.5	100
754	Ultrafine Pd species anchored on porous CeO2 nanobundles as a highly efficient catalyst for methane oxidation. Applied Surface Science, 2022, 599, 153909.	3.1	5
755	"Sloughing―of metal-organic framework retaining nanodots via step-by-step carving and its flame-retardant effect in epoxy resin. Chemical Engineering Journal, 2022, 448, 137666.	6.6	32
756	Post-synthetic modification of Prussian blue type nanoparticles: tailoring the chemical and physical properties. Inorganic Chemistry Frontiers, 2022, 9, 3943-3971.	3.0	5
757	Cobalt sandwich-stabilized rhodium nanocatalysts for ammonia borane and tetrahydroxydiboron hydrolysis. Inorganic Chemistry Frontiers, 2022, 9, 4651-4660.	3.0	7
758	CRISPR/Cas12a-mediated electrochemiluminescence platform for environmental and human serum SARS-CoV-2 RNA monitoring using a self-enhanced ruthenium complex linked to zeolitic imidazole framework-8. Environmental Science: Nano, 2022, 9, 3417-3426.	2.2	1
759	Hydrogenation of furfural over Pd@ZIF-67 derived catalysts: direct hydrogenation and transfer hydrogenation. New Journal of Chemistry, 2022, 46, 13715-13724.	1.4	6
760	Transformation of metal–organic frameworks with retained networks. Chemical Communications, 2022, 58, 8602-8613.	2.2	11
761	Metal-organic frameworks (MOFs), rare earth MOFs, and rare earth functionalized MOF hybrid materials., 2022,, 3-40.		0
762	Zrâ€oxo Nodes of MOFs with Tunable Electronic Properties Provide Effective •OH Species for Enhanced Methane Hydroxylation. Angewandte Chemie, 0, , .	1.6	0

#	Article	IF	Citations
763	Tailored Inorganicâ€Organic Architectures via Metalloligands. Chemical Record, 0, , .	2.9	1
764	Zirconiumâ€oxo Nodes of MOFs with Tunable Electronic Properties Provide Effective â‹OH Species for Enhanced Methane Hydroxylation. Angewandte Chemie - International Edition, 2022, 61, .	7.2	21
765	Gate Opening without Volume Change Triggers Cooperative Gas Interactions, Underpins an Isotherm Step in Metal–Organic Frameworks. Inorganic Chemistry, 2022, 61, 10810-10821.	1.9	2
766	Electrocatalytic conversion of nitrate waste into ammonia: a review. Environmental Chemistry Letters, 2022, 20, 2929-2949.	8.3	87
767	Polymer/ZIFâ€67 composite as an effective and recyclable nanocatalyst for Biginelli reaction. Applied Organometallic Chemistry, 2022, 36, .	1.7	6
768	Sustainable Coordination Polymer-Based Catalyst and Its Application in the Nitroaromatic Hydrogenation under Mild Conditions. Langmuir, 2022, 38, 8686-8695.	1.6	12
769	Molecular structure models of amorphous bismuth and cerium carboxylate catalyst precursors. Catalysis Today, 2022, 402, 350-357.	2,2	1
770	Rational design and synthesis of two-dimensional conjugated metal-organic polymers for electrocatalysis applications. CheM, 2022, 8, 1822-1854.	5.8	32
771	Combining Theory and Experiments To Study the Influence of Gas Sorption on the Conductivity Properties of Metal–Organic Frameworks. ACS Applied Materials & Samp; Interfaces, 2022, 14, 33662-33674.	4.0	1
772	Engineering MOFsâ€Derived Nanoarchitectures with Efficient Polysulfides Catalytic Sites for Advanced Li–S Batteries. Advanced Materials Technologies, 2023, 8, .	3.0	4
773	Simple Approximation for the Ideal Reference State of Gases Adsorbed on Solid-State Surfaces. Journal of the American Chemical Society, 2022, 144, 12850-12860.	6.6	3
774	<i>In Situ</i> Clustering of Single-Atom Copper Precatalysts in a Metal-Organic Framework for Efficient Electrocatalytic Nitrate-to-Ammonia Reduction. ACS Catalysis, 2022, 12, 8698-8706.	5.5	56
775	Construction of a 3D Metal–Organic Framework and Its Composite for Water Remediation via Selective Adsorption and Photocatalytic Degradation of Hazardous Dye. ACS Omega, 2022, 7, 24438-24451.	1.6	20
776	Nitric oxide detection using catalytic properties of CuCo-PTC metal organic framework. Mikrochimica Acta, 2022, 189, .	2.5	0
777	Benzenehexol-based 2D MOF as high-performance electrocatalyst for oxygen reduction reaction. Applied Surface Science, 2022, 601, 154187.	3.1	10
778	Metal–Organic Framework: An Emergent Catalyst in C–N Cross-Coupling Reactions. Coordination Chemistry Reviews, 2022, 469, 214667.	9.5	23
779	Tailoring the structure and function of metal organic framework by chemical etching for diverse applications. Coordination Chemistry Reviews, 2022, 470, 214699.	9.5	31
780	Rhodium nanoparticles anchored on 3D metal organic framework-graphene hybrid architectures for high-performance electrocatalysts toward methanol oxidation., 2022, 1, 100029.		4

#	ARTICLE	IF	CITATIONS
781	Amorphous NH2-MIL-68 as an efficient electro- and photo-catalyst for CO2 conversion reactions. Nano Research, 2023, 16, 181-188.	5.8	10
782	Functionalizing aromatic compounds with optical cycling centres. Nature Chemistry, 2022, 14, 995-999.	6.6	18
783	Oxygen Plasma-Activated NiFe Prussian Blue Analogues Interconnected N-Doped Carbon Nanotubes as a Bifunctional Electrocatalyst for a Rechargeable Zinc–Air Battery. ACS Applied Energy Materials, 2022, 5, 9801-9810.	2.5	10
784	Improved catalytic performance and stability of defected UiO-66–SO3H in the esterification reaction of cyclohexene with cyclohexanecarboxylic acid. Journal of Porous Materials, 2022, 29, 1957-1968.	1.3	1
785	Unveiling high intrinsic activity of Co3Mo alloy and metallic Ni embedded in CoNiMo-O nanosheets arrays for hydrogen evolution reaction. Chemical Engineering Journal, 2022, 450, 138206.	6.6	14
786	PtNi@ZIF-8 nanocatalyzed high efficiency and complete hydrogen generation from hydrazine borane: origin and mechanistic insight. Journal of Materials Chemistry A, 2022, 10, 17614-17623.	5.2	12
787	Tunable CuO nanostructured thin films derived from metal–organic frameworks for dehydrogenation of alcohols. Journal of Materials Chemistry A, 2022, 10, 17680-17690.	5.2	1
788	Layered double hydroxides and hydroxide salts: Structure and properties. Developments in Clay Science, 2022, , 317-350.	0.3	0
789	TheÂOrientedÂDesignÂOf Transition Metal Oxide Hollow Multishelled Micro-PolyhedronÂDerived from Bimetal-Organic Frameworks for Electrochemical DetectionÂOfÂMulti-Pesticide Residues. SSRN Electronic Journal, 0, , .	0.4	0
790	Metal–organic framework (MOF)-, covalent-organic framework (COF)-, and porous-organic polymers (POP)-catalyzed selective C–H bond activation and functionalization reactions. Chemical Society Reviews, 2022, 51, 7810-7882.	18.7	80
791	Efficient Synthesis of 3-(4-Carboxyphenyl)pyridine-2,6-dicarboxylic Acid. Russian Journal of Organic Chemistry, 2022, 58, 917-919.	0.3	1
792	Hierarchical ZrO2@N-doped carbon nano-networks anchored ultrafine Pd nanoparticles for highly efficient catalytic hydrogenation. Science China Chemistry, 2022, 65, 1661-1669.	4.2	2
793	CsCu ₂ 1 ₃ Nanoparticles Incorporated within a Mesoporous Metal–Organic Porphyrin Framework as a Catalyst for One-Pot Click Cycloaddition and Oxidation/Knoevenagel Tandem Reaction. ACS Applied Materials & Samp; Interfaces, 2022, 14, 36515-36526.	4.0	16
794	Directing the Selfâ€Assembly of Aromatic Foldamer Helices using Acridine Appendages and Metal Coordination. Chemistry - A European Journal, 2022, 28, .	1.7	3
795	Formic Acid Generation from CO2 Reduction by MOF-253 Coordinated Transition Metal Complexes: A Computational Chemistry Perspective. Catalysts, 2022, 12, 890.	1.6	1
796	Postsynthetic Modification of Zn/Co-ZIF by 3,5-Diamino-1,2,4-triazole for Improved MOF/Polyimide Interface in CO ₂ –Selective Mixed Matrix Membranes. Industrial & Engineering Chemistry Research, 2022, 61, 13242-13255.	1.8	4
797	Polydopamine-based polysaccharide materials for water treatment. Cellulose, 2022, 29, 8025-8064.	2.4	17
798	Progress in Hybridization of Covalent Organic Frameworks and Metal–Organic Frameworks. Small, 2022, 18, .	5.2	41

#	Article	IF	CITATIONS
799	Metal–Organic Frameworks for CO ₂ Separation from Flue and Biogas Mixtures. Advanced Functional Materials, 2022, 32, .	7.8	46
800	Metal–organic framework derived single-atom catalysts for CO2 conversion to methanol. Current Opinion in Green and Sustainable Chemistry, 2022, 37, 100660.	3.2	12
801	Znâ€Metal–Organic Framework Derived Ordered Mesoporous Carbonâ€Based Nanostructure for Highâ€Performance and Universal Multivalent Metal Ion Storage. Advanced Materials, 2022, 34, .	11.1	13
802	A Reusable FeCl3â^™6H2O/Cationic 2,2′-Bipyridyl Catalytic System for Reduction of Nitroarenes in Water. Catalysts, 2022, 12, 924.	1.6	2
803	Structural Influence on Exciton Migration and Singlet Oxygen Photosensitization in Porphyrinic Metal–Organic Coordination Networks. Chemistry of Materials, 2022, 34, 7242-7255.	3.2	4
804	Construction of high-performance NiCe-MOF derived structured catalyst for steam reforming of biomass tar model compound. International Journal of Hydrogen Energy, 2022, 47, 32004-32014.	3.8	6
805	Coordination Polymers Based on Carbazole-Derived Chromophore Linkers for Optimized Multiphoton Absorption: A Structural and Photophysical Study. Chemistry of Materials, 2022, 34, 7402-7411.	3.2	3
806	Ultrafine Ru nanoparticles derived from few-layered Ti3C2Tx MXene templated MOF for highly efficient alkaline hydrogen evolution. International Journal of Hydrogen Energy, 2022, 47, 32787-32795.	3.8	19
807	Upconversion Nanostructures Applied in Theranostic Systems. International Journal of Molecular Sciences, 2022, 23, 9003.	1.8	5
808	Sensitive Detection of Alcohol Isomers by Ionically Conductive Metalâ€Organic Frameworks. Advanced Electronic Materials, 0, , 2200542.	2.6	1
809	Ordered macroporous MOF-based materials for catalysis. Molecular Catalysis, 2022, 529, 112568.	1.0	16
810	Comparative Effect of Amino Functionality on the Performance of Isostructural Mixedâ€Ligand MOFs towards Multifunctional Catalytic Application. European Journal of Inorganic Chemistry, 2022, 2022, .	1.0	1
811	Pore size effect of 1,3,6,8-tetrakis (4-carboxyphenyl) pyrene-based metal-organic frameworks for enhanced SF6 adsorption with high selectivity. Microporous and Mesoporous Materials, 2022, 343, 112161.	2.2	4
812	Amino-grafting pre-functionalization of terephthalic acid by impulse dielectric-barrier discharge (DBD) plasma for amino-based Metal-Organic Frameworks (MOFs). Materials Chemistry and Physics, 2022, 290, 126629.	2.0	4
813	Fabrication of visible-light-driven bimetallic MOF-derived Ag/NiOx/N-TiO2: Photocatalytic hydrogen production mechanism and methanol transformation pathway. Journal of Environmental Chemical Engineering, 2022, 10, 108375.	3.3	3
814	Fluorescence ratiometric assay for discriminating GSH and Cys based on the composites of UiO-66-NH2 and Cu nanoclusters. Biosensors and Bioelectronics, 2022, 215, 114582.	5.3	21
815	Highly-selective MOF-303 membrane for alcohol dehydration. Journal of Membrane Science, 2022, 661, 120879.	4.1	13
816	Recent advances in metal–organic frameworks and their derivatives for electrocatalytic nitrogen reduction to ammonia. Coordination Chemistry Reviews, 2022, 471, 214761.	9.5	25

#	Article	IF	CITATIONS
817	Titanium nitride@nitrogen-enriched porous carbon derived from metal–organic frameworks and melamine: A remarkable oxidative catalyst to remove indoles from fuel. Chemical Engineering Journal, 2022, 450, 138411.	6.6	15
818	MOFs-assisted synthesis of robust and efficient cobalt-based Fischer–Tropsch catalysts. Fuel, 2022, 329, 125481.	3.4	1
819	Tunable MOFs derivatives for stable and fast sulfur electrodes in Li-S batteries. Chemical Engineering Journal, 2022, 450, 138287.	6.6	27
820	Metal-organic frameworks composed of nitro groups: Preparation and applications in adsorption and catalysis. Chemical Engineering Journal, 2023, 451, 138538.	6.6	39
821	Hierarchical-pore UiO-66-NH2 xerogel with turned mesopore size for highly efficient organic pollutants removal. Journal of Colloid and Interface Science, 2022, 628, 705-716.	5.0	14
822	Metal–Organic Frameworkâ€Based Nanomaterials for Electrocatalytic Oxygen Evolution. Small Methods, 2022, 6, .	4.6	53
823	Engineering the Electronic Structure of Active Centers in Metalloporphyrins to Boost Oxygen Reduction Reaction Activity. ChemElectroChem, 2022, 9, .	1.7	2
824	Ultrathin metal–organic framework hybrid nanosheets enabled active oxygen evolution electrocatalysis in alkaline media. Journal of Electroanalytical Chemistry, 2022, 922, 116765.	1.9	1
825	Nanotubes-nanosheets (1D/2D) heterostructured bifunctional electrocatalysts for overall water splitting. Electrochimica Acta, 2022, 430, 141095.	2.6	9
826	Advanced MOF-derived carbon-based non-noble metal oxygen electrocatalyst for next-generation rechargeable Zn-air batteries. Coordination Chemistry Reviews, 2022, 473, 214839.	9.5	36
827	Finding the optimal CO2 adsorption material: Prediction of multi-properties of metal-organic frameworks (MOFs) based on DeepFM. Separation and Purification Technology, 2022, 302, 122111.	3.9	12
828	Morphology engineering of Co-MOF nanostructures to tune their electrochemical performances for electrocatalyst and energy-storage applications supported by DFT studies. Applied Surface Science, 2022, 605, 154691.	3.1	9
829	Fast Au-Ni@ZIF-8-catalyzed ammonia borane hydrolysis boosted by dramatic volcano-type synergy and plasmonic acceleration. Applied Catalysis B: Environmental, 2023, 320, 121957.	10.8	32
830	Synthesis and characterization of UiO-66-NH2 incorporated graphene aerogel composites and their utilization for absorption of organic liquids. Carbon, 2023, 201, 561-567.	5.4	10
831	MIL-100(Fe) a potent adsorbent of Dacarbazine: Experimental and molecular docking simulation. Chemical Engineering Journal, 2023, 452, 138987.	6.6	33
832	The facile synthesis of FeP/CoP confined in N, P co-doped carbon derived from MOFs for an efficient pH-universal hydrogen evolution reaction. Dalton Transactions, 2022, 51, 12307-12313.	1.6	3
833	Zn-doped SnS with sulfur vacancies for enhanced photocatalytic hydrogen evolution from water. New Journal of Chemistry, 2022, 46, 17791-17800.	1.4	4
834	3D Fe-MOF embedded into 2D thin layer carbon nitride to construct 3D/2D S-scheme heterojunction for enhanced photoreduction of CO2. Chinese Journal of Catalysis, 2022, 43, 2625-2636.	6.9	31

#	Article	IF	Citations
835	Magnetic Dendritic Mof with Multiple Functionality Impact and its Application in Remarkable Recovery of Au(Iii) and Pd(Ii). SSRN Electronic Journal, $0, \dots$	0.4	0
836	Surface-halogen-introduced 2D NiCo bimetallic MOFs <i>via</i> electrochemical glucose sensing. Inorganic Chemistry Frontiers, 2022, 9, 5853-5861.	3.0	14
837	Oxalate-based [Cu ^{II} Cr ^{III}] coordination compounds affected by the tridentate ligand, simple anion, and reactant ratio: structural and magnetic features. Dalton Transactions, 2022, 51, 16292-16306.	1.6	2
838	Advances in metal–organic framework-based membranes. Chemical Society Reviews, 2022, 51, 8300-8350.	18.7	98
839	Phosphate anion-induced silver-chalcogenide cluster-based metal organic frameworks as dual-functional catalysts for detoxifying chemical warfare agent simulants. Chemical Communications, 2022, 58, 9806-9809.	2.2	9
840	<i>In silico</i> activation of dinitrogen with a light atom molecule. Physical Chemistry Chemical Physics, 2022, 24, 20953-20967.	1.3	3
841	Electrospun Hydrogel Fibers Guide Hkust-1 Assembly. SSRN Electronic Journal, 0, , .	0.4	0
842	Single–atom catalysts based on Fenton-like/peroxymonosulfate system for water purification: design and synthesis principle, performance regulation and catalytic mechanism. Nanoscale, 2022, 14, 13861-13889.	2.8	18
843	Self-assembled mononuclear complexes: open metal sites and inverse dimension-dependent catalytic activity for the Knoevenagel condensation and CO ₂ cycloaddition. Nanoscale, 2022, 14, 15897-15907.	2.8	6
844	Crystal-size effect on the kinetics of CO ₂ adsorption in metal organic frameworks studied by NMR. Physical Chemistry Chemical Physics, 2022, 24, 21210-21215.	1.3	1
845	N, S, P Tri-Doped Carbon as Highly Efficient Catalyst for Oxygen Reduction Reaction. SSRN Electronic Journal, O, , .	0.4	0
846	High-entropy-alloy nanoparticles synthesized by laser metallurgy using a multivariate MOF. Materials Chemistry Frontiers, 2022, 6, 2796-2802.	3.2	8
847	Green synthetic methods in drug discovery and development., 2022,, 201-279.		0
848	Modulating coordination structures and metal environments of MOFs-Engineered electrocatalysts for water electrolysis. Chemical Engineering Journal, 2023, 452, 139475.	6.6	19
849	Recent advances in the application of metal-organic frameworks (MOFs)-based nanocatalysts for direct conversion of carbon dioxide (CO2) to value-added chemicals. Coordination Chemistry Reviews, 2023, 474, 214853.	9.5	54
850	Multifunctional layered bismuth oxychloride/amorphous antimony oxide hetero-hybrids as superior photocatalyst and potassium ion storage materials. Applied Catalysis B: Environmental, 2023, 321, 122032.	10.8	9
851	Tuning band structures of Hf-PCN-224(M) for \hat{l}^2 -Carbonyl C(sp3)-H bond activation and difunctionalization: Tandem C(sp3) radical cross-coupling through photoredox. Applied Catalysis B: Environmental, 2023, 321, 122049.	10.8	2
852	An Efficient, Multiplexed Strategy for Instant Detection of Bacterial Biomarker by a Lanthanide–Organic Material. Inorganic Chemistry, 2022, 61, 14313-14321.	1.9	11

#	Article	IF	CITATIONS
853	Tribromide immobilized on surface of magnetic nanoparticles modified tris(triazine-triamine): A versatile and highly active catalyst for oxidation of sulfides and oxidative coupling of thiols. Phosphorus, Sulfur and Silicon and the Related Elements, 0, , 1-10.	0.8	0
854	Pd-Nanoparticles Embedded Metal–Organic Framework-Derived Hierarchical Porous Carbon Nanosheets as Efficient Electrocatalysts for Carbon Monoxide Oxidation in Different Electrolytes. Langmuir, 2022, 38, 11109-11120.	1.6	20
855	Adsorptive Membranes for Arsenic Removal – Principles, Progress and Challenges. Separation and Purification Reviews, 2023, 52, 379-399.	2.8	1
856	Application of three Ln(â¢)-coordination polymers in fields of luminescence, antibacteria and detection of Fe3+ and 4-nitrophenol. Journal of Rare Earths, 2023, 41, 1392-1397.	2.5	4
857	Metal–Organic Frameworks and Their Composites for Environmental Applications. Advanced Science, 2022, 9, .	5.6	26
858	3D well-ordered wood substrate coupled transition metal boride as efficient electrode for water splitting. International Journal of Hydrogen Energy, 2022, 47, 35571-35580.	3.8	6
859	Electrocatalytic Reduction of Carbon Dioxide to High-Value Multicarbon Products with Metal–Organic Frameworks and Their Derived Materials. , 2022, 4, 2058-2079.		35
860	Hierarchical Assembly of a Micro―and Macroporous Hydrogenâ€Bonded Organic Framework with Tailored Singleâ€Crystal Size. Angewandte Chemie, 2022, 134, .	1.6	5
861	Alkaline Earth Metal–Organic Frameworks Based on Tetratopic Anthraquinone-Based Linkers: Synthesis, Characterization, and Photochemical Applications. Inorganic Chemistry, 2022, 61, 15831-15840.	1.9	2
862	Hierarchical Assembly of a Micro―and Macroporous Hydrogenâ€Bonded Organic Framework with Tailored Singleâ€Crystal Size. Angewandte Chemie - International Edition, 2022, 61, .	7.2	9
863	Electrospun Hydrogel Fibers Guide HKUST-1 Assembly. Materials Today Communications, 2022, , 104535.	0.9	0
864	Demonstration of High-Throughput Building Block and Composition Analysis of Metal–Organic Frameworks. Journal of Chemical Information and Modeling, 2022, 62, 4672-4679.	2.5	3
865	Materials Research Directions Toward a Green Hydrogen Economy: A Review. ACS Omega, 2022, 7, 32908-32935.	1.6	24
866	Defects in a Metal–Organic Framework Fabricated by Carboxy-Functionalized Ionic Liquids for Enhancing NH ₃ Uptake. ACS Sustainable Chemistry and Engineering, 2022, 10, 12457-12465.	3.2	8
867	Advanced Strategies for Stabilizing Single-Atom Catalysts for Energy Storage and Conversion. Electrochemical Energy Reviews, 2022, 5, .	13.1	43
868	Propargyl carbamate-functionalized Cu(II)-metal organic framework after reaction with chloroauric acid: An x-ray photoelectron spectroscopy data record. Surface Science Spectra, 2022, 29, .	0.3	2
869	The use of metal-organic frameworks as heterogeneous catalysts. Reviews in Inorganic Chemistry, 2023, 43, 437-463.	1.8	2
870	Singleâ€Atom Materials as Electrochemical Sensors: Sensitivity, Selectivity, and Stability. Analysis & Sensing, 2023, 3, .	1.1	0

#	Article	IF	CITATIONS
871	Atomically Dispersed Iron Sites on the Hollow Nitrogen-Doped Carbon Framework with a Highly Efficient Performance on Carbon Dioxide Cycloaddition. Inorganic Chemistry, 2022, 61, 15817-15821.	1.9	6
872	Enhanced spatial charge separation at surface & Down interface via GO/MoS2/Ag3PO4 ternary Z-scheme heterostructure for nitrogen photo-fixation. Applied Catalysis A: General, 2022, 646, 118850.	2.2	7
873	2D Metal–Organic Frameworks for Electrochemical Energy Storage. Energy and Environmental Materials, 2023, 6, .	7.3	8
874	MOF-derived nanoporous carbons with diverse tunable nanoarchitectures. Nature Protocols, 2022, 17, 2990-3027.	5.5	128
875	Tuning the electronic structure of a metal–organic framework for an efficient oxygen evolution reaction by introducing minor atomically dispersed ruthenium. , 2023, 5, .		88
876	Energetic Systematics of Metal–Organic Frameworks: A Case Study of Al(III)-Trimesate MOF Isomers. Inorganic Chemistry, 2022, 61, 15152-15165.	1.9	4
877	Hydrogel–metal-organic-framework hybrids mediated efficient oral delivery of siRNA for the treatment of ulcerative colitis. Journal of Nanobiotechnology, 2022, 20, .	4.2	16
878	Internet-of-nano-things (IoNT) driven intelligent face masks to combat airborne health hazard. Materials Today, 2022, 60, 201-226.	8.3	53
879	Function of Defects in NH ₂ -MIL-125@PANI@Co ₃ O ₄ Photocatalyst for Efficient Hydrogen Evolution. ACS Applied Energy Materials, 2022, 5, 12324-12335.	2.5	14
880	Tuning the Product Distribution of Acetylene Dimerization through Bimetallic Metal–Organic Framework-Supported Nanoporous Systems. ACS Applied Nano Materials, 2022, 5, 14961-14969.	2.4	1
881	Ultrathin Metal–Organic Framework Nanosheets Exhibiting Exceptional Catalytic Activity. Journal of the American Chemical Society, 2022, 144, 17487-17495.	6.6	48
882	Structural Fineâ€Tuning and Inâ€situ Generation of P, O Vacancies in Hollow Coâ€Ferroceneâ€MOFs Derived Phosphides for Efficient Water Oxidation. ChemCatChem, 2022, 14, .	1.8	3
883	Investigation of the degradation and dehalogenation properties of florfenicol by heterogeneous Fenton reaction activated with MIL-53(Al)-supported nano zero-valent iron. Chemical Engineering Journal, 2023, 453, 139420.	6.6	9
884	Water-stable composite of HKUST-1 with its pyrolysis products for enhanced CO2 capture capacity. Inorganic Chemistry Communication, 2022, 146, 110063.	1.8	4
885	Ni-B-Co nanoparticles based on ZIF-67 as efficient electrocatalyst for oxygen evolution reaction. Journal of Electroanalytical Chemistry, 2022, 923, 116838.	1.9	3
886	Zn-MOF-74-derived graphene nanosheets supporting CoB alloys for promoting hydrolytic dehydrogenation of sodium borohydride. Journal of Alloys and Compounds, 2023, 930, 167486.	2.8	21
887	Ultrasensitive aptamer-functionalized Cu-MOF fluorescent nanozyme as an optical biosensor for detection of C-reactive protein. Analytical Biochemistry, 2022, 658, 114928.	1.1	35
888	MoS2 nanocrystals embedded in hierarchical hollow carbon microspheres for efficient aerobic oxidative desulfurization. Materials Today Chemistry, 2022, 26, 101197.	1.7	2

#	Article	IF	CITATIONS
889	Cellular fate and performance of group IV metal organic framework radioenhancers. Biomaterials Science, 2022, 10, 6558-6569.	2.6	6
890	MOF-templated synthesis of photoluminescent MoS ₂ QDs. Chemical Communications, 2022, 58, 12580-12583.	2.2	1
891	Metal–organic frameworks (MOFs) as fluorescence sensors: principles, development and prospects. CrystEngComm, 2022, 24, 7881-7901.	1.3	29
892	Recent advances in triplet–triplet annihilation upconversion and singlet fission, towards solar energy applications. Energy and Environmental Science, 2022, 15, 4982-5016.	15.6	32
893	Dynamic weak coordination bonding of chlorocarbons enhances the catalytic performance of a metal–organic framework material. Journal of Materials Chemistry A, 2022, 10, 23499-23508.	5.2	17
894	MOF-derived carbon coated Cu ₃ P with Ni doping as advanced supercapacitor electrode materials. Sustainable Energy and Fuels, 2022, 6, 5360-5370.	2.5	6
895	A robust hollow metal–organic framework with enhanced diffusion for size selective catalysis. Chemical Science, 2022, 13, 13338-13346.	3.7	6
896	Effect of flexible chain length of the dimetal subunit on the formation of $1\mathrm{D}$ coordination polymer to molecular rectangle. Dalton Transactions, 0 , , .	1.6	1
897	Microenvironment engineering of supported metal nanoparticles for chemoselective hydrogenation. Chemical Science, 2022, 13, 13291-13302.	3.7	9
898	Thermally responsive morphological changes of layered coordination polymers induced by disordering/ordering of flexible alkyl chains. Dalton Transactions, 2022, 51, 17967-17972.	1.6	0
899	Metal-organic framework-derived nitrogen-doped carbon-coated hollow tubular In2O3/CdZnS heterojunction for efficient photocatalytic hydrogen evolution. Science China Materials, 2023, 66, 1042-1052.	3.5	10
900	Advances in nonprecious metal catalysts for efficient water oxidation in alkaline media. Ionics, 2023, 29, 9-32.	1.2	3
901	A Sensitive Co-MOF/CNTs/SiO2 Composite Based Electrode for Determination of Gallic Acid. Chemosensors, 2022, 10, 443.	1.8	4
902	Pd–Rh Alloyed Nanoparticles on Zeolite Imidazolide Framework-67 for Methyl Orange Degradation. ACS Applied Nano Materials, 2022, 5, 16231-16241.	2.4	0
903	Smallâ€Scale Big Science: From Nano―to Atomically Dispersed Catalytic Materials. Small Science, 2022, 2, .	5.8	31
904	Single Crystal to Single Crystal Transformation of Cu ^{II} Complexes Induced by Dehydrating and Hydrating of Ligands with Chroma Rewritable Behaviors. Inorganic Chemistry, 2022, 61, 18267-18274.	1.9	0
905	One-step synthesis of ZIF-8 for rapid and high-capacity capture of mercury from aqueous solution. Journal of Environmental Chemical Engineering, 2022, , 108852.	3.3	3
906	Micro and nanotechnologies: The little formulations that could. Bioengineering and Translational Medicine, 2023, 8, .	3.9	9

#	Article	IF	CITATIONS
907	A novel approach based on the ultrasonic-assisted microwave method for the efficient synthesis of Sc-MOF@SiO2 core/shell nanostructures for H2S gas adsorption: A controllable systematic study for a green future. Frontiers in Chemistry, 0, 10, .	1.8	0
908	Computational Screening of Metal–Organic Frameworks for Ammonia Capture from H ₂ /N ₂ /NH ₃ Mixtures. ACS Omega, 2022, 7, 37640-37653.	1.6	4
909	Emergence of MXene and MXene–Polymer Hybrid Membranes as Future―Environmental Remediation Strategies. Advanced Science, 2022, 9, .	5.6	70
910	Oneâ€dimensional metal–organic frameworks built by coordinating 2,4,6â€tris(4â€pyridyl)â€1,3,5â€triazine lin with copper nodes: CO ₂ adsorption properties. Applied Organometallic Chemistry, 0, , .	ker 1.7	0
911	One Step before Synthesis: Structure–Property–Condition Relationship Models to Sustainable Design of Efficient TiO2-Based Multicomponent Nanomaterials. International Journal of Molecular Sciences, 2022, 23, 13196.	1.8	0
912	Superior Metalâ€Organic Framework Activation with Dimethyl Ether. Angewandte Chemie - International Edition, 2022, 61, .	7.2	3
913	Superior Metalâ€Organic Framework Activation with Dimethyl Ether. Angewandte Chemie, 0, , .	1.6	0
914	Construction of highly dispersed Pt single sites and high-efficiency-heterocatalysis silylation of alcohols with silanes. Nano Research, 0, , .	5.8	0
915	Synthesis of 4-styrylquinazolines using copper-based porous solid catalyst. Molecular Catalysis, 2022, 533, 112760.	1.0	1
916	Surface engineered metal-organic frameworks as active targeting nanomedicines for mono- and multi-therapy. Applied Materials Today, 2022, 29, 101646.	2.3	6
917	Nickel-decorated RuO2 nanocrystals with rich oxygen vacancies for highâ€efficiency overall water splitting. Journal of Colloid and Interface Science, 2023, 630, 940-950.	5.0	20
918	Metal-organic framework-based catalysts for lithium-sulfur batteries. Coordination Chemistry Reviews, 2023, 475, 214879.	9.5	32
919	MOFs with bridging or terminal hydroxo ligands: Applications in adsorption, catalysis, and functionalization. Coordination Chemistry Reviews, 2023, 475, 214912.	9.5	43
920	Fabrication of ZnO/Pd@ZIF-8/Pt hybrid for selective methane detection in the presence of ethanol and NO2. Sensors and Actuators B: Chemical, 2023, 375, 132867.	4.0	9
921	Metal ferrites-based nanocomposites and nanohybrids for photocatalytic water treatment and electrocatalytic water splitting. Chemosphere, 2023, 310, 136835.	4.2	23
922	Fabricating 1D/2D Co3O4/ZnIn2S4 core–shell heterostructures with boosted charge transfer for photocatalytic hydrogen production. Applied Surface Science, 2023, 610, 155272.	3.1	26
923	Ce-hydroxamate metal–organic frameworks for photocatalytic H ₂ generation. Chemical Communications, 2022, 58, 13503-13506.	2.2	6
924	Enwrapping g-C3N4 on In2O3 hollow hexagonal tubular for photocatalytic CO2 conversion: Construction, characterization, and Z-scheme mechanism insight. Journal of Colloid and Interface Science, 2023, 631, 122-132.	5.0	26

#	Article	IF	Citations
925	lonic liquid confined in MOF/polymerized ionic network core-shell host as a solid electrolyte for lithium batteries. Chemical Engineering Science, 2023, 266, 118271.	1.9	7
926	Dual-metal-organic-framework derived CoP/MoP hybrid as an efficient electrocatalyst for acidic and alkaline hydrogen evolution reaction. Journal of Colloid and Interface Science, 2023, 631, 147-153.	5.0	32
927	Enhanced inactivation of bacteria on capacitive semiconductor nanotubes by Self-Discharging triggered photoelectrocatalysis. Applied Surface Science, 2023, 611, 155660.	3.1	3
929	Transformation of Organonitrogenâ€Encapsulated MOFs into Nâ€Doped Fe ₃ O ₄ @C Nanopolyhedron via CVD Superâ€Assembly for Photochemical Oxidation. Advanced Functional Materials, 2023, 33, .	7.8	4
930	Ab Initio Study of Metal Oxo-Trimer Nanoporous MOF Building Units for the Catalytic Conversion of CO ₂ to Methanol. ACS Applied Nano Materials, 2022, 5, 17750-17757.	2.4	2
931	Room-temperature hydrogenation of halogenated nitrobenzenes over metal—organic-framework-derived ultra-dispersed Ni stabilized by N-doped carbon nanoneedles. Frontiers of Chemical Science and Engineering, 2022, 16, 1782-1792.	2.3	2
932	Hybrid MOF Templateâ€Directed Construction of Hollowâ€Structured In ₂ O ₃ @ZrO ₂ Heterostructure for Enhancing Hydrogenation of CO ₂ to Methanol. Small, 2023, 19, .	5. 2	15
933	Cellulose/β-cyclodextrin hydrogel supported metal nanoparticles as recyclable catalysts in the 4-nitrophenol reduction, Suzuki–Miyaura coupling and click reactions. Cellulose, 2023, 30, 953-971.	2.4	4
934	Ultrasensitive Determination of Natural Flavonoid Rutin Using an Electrochemical Sensor Based on Metal-Organic Framework CAUâ^1/Acidified Carbon Nanotubes Composites. Molecules, 2022, 27, 7761.	1.7	6
935	The missing link between zeolites and polyoxometalates. Science Advances, 2022, 8, .	4.7	1
936	Metalâ€Organic Frameworks for Catalytic Construction of Câ^'B Bond and Related Reactions. ChemCatChem, 2023, 15, .	1.8	4
937	trans-[Ni(pdm)2]2+ (pdm = 2-pyridinemethanol) as a reliable synthon for isoreticular metal–organic frameworks of linear dicarboxylates. Journal of Solid State Chemistry, 2023, 317, 123721.	1.4	2
938	General Approach to Synthesize Multilayer Graphitic Carbon-Nanotube-Encapsulated NiCo Alloys as Trifunctional Electrocatalysts: Deciphering the Role of N-Dopants. ACS Applied Energy Materials, 2022, 5, 14445-14454.	2.5	5
939	Hierarchically structured and highly active palladium-loaded Al-MIL-53-linked hybrid periodic mesoporous silica catalysts for Suzuki-Miyaura cross-coupling reaction. Microporous and Mesoporous Materials, 2022, 346, 112329.	2.2	4
940	Rare-earth squarate frameworks with <i>scu</i> topology. Dalton Transactions, 2022, 51, 18378-18382.	1.6	3
941	Bioorthogonal nanozymes: an emerging strategy for disease therapy. Nanoscale, 2022, 15, 41-62.	2.8	12
942	Waste-treating-waste: Upcycling discarded polyester into metal–organic framework nanorod for synergistic interfacial solar evaporation and sulfate-based advanced oxidation process. Chemical Engineering Journal, 2023, 456, 140994.	6.6	55
943	SBA-15-supported ultrastable Mo2N@CN catalysts for hydrodeoxygenation of guaiacol. Biomass and Bioenergy, 2023, 168, 106680.	2.9	3

#	Article	IF	CITATIONS
944	Carbon-supported vanadium nitride catalyst, prepared from urea-loaded MIL-100(V) in the absence of external ammonia flow, having good performance in oxidative desulfurization. Journal of Cleaner Production, 2023, 384, 135509.	4.6	11
945	Engineering bimetallic capture sites on hierarchically porous carbon electrode for efficient phosphate electrosorption: multiple active centers and excellent electrochemical properties. Journal of Materials Chemistry A, 2023, 11, 579-588.	5.2	22
946	Recent advances of cobalt-based nitride catalysts in solar energy conversion. Materials Chemistry Frontiers, 2023, 7, 607-627.	3.2	9
947	Advances in metal–organic framework-based hydrogel materials: preparation, properties and applications. Journal of Materials Chemistry A, 2023, 11, 2092-2127.	5.2	23
948	Cu2+@NMOFs-to-bimetallic CuFe PBA transformation: An instant catalyst with oxidase-mimicking activity for highly sensitive impedimetric biosensor. Biosensors and Bioelectronics, 2023, 222, 114961.	5.3	4
949	Exploration of metal organic frameworks and covalent organic frameworks for energy-related applications. Coordination Chemistry Reviews, 2023, 477, 214968.	9.5	77
950	Research progress of fluorescent-substance@MOFs. Microchemical Journal, 2023, 185, 108265.	2.3	10
951	Emerging applications of metal-organic frameworks and derivatives in solar cells: Recent advances and challenges. Materials Science and Engineering Reports, 2023, 152, 100714.	14.8	12
952	Synthesis of porphyrinic metal-organic framework/rGO nanocomposite for electrochemical recognition of copper ions in water. Journal of Organometallic Chemistry, 2023, 985, 122597.	0.8	4
953	Rational design, structure properties, and synthesis strategies of dual-pore covalent organic frameworks (COFs) for potent applications: A review. Environmental Research, 2023, 218, 114982.	3.7	13
954	Sustainable synthesis of metal-organic frameworks and their derived materials from organic and inorganic wastes. Coordination Chemistry Reviews, 2023, 478, 214986.	9.5	28
955	Constructing abundant phase interfaces of the sulfides/metal-organic frameworks p-p heterojunction array for efficient overall water splitting and urea electrolysis. Journal of Colloid and Interface Science, 2023, 634, 630-641.	5.0	11
956	Two Cd(II)-Based MOFs Constructed from Tris(3′-F-4′-carboxybiphenyl)amine: Synthesis, Crystal Structure, Luminescence Sensing towards Nitrophenols and Acetylacetone. Crystals, 2022, 12, 1708.	1.0	2
957	Ion-Exchange Reaction-Mediated Hierarchical Dual Z-Scheme Heterojunction for Split-Type Photoelectrochemical Immunoassays. Analytical Chemistry, 2022, 94, 17295-17302.	3.2	9
958	Defect Engineering To Tailor Metal Vacancies in 2D Conductive Metal–Organic Frameworks: An Example in Electrochemical Sensing. ACS Nano, 2022, 16, 20820-20830.	7.3	12
959	Design of Single-Atom Catalysts and Tracking Their Fate Using <i>Operando</i> and Advanced X-ray Spectroscopic Tools. Chemical Reviews, 2023, 123, 379-444.	23.0	50
960	Rational Design of a Core–Shell Structured Plasmonic Au@MIL-100(Fe) Nanocomposite for Efficient Photocatalysis. ACS Applied Materials & Interfaces, 2022, 14, 56930-56937.	4.0	6
961	Metal–Organic Frameworks as Electrocatalysts. Angewandte Chemie, 2023, 135, .	1.6	9

#	Article	IF	Citations
962	Metal–Organic Frameworks as Electrocatalysts. Angewandte Chemie - International Edition, 2023, 62, .	7.2	40
963	Composites Filled with Metal Organic Frameworks and Their Derivatives: Recent Developments in Flame Retardants. Polymers, 2022, 14, 5279.	2.0	7
964	Mechanochemistry Milling of Waste Poly(Ethylene Terephthalate) into Metal–Organic Frameworks. ChemSusChem, 2023, 16, .	3.6	19
965	Novel synthesis strategy for Z-scheme BiOCl/UiO-66 photocatalyst: Enhanced surface area and improved Cr(VI) removal efficiency. Chemical Engineering Journal, 2023, 457, 141087.	6.6	3
966	Recent advances in determination applications of emerging films based on nanomaterials. Advances in Colloid and Interface Science, 2023, 311, 102828.	7.0	3
967	Elucidating polymer growth and fragmentation behavior of MOFs in ethylene polymerization by MOF thin films. Cell Reports Physical Science, 2023, 4, 101206.	2.8	1
968	Facile Synthesis of Regenerative Framework Adsorbent for Organic Dyes: Experimental and Artificial Neural Modeling Studies. ChemistrySelect, 2022, 7, .	0.7	0
969	Recent Advances in the Use of Covalent Organic Frameworks as Heterogenous Photocatalysts in Organic Synthesis. Advanced Materials, 2023, 35, .	11.1	42
970	Catalytic Oxidation of Glycerol over Pt Supported on MOF-Derived Carbon Nanosheets. ACS Omega, 2022, 7, 46452-46465.	1.6	4
971	Flexibility of Mixed Ligand Zeolitic Imidazolate Frameworks (ZIF-7–8) under CO ₂ Pressure: An Investigation Using Positron Annihilation Lifetime Spectroscopy. Langmuir, 2022, 38, 15694-15702.	1.6	6
972	MOF-Based Materials with Sensing Potential: Pyrrolidine-Fused Chlorin at UiO-66(Hf) for Enhanced NO2 Detection. Chemosensors, 2022, 10, 511.	1.8	0
973	Carbon neutral via catalytic transformation of CO2 into cyclic carbonates by an imidazolium-based ionic zeolitic imidazolate frameworks. Applied Surface Science, 2023, 614, 156250.	3.1	7
974	Organic ligand-assisted synthesis of Ir0.3Cr0.7O2 solid solution oxides for efficient oxygen evolution in acidic media. International Journal of Hydrogen Energy, 2023, 48, 5402-5412.	3.8	3
975	<i>Inâ€Silico</i> Partial N ₂ to NH ₃ Conversion with a Light Atom Molecule. ChemPhysChem, 2023, 24, .	1.0	1
976	Highly Sensitive Colorimetric Detection of Glutathione in Human Serum Based on Iron–Copper Metal–Organic Frameworks. Langmuir, 2022, 38, 15559-15569.	1.6	2
977	Functionally decorated metal–organic frameworks in environmental remediation. Chemical Engineering Journal, 2023, 455, 140741.	6.6	14
978	Synthesis of unsymmetrical NH-pyrroles from biomass feedstock in the confined space of metal–organic frameworks. Green Chemistry, 2023, 25, 915-921.	4.6	3
979	Graphitic carbon nitride/ metal-organic framework composite functionalized cotton for efficient oil-water separation and dye degradation. Journal of Cleaner Production, 2023, 385, 135758.	4.6	16

#	Article	IF	CITATIONS
980	Cooperative catalysis of Co single atoms and nanoparticles enables selective CArâ^'OCH3 cleavage for sustainable production of lignin-based cyclohexanols. Journal of Energy Chemistry, 2023, 79, 535-549.	7.1	22
981	In Situ Coupling of Carbon Dots with Coâ€ZIF Nanoarrays Enabling Highly Efficient Oxygen Evolution Electrocatalysis. Small, 2023, 19, .	5.2	21
982	Sr(II) and Ba(II) Alkaline Earth Metal–Organic Frameworks (AE-MOFs) for Selective Gas Adsorption, Energy Storage, and Environmental Application. Nanomaterials, 2023, 13, 234.	1.9	9
983	Porous framework materials for energy & Description of the Energy and Environment, 2024, 9, 217-310.	4.7	12
984	Recent developments of core–shell structured catalysts for the selective catalytic reduction of NO _{<i>x</i>} with ammonia. Inorganic Chemistry Frontiers, 2023, 10, 727-755.	3.0	6
985	Controlled Manufacture of Heterogeneous Catalysts for the Hydrogenation of CO ₂ via Steam Pyrolysis of Different Metal–Organic Frameworks. ACS Catalysis, 2023, 13, 1804-1811.	5.5	6
986	Functional Metal/Carbon Composites Derived from Metal–Organic Frameworks: Insight into Structures, Properties, Performances, and Mechanisms. ACS Catalysis, 2023, 13, 1759-1790.	5.5	74
987	Co-based MOF derived metal catalysts: from nano-level to atom-level. Tungsten, 2023, 5, 201-216.	2.0	18
988	Theoretical Screening of CO ₂ Electroreduction over MOF-808-Supported Self-Adaptive Dual-Metal-Site Pairs. Inorganic Chemistry, 2023, 62, 930-941.	1.9	4
989	N-doped carbon–iron heterointerfaces for boosted electrocatalytic active and selective ammonia production. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	11
990	Piezoelectric Metalâ€Organic Frameworks Mediated Mechanoredox Borylation and Arylation Reactions by Ball Milling. Chemistry - A European Journal, 2023, 29, .	1.7	6
991	A review on development of metal–organic framework-derived bifunctional electrocatalysts for oxygen electrodes in metal–air batteries. RSC Advances, 2023, 13, 1137-1161.	1.7	18
992	Metal Organic Polygons and Polyhedra: Instabilities and Remedies. Inorganics, 2023, 11, 36.	1.2	1
993	Unraveling the reversible formation of defective Ce3+ sites in the UiO-66(Ce) material: a multi-technique study. Materials Today Chemistry, 2023, 27, 101337.	1.7	3
994	Bimetallic metal-organic-framework-derived porous cobalt manganese oxide bifunctional oxygen electrocatalyst. Journal of Electroanalytical Chemistry, 2023, 930, 117161.	1.9	7
995	Copper-Based Metal–Organic Frameworks (MOFs) as an Emerging Catalytic Framework for Click Chemistry. Catalysts, 2023, 13, 130.	1.6	23
996	Principles of Design and Synthesis of Metal Derivatives from MOFs. Advanced Materials, 2023, 35, .	11.1	24
997	Tailoring stability, catalytic activity and selectivity of covalent metal–organic frameworks <i>via</i> steric modification of metal nodes. Journal of Materials Chemistry A, 2023, 11, 12777-12783.	5.2	8

#	Article	IF	CITATIONS
998	A 3D oxalateâ€bridged [Cu ^{II} Fe ^{II}] coordination polymer as molecular precursor for CuFe ₂ O ₄ spinelâ€"photocatalytic features. Journal of the American Ceramic Society, 2023, 106, 2997-3008.	1.9	2
999	Structural Properties of Metal–Organic Frameworks at Elevated Thermal Conditions via a Combined Density Functional Tight Binding Molecular Dynamics (DFTB MD) Approach. Journal of Physical Chemistry C, 2023, 127, 1560-1575.	1.5	7
1000	Composites of In/C hexagonal nanorods and graphene nanosheets for high-performance electromagnetic wave absorption. International Journal of Minerals, Metallurgy and Materials, 2023, 30, 485-493.	2.4	8
1001	Uniform Siâ€Infused UiOâ€66 as a Robust Catalyst Host for Efficient CO ₂ Hydrogenation to Methanol. Advanced Functional Materials, 2023, 33, .	7.8	9
1002	A Career in Catalysis: Didier Astruc. ACS Catalysis, 2023, 13, 1574-1596.	5 . 5	3
1003	Challenges of Emerging Wearable Sensors for Remote Monitoring toward Telemedicine Healthcare. Analytical Chemistry, 2023, 95, 1773-1784.	3.2	14
1004	Direct Z-scheme heterojunction of PCN-222/CsPbBr3 for boosting photocatalytic CO2 reduction to HCOOH. Chemical Engineering Journal, 2023, 457, 141248.	6.6	24
1005	Unleashing the catalytic potency of nanoporous copper oxide particles derived from copper 5-nitroisophthalate MOF towards the multicomponent synthesis of 2,3-dihydroquinazolinones. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 661, 130847.	2.3	0
1006	Recent advances of metal-organic framework-based and derivative materials in the heterogeneous catalytic removal of volatile organic compounds. Journal of Colloid and Interface Science, 2023, 636, 55-72.	5.0	92
1007	Unveiling and understanding the remarkable enhancement in the catalytic activity by the defect creation in UIO-66 during the catalytic transfer hydrodeoxygenation of vanillin with isopropanol. Applied Catalysis B: Environmental, 2023, 325, 122385.	10.8	20
1008	Preparation of N and Ce Co-doped MIL-101(Fe) Heterogeneous Catalysts for Efficient Electro-Fenton Oxidation. Industrial & Engineering Chemistry Research, 2023, 62, 126-135.	1.8	2
1009	Bimetal-organic framework/GOx-based hydrogel dressings with antibacterial and inflammatory modulation for wound healing. Acta Biomaterialia, 2023, 158, 252-265.	4.1	26
1010	Recent progress in metal–organic frameworks (MOFs) for electrocatalysis. , 2023, 1, 9-38.		49
1011	Nanosized metal–organic frameworks as unique platforms for bioapplications. Chemical Communications, 2023, 59, 2869-2887.	2.2	12
1012	Metal-Organic Frameworks and Their Derived Structures for Biomass Upgrading. , 2023, , 184-255.		0
1013	Industrial carbon dioxide capture and utilization. , 2023, , 231-278.		0
1014	2D Metal–Organic Frameworks as Competent Electrocatalysts for Water Splitting. Small, 2023, 19, .	5.2	31
1015	Oriented Design of Transition-Metal-Oxide Hollow Multishelled Micropolyhedron Derived from Bimetal–Organic Frameworks for the Electrochemical Detection of Multipesticide Residues. Journal of Agricultural and Food Chemistry, 2023, 71, 2600-2609.	2.4	9

#	Article	IF	CITATIONS
1016	High-Throughput Experimentation, Theoretical Modeling, and Human Intuition: Lessons Learned in Metal–Organic-Framework-Supported Catalyst Design. ACS Central Science, 2023, 9, 266-276.	5.3	5
1017	Highly selective photocatalytic CO ₂ reduction <i>via</i> a lead-free perovskite/MOF catalyst. Journal of Materials Chemistry A, 2023, 11, 4020-4029.	5.2	20
1018	Metal-organic layers: Preparation and applications. Science China Materials, 2023, 66, 839-858.	3.5	3
1019	Dramatic acceleration by visible light and mechanism of AuPd@ZIF-8-catalyzed ammonia borane methanolysis for efficient hydrogen production. Journal of Materials Chemistry A, 2023, 11, 5245-5256.	5.2	17
1020	Fabrication of a highly dispersed Co ₃ O ₄ -modified MOF-derived ZnO@ZnS porous heterostructure for efficient photocatalytic hydrogen production. CrystEngComm, 2023, 25, 1358-1364.	1.3	2
1021	Rational construction of loosely packed nickel nanoparticulates with residual HCOO ligands derived from a Ni-MOF for high-efficiency electrocatalytic overall water splitting. Journal of Materials Chemistry A, 2023, 11 , 5222-5232.	5.2	9
1022	Metalâ€Organic Frameworks for Photocatalytic Water Splitting and CO ₂ Reduction. Angewandte Chemie, 2023, 135, .	1.6	14
1023	Two-dimensional CuO nanosheets-induced MOF composites and derivatives for dendrite-free zinc-ion batteries. Nano Research, 2023, 16, 6881-6889.	5.8	8
1024	Ultramicroporous iron-isonicotinate MOFs combining size-exclusion kinetics and thermodynamics for efficient CO ₂ /N ₂ gas separation. Journal of Materials Chemistry A, 2023, 11, 5320-5327.	5.2	4
1025	Hybrid nanoarrays of Cu-MOFs@H-substituted graphdiyne with various levels of Lewis acidity for nitrate electroreduction. Chemical Communications, 2023, 59, 4348-4351.	2.2	3
1026	MOF-derived transition metal-based catalysts for the electrochemical reduction of CO ₂ to CO: a mini review. Chemical Communications, 2023, 59, 3523-3535.	2.2	4
1027	An inclusive review and perspective on Cu-based materials for electrochemical water splitting. RSC Advances, 2023, 13, 4963-4993.	1.7	20
1028	Ecofriendly Synthesis and Characterization of Magnesium based Metal - Organic Frame Work. Journal of Surface Science and Technology, 0, , 203-209.	0.3	0
1029	N-Heterocyclic carbene-stabilized platinum nanoparticles within a porphyrinic nanocage for selective photooxidation. Science China Chemistry, 0, , .	4.2	2
1030	Single atom Pd1/ZIF-8 catalyst via partial ligand exchange. Nano Research, 2023, 16, 8003-8011.	5.8	4
1031	A layered metalâ€organic framework with acidic sites as a multiphase catalyst for Knoevenagel condensation. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2023, 649, .	0.6	2
1032	Construction of novel OD/2D AgI/CAU-17 heterojunction with excellent photocatalytic performance by in situ deposition-precipitation. Journal of Environmental Chemical Engineering, 2023, 11, 109641.	3.3	3
1033	Novel carbon-coated zirconium oxide nanocomposites enable ultrahigh oxidant utilization efficiency for selective degradation of organic contaminants. Chemical Engineering Journal, 2023, 463, 142369.	6.6	5

#	Article	IF	CITATIONS
1034	Recent advances in metal/covalent organic frameworks based materials: Their synthesis, structure design and potential applications for hydrogen production. Coordination Chemistry Reviews, 2023, 483, 215066.	9.5	29
1035	Mesoporous assembly of nanostructures derived from Cu-based coordination polymers for iodine capture and photocatalysis. Microporous and Mesoporous Materials, 2023, 355, 112572.	2.2	2
1036	In situ hydrolysis strategy to synthesis ultrathin CoNi-LDH nanoflowers for High-performance supercapacitors. Journal of Electroanalytical Chemistry, 2023, 936, 117379.	1.9	5
1037	A simple strategy to develop heterostructured carbon paper/Co nanoparticles composites with lightweight, tunable and broadband microwave absorption. Materials Today Physics, 2023, 34, 101030.	2.9	12
1038	Two-dimensional materials for boosting the performance of perovskite solar cells: Fundamentals, materials and devices. Materials Science and Engineering Reports, 2023, 153, 100727.	14.8	5
1039	Photocatalytic inactivation of harmful algae Microcystis aeruginosa and degradation of microcystin by g-C3N4/Cu-MOF nanocomposite under visible light. Separation and Purification Technology, 2023, 313, 123515.	3.9	14
1040	Recent advances in computational modeling of MOFs: From molecular simulations to machine learning. Coordination Chemistry Reviews, 2023, 484, 215112.	9.5	22
1041	MvK mechanism dominated methane combustion over Ni-CeO2 derived from MOF by flame pyrolysis. Combustion and Flame, 2023, 252, 112739.	2.8	2
1042	Electrocatalytic transformation of oxygen to hydroxyl radicals via three-electron pathway using nitrogen-doped carbon nanotube-encapsulated nickel nanocatalysts for effective organic decontamination. Journal of Hazardous Materials, 2023, 452, 131352.	6.5	10
1043	Voltammetric and amperometric determination of iodate using a modified glassy carbon electrode based on PW12/MOF/P@ERGO nanohybrid. Sensing and Bio-Sensing Research, 2023, 40, 100556.	2.2	O
1044	A novel 3D CoNiCu-LDH@CuO micro-flowers on copper foam as efficient electrocatalyst for overall water splitting. Applied Surface Science, 2023, 622, 156874.	3.1	7
1045	Bimetallic (AuAg, AuPd and AgPd) nanoparticles supported on cellulose-based hydrogel for reusable catalysis. Carbohydrate Polymers, 2023, 310, 120726.	5.1	7
1046	Fe3O4@MOF hybrid for supercilious recovery of Au(III) and Pd(II) from e-waste and spent as catalysts for cyclohexane oxidation. Journal of Cleaner Production, 2023, 404, 136966.	4.6	8
1047	Electrocatalytic CO2 conversion on metal-organic frameworks derivative electrocatalysts. Journal of CO2 Utilization, 2023, 69, 102412.	3.3	8
1048	Hydrogen Evolution upon Ammonia Borane Solvolysis: Comparison between the Hydrolysis and Methanolysis Reactions. Chemistry, 2023, 5, 886-899.	0.9	4
1049	Review on advances in structure–activity relationship, reaction & amp; deactivation mechanism and rational improving design of selective catalytic reduction deNO catalysts: Challenges and opportunities. Fuel, 2023, 343, 127924.	3.4	14
1050	Porphyrin based metal-organic frameworks as an enhanced fluorescence nanoprobe for highly sensitive detection of sulfite. Journal of Solid State Chemistry, 2023, 323, 124017.	1.4	3
1051	Enzyme coordination conferring stable monodispersity of diverse metal–organic frameworks for photothermal/starvation therapy. Journal of Colloid and Interface Science, 2023, 642, 612-622.	5.0	3

#	Article	IF	CITATIONS
1052	Recent advances in thermocatalytic hydrogenation of unsaturated organic compounds with Metal-Organic Frameworks-based materials: Construction strategies and related mechanisms. Coordination Chemistry Reviews, 2023, 487, 215159.	9.5	11
1053	Metalâ€Organic Frameworks for Photocatalytic Water Splitting and CO ₂ Reduction. Angewandte Chemie - International Edition, 2023, 62, .	7.2	81
1054	TiO ₂ /CeO ₂ Frame with Enriched Oxygen Vacancies and Heteroâ€Interfaces for Efficient Electrochemical N ₂ Reduction. ChemCatChem, 2023, 15, .	1.8	2
1055	Dual non-metal atom doping enabled 2D 1T-MoS2 cocatalyst with abundant edge-S active sites for efficient photocatalytic H2 evolution. International Journal of Hydrogen Energy, 2023, 48, 16987-16999.	3.8	9
1056	A Rigid Linker for Site-Selective Coordination of Transition Metal Cations: Combining an Acetylacetone with a Caged Phosphine. Inorganic Chemistry, 2023, 62, 3178-3185.	1.9	4
1057	A Simple, Transition Metal Catalystâ€Free Method for the Design of Complex Organic Building Blocks Used to Construct Porous Metal–Organic Frameworks. Angewandte Chemie, 2023, 135, .	1.6	0
1058	A Simple, Transition Metal Catalystâ€Free Method for the Design of Complex Organic Building Blocks Used to Construct Porous Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2023, 62, .	7.2	2
1059	Porous and Stable Zn-Series Metal–Organic Frameworks as Efficient Catalysts for Grafting Wood Nanofibers with Polycaprolactone via a Copolymerization Approach. Inorganic Chemistry, 2023, 62, 3464-3473.	1.9	5
1060	A 2D Cd-based metal organic framework: synthesis, structure, selectively and sensitive sensing of Fe ³⁺ . Journal of Coordination Chemistry, 2023, 76, 494-502.	0.8	1
1061	Bimetallic Metalâ€Organic Frameworks (BMOF) and BMOF―Incorporated Membranes for Energy and Environmental Applications. ChemPlusChem, 2023, 88, .	1.3	3
1063	Active site identification and CO oxidation in UiO-66-XX thin films. Nanotechnology, 2023, 34, 205702.	1.3	0
1064	Metal sulfide enhanced metal–organic framework nanoarrays for electrocatalytic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid. Journal of Materials Chemistry A, 2023, 11, 6375-6383.	5.2	12
1065	Highly Sensitive and Selective Nonenzymatic Sensing of Glyphosate Using FTO-Modified MOF-Derived CuCo ₂ O ₄ Nanostructures Intercalated in Protonated-g-C ₃ N ₄ and 3D-Graphene Oxide Sheets. Industrial & Engineering Chemistry Research, 2023, 62, 3477-3491.	1.8	4
1066	Controlling the Flexibility of Carbazoleâ€Based Metal–Organic Frameworks by Substituent Effects. Chemistry - A European Journal, 0, , .	1.7	0
1067	Confinement Effects in Well-Defined Metal–Organic Frameworks (MOFs) for Selective CO2 Hydrogenation: A Review. International Journal of Molecular Sciences, 2023, 24, 4228.	1.8	2
1068	Multicomponent 3d-Metal Nanoparticles in Amorphous Carbon Sponge for Electrocatalysis Water Splitting. ACS Applied Nano Materials, 2023, 6, 3537-3548.	2.4	9
1069	Functional Metal–Organic Frameworks for Maximizing Transconductance of Organic Photoelectrochemical Transistor at Zero Gate Bias and Biological Interfacing Application. Advanced Functional Materials, 2023, 33, .	7.8	19
1070	Topologically Porous Heterostructures for Photo/Photothermal Catalysis of Clean Energy Conversion. Small Methods, 2023, 7, .	4.6	2

#	Article	IF	CITATIONS
1071	Stabilization of Palladium-Nanoparticle-Decorated Postsynthesis-Modified Zr-UiO-66 MOF as a Reusable Heterogeneous Catalyst in C–C Coupling Reaction. ACS Omega, 2023, 8, 8505-8518.	1.6	7
1072	Morphology control through the synthesis of metal-organic frameworks. Advances in Colloid and Interface Science, 2023, 314, 102864.	7.0	14
1073	Ultrasensitive Multiplex Imaging of Cell Surface Proteins via Core-Shell Surface-Enhanced Raman Scattering Nanoprobes. ACS Sensors, 2023, 8, 1348-1356.	4.0	4
1074	Advanced crystallisation methods for small organic molecules. Chemical Society Reviews, 2023, 52, 1995-2010.	18.7	15
1075	Engineering a Selfâ€Grown TiO ₂ /Tiâ€MOF Heterojunction with Selectively Anchored Highâ€Density Pt Singleâ€Atomic Cocatalysts for Efficient Visibleâ€Lightâ€Driven Hydrogen Evolution. Angewandte Chemie - International Edition, 2023, 62, .	7.2	4
1076	Engineering a Selfâ€Grown TiO ₂ /Tiâ€MOF Heterojunction with Selectively Anchored Highâ€Density Pt Singleâ€Atomic Cocatalysts for Efficient Visibleâ€Lightâ€Driven Hydrogen Evolution. Angewandte Chemie, 2023, 135, .	1.6	2
1077	Functional metal–organic frameworks as adsorbents used for water decontamination: design strategies and applications. Journal of Materials Chemistry A, 2023, 11, 6747-6771.	5.2	21
1078	<scp>MOFs</scp> for desulfurization of fuel oil: Recent advances and future insights. Journal of the Chinese Chemical Society, 2023, 70, 789-824.	0.8	3
1079	Stereospecific Single-Pot Route to Chiral Imidazolidines from Aziridines Using a 2D Cu Metal–Organic Framework. Inorganic Chemistry, 2023, 62, 4540-4549.	1.9	0
1080	Insight into Electrochemical Performance of Nitrogenâ€Doped Carbon/NiCoâ€Alloy Active Nanocomposites. Small, 2023, 19, .	5. 2	15
1081	Sequential Assembly and Stabilization of Cu ₆ S ₆ Octahedral Clusters in NaCl-, NiAs-, and Cdl ₂ -Related Structures and Their Utility toward Thermochromism and Multicomponent Hantzsch Reaction. Inorganic Chemistry, 2023, 62, 4417-4434.	1.9	2
1082	Giant Redox Entropy in the Intercalation vs Surface Chemistry of Nanocrystal Frameworks with Confined Pores. Journal of the American Chemical Society, 2023, 145, 6257-6269.	6.6	3
1083	Metal-organic frameworks and plastic: an emerging synergic partnership. Science and Technology of Advanced Materials, 2023, 24, .	2.8	1
1084	Synthetic Strategies of Supported Pd-Based Bimetallic Catalysts for Selective Semi-Hydrogenation of Acetylene: A Review and Perspectives. Molecules, 2023, 28, 2572.	1.7	4
1085	Metal-organic frameworks derived interfacing Fe2O3/ZnCo2O4 multimetal oxides as a bifunctional electrocatalyst for overall water splitting. Electrochimica Acta, 2023, 449, 142242.	2.6	7
1086	Structure–Activity Relationship Insights for Organophosphonate Hydrolysis at Ti(IV) Active Sites in Metal–Organic Frameworks. Journal of the American Chemical Society, 2023, 145, 7435-7445.	6.6	9
1087	Target Recognition-Triggered Peroxidase-Mimicking Activity Depression in Homochiral Nanochannels for Identifying Cystine Enantiomers. Analytical Chemistry, 2023, 95, 5436-5442.	3.2	1
1088	Facile Strategy of Directing Metal–Organic Frameworks into Hollow Nanostructures by Halide Ions. Journal of Physical Chemistry C, 2023, 127, 5702-5712.	1.5	3

#	Article	IF	CITATIONS
1089	A series of ultrasensitive electrocatalysts Fe-MOF/MWCNTs for fentanyl determination. Analyst, The, 2023, 148, 1838-1847.	1.7	2
1090	Computational Study of the Adsorption of Small Gas Molecules on Pillar[5]arenes. ChemistrySelect, 2023, 8, .	0.7	1
1091	Nitrogen-doped metal-organic framework derived porous carbon/polymer membrane for the simultaneous extraction of four benzotriazole ultraviolet stabilizers in environmental water. Journal of Chromatography A, 2023, 1695, 463929.	1.8	5
1093	Phase Change Thermal Storage Materials for Interdisciplinary Applications. Chemical Reviews, 2023, 123, 6953-7024.	23.0	79
1094	Recent advances in metal–organic framework-based photoelectrochemical and electrochemiluminescence biosensors. Analyst, The, 2023, 148, 2200-2213.	1.7	16
1095	A simple strategy to simultaneously improve the lifetime and activity of classical iridium complex for photocatalytic waterâ€splitting. Aggregate, 2023, 4, .	5.2	O
1096	Synergistic ferroptosisâ€starvation therapy for bladder cancer based on hyaluronic acid modified metal–organic frameworks. Bioengineering and Translational Medicine, 2023, 8, .	3.9	4
1097	Photoelectrochemical water oxidation by a MOF/semiconductor composite. Chemical Science, 0, , .	3.7	2
1098	Novel self-assembled porous yolk-shell NiO nanospheres with excellent electrochromic performance for smart windows. Particuology, 2024, 84, 72-80.	2.0	3
1099	Structural Regulation of Two Polyoxometalate-Based Metal–Organic Frameworks for the Heterogeneous Catalysis of Quinazolinones. Inorganic Chemistry, 2023, 62, 5565-5575.	1.9	6
1100	åǧ级å²Ti-MOFsèŸè½½½e¶ç»†Pd纳米颗粒实现é«~æ∙^å‰çf€O2è¿~原. Science China Materials, 2023	, 666,52317	-2 3 28.
1101	Photothermally accelerated photocatalysis over hollow carbon@ZnIn ₂ S ₄ for enhanced amine oxidation. Reaction Chemistry and Engineering, 0, , .	1.9	O
1102	Computational Screening of Twoâ€Dimensional Metalâ€Organic Frameworks as Efficient Singleâ€Atom Catalysts for Oxygen Reduction Reaction. Chemistry - A European Journal, 2023, 29, .	1.7	2
1103	Palladium nanoparticles anchored on MXene-based N-doped porous carbon nanosheets as an advanced electrocatalyst for ethanol oxidation. Journal of Alloys and Compounds, 2023, 953, 169983.	2.8	4
1104	Reconstruction suppressed solid-electrolyte interphase by functionalized metal-organic framework. Energy Storage Materials, 2023, 59, 102765.	9.5	5
1105	Crystal Structure and Low-Temperature Structural Phase Transition of the Iron(III) Oxopropionate Nitrate [Fe3O(H2O)3Prop6](NO3)·(HNO3). Journal of Structural Chemistry, 2023, 64, 410-423.	0.3	2
1106	Enhancing the Understanding of the Oxygen Evolution Reaction on Bimetallic Two-Dimensional MOFs through Theoretical Investigation. Journal of Physical Chemistry C, 2023, 127, 7257-7267.	1.5	1
1107	Progresses on metal-organic framework materials for bacterial infection treatment. Chinese Science Bulletin, 2023, , .	0.4	O

#	Article	IF	CITATIONS
1108	A metal-organic framework-derived CuO microrods for fast photocatalytic degradation of methylene blue. Journal of Molecular Structure, 2023, 1286, 135563.	1.8	12
1109	Prolonged cytostatic effect of nanosized NH2-UiO-66 doped with doxorubicin. Russian Chemical Bulletin, 2023, 72, 574-581.	0.4	0
1110	Modular Fabrication of Bioorthogonal Nanozymes for Biomedical Applications. Advanced Materials, 2024, 36, .	11.1	2
1111	Porous Salts as Platforms for Heterogeneous Catalysis. Small, 2023, 19, .	5.2	2
1112	Integration of Metal–Organic Frameworks and Metals: Synergy for Electrocatalysis. Small, 2023, 19, .	5.2	7
1113	Metal-Free Highly Stable and Crystalline Covalent Organic Nanosheet for Visible-Light-Driven Selective Solar Fuel Production in Aqueous Medium. ACS Catalysis, 2023, 13, 5926-5937.	5. 5	13
1114	Methylthio-functionalized UiO-66 to promote the electron–hole separation of ZnIn ₂ S ₄ for boosting hydrogen evolution under visible light illumination. Dalton Transactions, 2023, 52, 6730-6738.	1.6	2
1115	Incorporating Microporous Zn ₃ and Zn ₂ Cd MOFs into Pebax/PVDF Mixed Matrix Membranes for Improved Carbon Dioxide Separation Performance. ACS Applied Energy Materials, 2023, 6, 9170-9178.	2.5	1
1116	Transient and general synthesis of high-density and ultrasmall nanoparticles on two-dimensional porous carbon via coordinated carbothermal shock. Nature Communications, 2023, 14, .	5.8	23
1127	Polyoxometalate-based frameworks for photocatalysis and photothermal catalysis. Nanoscale, 2023, 15, 9242-9255.	2.8	12
1138	Tuning the functionality of metal–organic frameworks (MOFs) for fuel cells and hydrogen storage applications. Journal of Materials Science, 2023, 58, 8637-8677.	1.7	3
1141	Process and manufacturing of nanomaterial-based metal organic frameworks., 2023,, 55-73.		0
1144	Nanomaterials and catalysis. , 2023, , 39-54.		0
1162	Cathodic deposition of MOF films: mechanism and applications. Chemical Society Reviews, 2023, 52, 4292-4312.	18.7	8
1183	Photothermal Nanomaterials: A Powerful Light-to-Heat Converter. Chemical Reviews, 2023, 123, 6891-6952.	23.0	137
1188	Metal–Organic Frameworks (MOFs): The Next Generation of Materials for Catalysis, Gas Storage, and Separation. Journal of Inorganic and Organometallic Polymers and Materials, 2023, 33, 1757-1781.	1.9	15
1195	Nanomaterials for Toxicity Constraints and Risk Assessment., 2023,, 65-99.		0
1202	Recent strategies for constructing hierarchical multicomponent nanoparticles/metal–organic framework hybrids and their applications. Nanoscale Advances, 2023, 5, 3589-3605.	2.2	1

#	Article	IF	CITATIONS
1209	Dipolar Microenvironment Enhanced Catalytic Activity of Pd Nanoparticles in MOF Channel. ACS Sustainable Chemistry and Engineering, 2023, 11, 10219-10224.	3.2	0
1221	The marriage of porous cages and metal clusters for advanced catalysis. Materials Chemistry Frontiers, 0, , .	3.2	0
1222	Recent Progress in Metal-Organic Frameworks and their Derivatives as Advanced Electrocatalysts for Oxygen Reduction Reactions., 2023,, 129-161.		0
1228	Growth mechanisms of monolayer hexagonal boron nitride (<i>h</i> -BN) on metal surfaces: theoretical perspectives. Nanoscale Advances, 2023, 5, 4041-4064.	2.2	1
1249	Structural Characterization of Porous Organic Materials. , 2023, , 287-334.		0
1263	Mechanism Comprehension and Design of MOF Catalysts for Photocatalytic Ammonia Production. Industrial & Engineering Chemistry Research, 2023, 62, 14130-14143.	1.8	2
1270	Current progress in metal–organic frameworks and their derivatives for electrocatalytic water splitting. Inorganic Chemistry Frontiers, 2023, 10, 6489-6505.	3.0	2
1273	Recent advances in Zn-MOFs and their derivatives for cancer therapeutic applications. Materials Advances, 2023, 4, 5050-5093.	2.6	11
1276	Reactive X (where $X = O$, N, S, C, Cl, Br, and I) species nanomedicine. Chemical Society Reviews, 2023, 52, 6957-7035.	18.7	3
1286	MXenesâ€Based Materials for Contaminant Removal from Wastewaters. ACS Symposium Series, 0, , 193-218.	0.5	1
1296	Ru-doped functional porous materials for electrocatalytic water splitting. Nano Research, 2024, 17, 982-1002.	5.8	5
1300	Recent advances in the chemistry and applications of fluorinated metal–organic frameworks (F-MOFs). RSC Advances, 2023, 13, 29215-29230.	1.7	0
1316	Activity regulation and applications of metal–organic framework-based nanozymes. Rare Metals, 2024, 43, 900-914.	3.6	2
1320	Copper nanoparticles decorated on cobalt oxide nanosheets derived from bimetallic metal–organic-framework for hydrolysis of ammonia borane. , 2023, 1, 1962-1966.		1
1326	A ZIF-8-derived NiOx@ZnOx nanoparticles: Effect of calcination for tuning its structure and physicochemical properties. AIP Conference Proceedings, 2023, , .	0.3	0
1327	Nickel supported zeolitic imidazolate framework-8 (Ni/ZIF-8) catalyst: Synthesis and characterization. AIP Conference Proceedings, 2023, , .	0.3	0
1342	Nanodevices for Food-Borne Pathogens and Toxin Detection. , 2024, , 161-178.		0
1350	Microwave-assisted Synthesis of Porous Materials. , 2023, , 74-91.		0

#	Article	IF	CITATIONS
1376	A Detailed Investigation and Catalytic Application of Gold Nanoparticles Towards Synthesis of N & Co-Heterocycles. Topics in Catalysis, 2024, 67, 123-139.	1.3	0
1413	Integrating Levels of Hierarchical Organization in Porous Organic Molecular Materials. Nano-Micro Letters, 2024, 16, .	14.4	2
1419	Enhanced photocatalysis of metal/covalent organic frameworks by plasmonic nanoparticles and homo/hetero-junctions. Materials Horizons, 2024, 11, 1611-1637.	6.4	0
1434	MOF-derived carbonaceous materials. , 2024, , 63-84.		O
1441	Progressive approach of porous coordination polymers toward catalysis and photocatalysis. , 2024, , 39-63.		0
1442	Quantum chemical modeling of hydrogen binding in metal–organic frameworks: validation, insight, predictions and challenges. Physical Chemistry Chemical Physics, 2024, 26, 6490-6511.	1.3	O
1446	Advanced Nanostructured Materials for Heterogeneous Catalysisâ€"Past, Present and Future. Advances in Material Research and Technology, 2024, , 23-59.	0.3	0
1447	Development of new generation magnets based on porous coordination polymers. , 2024, , 317-339.		0
1458	Emerging transmission electron microscopy solutions for electrocatalysts: from synthesis to deactivation. Materials Chemistry Frontiers, 0, , .	3.2	0
1469	Progress in the research on organic piezoelectric catalysts for dye decomposition. International Journal of Minerals, Metallurgy and Materials, 2024, 31, 245-260.	2.4	0
1492	Functionalized Carbon Nanostructures Based on Metal–Organic Framework/Graphene-Derived Materials. , 2024, , 1-35.		0