Groundwater level forecasting using soft computing tea

Neural Computing and Applications 32, 7691-7708 DOI: 10.1007/s00521-019-04234-5

Citation Report

#	Article	IF	CITATIONS
1	Long-Term Groundwater Level Prediction Model Based on Hybrid KNN-RF Technique. Hydrology, 2020, 7, 59.	3.0	40
2	Artificial Neural Network Optimized with a Genetic Algorithm for Seasonal Groundwater Table Depth Prediction in Uttar Pradesh, India. Sustainability, 2020, 12, 8932.	3.2	61
3	Modeling and Uncertainty Analysis of Groundwater Level Using Six Evolutionary Optimization Algorithms Hybridized with ANFIS, SVM, and ANN. Sustainability, 2020, 12, 4023.	3.2	83
4	Introducing the Visual Imaging Feature to the Text Analysis: High Efficient Soft Computing Models with Bayesian Network. Neural Processing Letters, 2021, 53, 2403-2419.	3.2	2
5	Predicting groundwater level fluctuations under climate change scenarios for Tasuj plain, Iran. Arabian Journal of Geosciences, 2021, 14, 1.	1.3	31
6	Machine learning algorithm for flash flood prediction mapping in Wadi El-Laqeita and surroundings, Central Eastern Desert, Egypt. Arabian Journal of Geosciences, 2021, 14, 1.	1.3	28
8	Analysis of the influence of the characteristics of mountain soil and the noise in the tunnel on people: active noise control system. Arabian Journal of Geosciences, 2021, 14, 1.	1.3	1
9	Assessment and Prediction of Groundwater using Geospatial and ANN Modeling. Water Resources Management, 2021, 35, 2879-2893.	3.9	13
10	Assessment of probable groundwater changes under representative concentration pathway (RCP) scenarios through the wavelet–GEP model. Environmental Earth Sciences, 2021, 80, 1.	2.7	15
11	Short-term wind speed prediction using hybrid machine learning techniques. Environmental Science and Pollution Research, 2022, 29, 50909-50927.	5.3	12
13	Modeling the fluctuations of groundwater level by employing ensemble deep learning techniques. Engineering Applications of Computational Fluid Mechanics, 2021, 15, 1420-1439.	3.1	46
14	Seasonal Groundwater Table Depth Prediction Using Fuzzy Logic and Artificial Neural Network in Gangetic Plain, India. Lecture Notes in Civil Engineering, 2022, , 549-564.	0.4	0
15	Boosted artificial intelligence model using improved alpha-guided grey wolf optimizer for groundwater level prediction: Comparative study and insight for federated learning technology. Journal of Hydrology, 2022, 606, 127384.	5.4	28
16	Groundwater level forecasting in Northern Bangladesh using nonlinear autoregressive exogenous (NARX) and extreme learning machine (ELM) neural networks. Arabian Journal of Geosciences, 2022, 15, 1.	1.3	15
17	Application of Artificial Intelligence Techniques for the Determination of Groundwater Level Using Spatio–Temporal Parameters. ACS Omega, 2022, 7, 10751-10764.	3.5	11
18	Groundwater level prediction using machine learning models: A comprehensive review. Neurocomputing, 2022, 489, 271-308.	5.9	115
19	A Hybrid SVM–ABC Model for Monthly Stream Flow Forecasting. Lecture Notes in Electrical Engineering, 2022, , 315-324.	0.4	5
20	Prediction of groundwater table and drought analysis; a new hybridization strategy based on bi-directional long short-term model and the Harris hawk optimization algorithm. Journal of Water and Climate Change, 2022, 13, 2233-2254	2.9	19

CITATION REPORT

#	Article	IF	CITATIONS
21	Hybridization of hybrid structures for time series forecasting: a review. Artificial Intelligence Review, 2023, 56, 1201-1261.	15.7	24
22	A Comparative Study of Data-driven Models for Groundwater Level Forecasting. Water Resources Management, 2022, 36, 2741-2756.	3.9	8
23	Groundwater Level Fluctuations in Coastal Aquifer: Using Artificial Neural Networks to Predict the Impacts of Climatical CMIP6 Scenarios. Water Resources Management, 2022, 36, 3981-4001.	3.9	6
24	Hybrid support vector regression models with algorithm of innovative gunner for the simulation of groundwater level. Acta Geophysica, 2022, 70, 1885-1898.	2.0	12
25	Groundwater Level Simulation Using Soft Computing Methods with Emphasis on Major Meteorological Components. Water Resources Management, 2022, 36, 3627-3647.	3.9	21
26	Sandstone groundwater salinization modelling using physicochemical variables in Southern Saudi Arabia: Application of novel data intelligent algorithms. Ain Shams Engineering Journal, 2023, 14, 101894.	6.1	13
27	The Hysteresis Response of Groundwater to Reservoir Water Level Changes in a Plain Reservoir Area. Water Resources Management, 2022, 36, 4739-4763.	3.9	2
28	Prediction of future groundwater levels under representative concentration pathway scenarios using an inclusive multiple model coupled with artificial neural networks. Journal of Water and Climate Change, 2022, 13, 3620-3643.	2.9	10
29	Groundwater level response identification by hybrid wavelet–machine learning conjunction models using meteorological data. Environmental Science and Pollution Research, 2023, 30, 22863-22884.	5.3	19
30	Employing machine learning to quantify long-term climatological and regulatory impacts on groundwater availability in intensively irrigated regions. Journal of Hydrology, 2022, 614, 128511.	5.4	5
31	Use of meta-heuristic approach in the estimation of aquifer's response to climate change under shared socioeconomic pathways. Groundwater for Sustainable Development, 2023, 20, 100882.	4.6	3
32	Modelling groundwater level fluctuations by ELM merged advanced metaheuristic algorithms using hydroclimatic data. Geocarto International, 2023, 38, .	3.5	17
33	Groundwater level modeling using Augmented Artificial Ecosystem Optimization. Journal of Hydrology, 2023, 617, 129034.	5.4	14
34	Groundwater levels forecasting using machine learning models: A case study of the groundwater region 10 at Karst Belt, South Africa. , 2023, 5, 200049.		3
35	Temporal Prediction of Groundwater Levels: A Gap in Generalization. , 2023, , 203-226.		0
36	A Novel Hybrid Algorithms for Groundwater Level Prediction. Iranian Journal of Science and Technology - Transactions of Civil Engineering, 2023, 47, 3147-3164.	1.9	12
37	A Hybrid Coupled Model for Groundwater-Level Simulation and Prediction: A Case Study of Yancheng City in Eastern China. Water (Switzerland), 2023, 15, 1085.	2.7	0
39	Analysis and prediction of the changes in groundwater resources under heavy precipitation and ecological water replenishment. Journal of Water and Climate Change, 2023, 14, 1762-1778.	2.9	Ο

#	Article	IF	CITATIONS
40	Groundwater Level Modeling Using Multiobjective Optimization with Hybrid Artificial Intelligence Methods. Environmental Modeling and Assessment, 2024, 29, 45-65.	2.2	0
41	A New Method for Estimating Groundwater Changes Based on Optimized Deep Learning Models—A Case Study of Baiquan Spring Domain in China. Water (Switzerland), 2023, 15, 4129.	2.7	0
42	Global Review of Modification, Optimization, and Improvement Models for Aquifer Vulnerability Assessment in the Era of Climate Change. Current Climate Change Reports, 2023, 9, 45-67.	8.6	0
43	Research on Water Resource Modeling Based on Machine Learning Technologies. Water (Switzerland), 2024, 16, 472.	2.7	0
44	Shannon entropy of performance metrics to choose the best novel hybrid algorithm to predict groundwater level (case study: Tabriz plain, Iran). Environmental Monitoring and Assessment, 2024, 196, .	2.7	0
45	Groundwater level forecasting with machine learning models: A review. Water Research, 2024, 252, 121249.	11.3	0
46	Potential of machine learning algorithms in groundwater level prediction using temporal gravity data. Groundwater for Sustainable Development, 2024, 25, 101114.	4.6	0
47	Performance analysis and modelling of circular jets aeration in an open channel using soft computing techniques. Scientific Reports, 2024, 14, .	3.3	0