First-Row Transition-Metal-Catalyzed Carbonylative Tr Electrophiles

Chemical Reviews 119, 2090-2127

DOI: 10.1021/acs.chemrev.8b00068

Citation Report

#	Article	IF	CITATIONS
1	Site-selective C–H bond carbonylation with CO ₂ and cobalt-catalysis. Catalysis Science and Technology, 2018, 8, 5963-5969.	4.1	35
2	Nickel-catalysed carbonylative homologation of aryl iodides. Communications Chemistry, 2018, 1, .	4.5	9
3	Synthesis of phthalic acid derivatives <i>via</i> Pd-catalyzed alkoxycarbonylation of aromatic C–H bonds with alkyl chloroformates. Chemical Communications, 2018, 54, 10859-10862.	4.1	20
4	Palladium-Catalyzed Carbonylative Synthesis of α,β-Unsaturated Amides from Styrenes and Nitroarenes. Organic Letters, 2018, 20, 4988-4993.	4.6	52
5	Carbonylative transformation of benzyl formates into alkyl 2-arylacetates in organic carbonates. Organic Chemistry Frontiers, 2019, 6, 3397-3400.	4.5	12
6	Photoinduced Copper-Catalyzed Radical Aminocarbonylation of Cycloketone Oxime Esters. ACS Catalysis, 2019, 9, 8159-8164.	11.2	117
7	A Novel Fluorescent Skeleton from Disubstituted Thiochromenones via Nickel-Catalyzed Cycloaddition of Sulfobenzoic Anhydrides with Alkynes. Organic Letters, 2019, 21, 6280-6284.	4.6	9
8	Carbonylative Transformation of Allylarenes with CO Surrogates: Tunable Synthesis of 4-Arylbutanoic Acids, 2-Arylbutanoic Acids, and 4-Arylbutanals. Organic Letters, 2019, 21, 5699-5703.	4.6	18
9	Selectivity controllable divergent synthesis of α,β-unsaturated amides and maleimides from alkynes and nitroarenes via palladium-catalyzed carbonylation. Journal of Catalysis, 2019, 375, 519-523.	6.2	27
10	Carbon Isotope Labeling Strategy for β-Amino Acid Derivatives via Carbonylation of Azanickellacycles. Journal of the American Chemical Society, 2019, 141, 11821-11826.	13.7	29
11	Enhancing Ligandâ€Free Feâ€Catalyzed Aminocarbonylation of Alkynes by ZrF ₄ . ChemCatChem, 2019, 11, 5236-5240.	3.7	16
12	Selenium-Catalyzed Carbonylative Synthesis of 3,4-Dihydroquinazolin-2(1H)-one Derivatives with TFBen as the CO Source. ACS Combinatorial Science, 2019, 21, 573-577.	3.8	15
13	Cobalt-Catalyzed Alkoxycarbonylation of Epoxides to β-Hydroxyesters. Journal of Organic Chemistry, 2019, 84, 9907-9912.	3.2	16
14	Palladium-catalyzed carbonylative/decarboxylative cross-coupling of α-bromo-ketones with allylic alcohols to γ,Π-unsaturated ketones. Tetrahedron Letters, 2019, 60, 150991.	1.4	2
15	Nickel atalyzed aminocarbonylation of aryl halides with carbamoylsilanes: efficient synthesis of secondary (primary) aromatic amides. Applied Organometallic Chemistry, 2019, 33, e5174.	3.5	8
16	NHC Ligand-Enabled, Palladium-Catalyzed Non-Directed C(sp ³)–H Carbonylation To Access Indanone Cores. ACS Catalysis, 2019, 9, 10299-10304.	11.2	33
17	Palladium atalyzed Cascade Reductive and Carbonylative Cyclization of Ortho â€lodoâ€Tethered Methylenecyclopropanes (MCPs) Using N â€Formylsaccharin as CO Source. Advanced Synthesis and Catalysis, 2019, 361, 5677-5683.	4.3	9
18	Carbonylative Negishiâ€Type Coupling of 2â€ŀodoglycals with Alkyl and Aryl Halides. European Journal of Organic Chemistry, 2019, 2019, 7384-7388.	2.4	19

#	Article	IF	CITATIONS
19	Palladiumâ€Catalyzed Aminocarbonylation Reaction to Access 1,2,3â€Triazoleâ€5â€carboxamides Using Dimethyl Carbonate as Sustainable Solvent. European Journal of Organic Chemistry, 2019, 2019, 6673-6681.	2.4	15
20	Mechanism and origins of ligand-controlled Pd(<scp>ii</scp>)-catalyzed regiodivergent carbonylation of alkynes. Dalton Transactions, 2019, 48, 15059-15067.	3.3	8
21	Sustainable methine sources for the synthesis of heterocycles under metal- and peroxide-free conditions. Green Chemistry, 2019, 21, 979-985.	9.0	41
22	Palladium-Catalyzed Carbonylative Dearomatization of Indoles. Organic Letters, 2019, 21, 5264-5268.	4.6	51
23	Direct Access to 1,1-Dicarbonyl Sulfoxonium Ylides from Aryl Halides or Triflates: Palladium-Catalyzed Carbonylation. Organic Letters, 2019, 21, 5310-5314.	4.6	36
24	Cobalt, copper and nickel-embedded chitosan/PAAS composite nanofiber mats as efficient heterogeneous catalysts for air oxidation of benzoin to benzil. Cellulose, 2019, 26, 6769-6783.	4.9	6
25	Metal-catalysed radical carbonylation reactions. Catalysis Science and Technology, 2019, 9, 3603-3613.	4.1	105
26	External Reductant-Free Palladium-Catalyzed Reductive Insertion of Isocyanide: Synthesis of Polysubstituted Pyrroles and Its Applications as a Cysteine Probe. Organic Letters, 2019, 21, 4044-4048.	4.6	56
27	Reactive Heterobimetallic Complex Combining Divalent Ytterbium and Dimethyl Nickel Fragments. Inorganics, 2019, 7, 58.	2.7	15
28	Pd/C-Catalyzed Carbonylative Synthesis of 2-Aminobenzoxazinones from 2-lodoaryl Azides and Amines. Organic Letters, 2019, 21, 3242-3246.	4.6	17
29	Transition-metal-free carbonylation of aryl halides with arylboronic acids by utilizing stoichiometric CHCl ₃ as the carbon monoxide-precursor. Green Chemistry, 2019, 21, 2911-2915.	9.0	17
30	Transitionâ€Metalâ€Free Carbonylative Suzukiâ€Miyaura Reactions of Aryl Iodides with Arylboronic Acids Using <i>N</i> â€Formylsaccharin as CO Surrogate. Advanced Synthesis and Catalysis, 2019, 361, 3102-3107.	4.3	11
31	Carbonyl complexes of copper(i) stabilized by bridging fluorinated pyrazolates and halide ions. Dalton Transactions, 2019, 48, 6358-6371.	3.3	17
32	Syngasâ€Free Highly Regioselective Rhodiumâ€Catalyzed Transfer Hydroformylation of Alkynes to α,βâ€Unsaturated Aldehydes. Angewandte Chemie, 2019, 131, 7518-7522.	2.0	8
33	Syngasâ€Free Highly Regioselective Rhodium atalyzed Transfer Hydroformylation of Alkynes to α,βâ€Unsaturated Aldehydes. Angewandte Chemie - International Edition, 2019, 58, 7440-7444.	13.8	38
34	Palladium-Catalyzed Enantioselective C–H Aminocarbonylation: Synthesis of Chiral Isoquinolinones. Organic Letters, 2019, 21, 1749-1754.	4.6	52
35	Ligandâ€free Palladiumâ€Catalyzed Carbonylative Suzuki Coupling of Aryl Iodides in Aqueous CH 3 CN with Subâ€stoichiometric Amount of Mo(CO) 6 as CO Source. Advanced Synthesis and Catalysis, 2019, 361, 2117-2123.	4.3	13
36	Palladium-Catalyzed Regioselective Carbonylative Coupling/Amination of Aryl Iodides with Unactivated Alkenes: Efficient Synthesis of I²-Aminoketones. ACS Catalysis, 2019, 9, 2977-2983.	11.2	49

#	Article	IF	CITATIONS
37	Direct amide synthesis <i>via</i> Ni-mediated aminocarbonylation of arylboronic acids with CO and nitroarenes. Chemical Communications, 2019, 55, 13709-13712.	4.1	26
38	Cp*Co ^{III} -catalyzed formal [4+2] cycloaddition of benzamides to afford quinazolinone derivatives. Chemical Communications, 2019, 55, 13840-13843.	4.1	30
39	An Approach to Peri-Fused Heterocycles: A Metal-Mediated Cascade Carbonylative Cyclization/Dearomatic Diels–Alder Reaction. Organic Letters, 2019, 21, 9512-9515.	4.6	10
40	Synergistic Copper-Catalyzed Reductive Aminocarbonylation of Alkyl Iodides with Nitroarenes. Organic Letters, 2019, 21, 10106-10110.	4.6	48
41	The emergence of Pd-mediated reversible oxidative addition in cross coupling, carbohalogenation and carbonylation reactions. Nature Catalysis, 2019, 2, 843-851.	34.4	67
42	Synthesis of Benzannulated [6,6]-Spiroketals by a One-Pot Carbonylative Sonogashira Coupling/Double Annulation Reaction. Organic Letters, 2019, 21, 412-416.	4.6	19
43	The Chemistry of CO: Carbonylation. CheM, 2019, 5, 526-552.	11.7	364
44	Palladium atalyzed Thio―and Selenocarbonylation of 2â€lodoglycals. ChemCatChem, 2020, 12, 576-583.	3.7	17
45	A palladium-catalyzed oxidative aminocarbonylation reaction of alkynone <i>O</i> -methyloximes with amines and CO in PEG-400. Green Chemistry, 2020, 22, 465-470.	9.0	24
46	Palladium-catalyzed oxidative dehydrogenative carbonylation reactions using carbon monoxide and mechanistic overviews. Chemical Society Reviews, 2020, 49, 341-353.	38.1	85
47	Palladium-Catalyzed Multistep Tandem Carbonylation/N-Dealkylation/Carbonylation Reaction: Access to Isatoic Anhydrides. Journal of Organic Chemistry, 2020, 85, 2672-2679.	3.2	12
48	Benzene-1,3,5-triyl Triformate (TFBen)-Promoted Palladium-Catalyzed Carbonylative Synthesis of 2-Oxo-2,5-dihydropyrroles from Propargyl Amines. Organic Letters, 2020, 22, 194-198.	4.6	47
49	Carbonylative Acetylation of Heterocycles. European Journal of Organic Chemistry, 2020, 2020, 213-216.	2.4	5
50	Cu-Catalyzed Carbonylative Silylation of Alkyl Halides: Efficient Access to Acylsilanes. Journal of the American Chemical Society, 2020, 142, 80-84.	13.7	43
51	CO Gasâ€free Intramolecular Cyclocarbonylation Reactions of Haloarenes Having a Câ€Nucleophile through COâ€Relay between Rhodium and Palladium. Chemistry - an Asian Journal, 2020, 15, 473-477.	3.3	2
52	Palladium-catalyzed four-component carbonylation of allenes, alcohols and nitroarenes. Journal of Catalysis, 2020, 381, 271-274.	6.2	11
53	Selective reductive cross-coupling of N-heteroarenes by an unsymmetrical PNP-ligated manganese catalyst. Journal of Catalysis, 2020, 392, 135-140.	6.2	12
55	Palladium atalyzed Chlorocarbonylation of Aryl (Pseudo)Halides Through In Situ Generation of Carbon Monoxide. Angewandte Chemie, 2020, 132, 18043-18052.	2.0	8

#	Article	IF	CITATIONS
56	Transition-metal and oxidant-free approach for the synthesis of diverse N-heterocycles by TMSCl activation of isocyanides. RSC Advances, 2020, 10, 29257-29262.	3.6	10
57	Metal-Free Synthesis of Benzimidazoles via Oxidative Cyclization of <scp>d</scp> -Glucose with <i>o</i> -Phenylenediamines in Water. Journal of Organic Chemistry, 2020, 85, 11531-11540.	3.2	32
58	Copper-Catalyzed Synthesis of Stereodefined Cyclopropyl Bis(boronates) from Alkenes with CO as the C1 Source. Journal of the American Chemical Society, 2020, 142, 14074-14079.	13.7	48
59	Efficient methanol carbonylation to methyl acetate catalyzed by a cyclic(alkyl)(amino)carbene iridium complex. Catalysis Science and Technology, 2020, 10, 6045-6049.	4.1	6
60	Palladium-catalyzed three-component carbonylative synthesis of 2-(trifluoromethyl)quinazolin-4(3 <i>H</i>)-ones from trifluoroacetimidoyl chlorides and amines. Organic Chemistry Frontiers, 2020, 7, 2499-2504.	4.5	35
61	Rhodium-Catalyzed Carbonylative Synthesis of Aryl Salicylates from Unactivated Phenols. Organic Letters, 2020, 22, 6050-6054.	4.6	4
63	Renewable Solvents for Palladium-Catalyzed Carbonylation Reactions. Organic Process Research and Development, 2020, 24, 2665-2675.	2.7	32
64	Palladium-catalyzed carbonylative synthesis of arylacetamides from benzyl formates and tertiary amines. Organic Chemistry Frontiers, 2020, 7, 3406-3410.	4.5	2
65	Radical Carbonylative Synthesis of Heterocycles by Visible Light Photoredox Catalysis. Catalysts, 2020, 10, 1054.	3.5	21
66	Cationic Rhodium(I)â€Catalyzed Carbonylative [2+2+1] Cycloaddition of Diynes. Asian Journal of Organic Chemistry, 2020, 9, 1778-1782.	2.7	4
67	Palladium-catalyzed double-carbonylative cyclization of propargyl alcohols and aryl triflates to expedite construction of 4-aroyl-furan-2(5 <i>H</i>)-ones. Organic Chemistry Frontiers, 2020, 7, 2757-2760.	4.5	17
68	Copperâ€Catalyzed Carbonylative Hydroamidation of Styrenes to Branched Amides. Angewandte Chemie - International Edition, 2020, 59, 22441-22445.	13.8	50
69	Copper atalyzed Carbonylative Hydroamidation of Styrenes to Branched Amides. Angewandte Chemie, 2020, 132, 22627-22631.	2.0	14
70	Cobalt-catalyzed carbonylation of the C–H bond. Organic and Biomolecular Chemistry, 2020, 18, 7460-7466.	2.8	28
71	Palladiumâ€Catalyzed Cascade Carbonylative Cyclization Reaction of Trifluoroacetimidoyl Chlorides and 2â€lodoanilines: Toward 2â€(Trifluoromethyl)quinazolinâ€4(3H)â€ones Synthesis. ChemistrySelect, 2020, 5, 11072-11076.	1.5	10
72	Pd-catalyzed amidation of 1,3-diketones with CO and azides via a nitrene intermediate. Chemical Communications, 2020, 56, 11437-11440.	4.1	13
73	Palladium-Catalyzed Secondary Benzylic Imidoylative Reactions. Organic Letters, 2020, 22, 6954-6959.	4.6	11
74	External oxidant-compatible phosphorus(III)-directed site-selective C–H carbonylation. Science Advances, 2020, 6, .	10.3	20

#	Article	IF	CITATIONS
75	Access to 2-pyridinylamide and imidazopyridine from 2-fluoropyridine and amidine hydrochloride. Organic and Biomolecular Chemistry, 2020, 18, 9292-9299.	2.8	1
76	Nickel-catalyzed aminocarbonylation of Aryl/Alkenyl/Allyl (pseudo)halides with isocyanides and H2O. Tetrahedron Letters, 2020, 61, 152605.	1.4	8
77	Iron-catalyzed carbonylative cyclization of γ,δ-unsaturated aromatic oxime esters to functionalized pyrrolines. Chemical Communications, 2020, 56, 7045-7048.	4.1	22
78	Efficient synthesis of 2-amino-3-methylenephthalimides by a palladium-catalyzed intramolecular aminocarbonylation. Synthetic Communications, 2020, 50, 1892-1898.	2.1	0
79	Nickel-Catalyzed Formal Aminocarbonylation of Secondary Benzyl Chlorides with Isocyanides. Organic Letters, 2020, 22, 4245-4249.	4.6	23
80	Double Carbonylation Reactions: Overview and Recent Advances. Advanced Synthesis and Catalysis, 2020, 362, 3022-3058.	4.3	44
81	Mechanism and Origin of Ligand-Controlled Chemo- and Regioselectivities in Palladium-Catalyzed Methoxycarbonylation of Alkynes. Journal of Organic Chemistry, 2020, 85, 7136-7151.	3.2	18
82	Pd-Catalyzed Cyclocarbonylation of Allylic Alcohol under Benign Conditions with lonic Liquid as Stabilizer. Materials, 2020, 13, 2093.	2.9	0
83	C–C and C–X coupling reactions of unactivated alkyl electrophiles using copper catalysis. Chemical Society Reviews, 2020, 49, 8036-8064.	38.1	132
84	Metal-Mediated and Metal-Catalyzed Reactions Under Mechanochemical Conditions. ACS Catalysis, 2020, 10, 8344-8394.	11.2	188
85	Recent Advances in the Synthesis of Acylsilanes. ChemCatChem, 2020, 12, 5022-5033.	3.7	22
86	Recent advances of dinuclear nickel- and palladium-complexes in homogeneous catalysis. Chemical Communications, 2020, 56, 8524-8536.	4.1	34
87	Recent Advances in Carbonylative Difunctionalization of Alkenes. Advanced Synthesis and Catalysis, 2020, 362, 3059-3080.	4.3	58
88	Iron/N-doped graphene nano-structured catalysts for general cyclopropanation of olefins. Chemical Science, 2020, 11, 6217-6221.	7.4	12
89	Rapid Organocatalytic Formation of Carbon Monoxide: Application towards Carbonylative Cross Couplings. Chemistry - A European Journal, 2020, 26, 9632-9638.	3.3	16
90	Pd/C-Catalyzed methoxycarbonylation of aryl chlorides. Molecular Catalysis, 2020, 493, 111043.	2.0	4
91	Ruthenium-Catalyzed Carbonylative Coupling of Anilines with Organoboranes by the Cleavage of Neutral Aryl C–N Bond. Organic Letters, 2020, 22, 2756-2760.	4.6	28
92	Palladium-catalyzed double carbonylation of propargyl amines and aryl halides to access 1-aroyl-3-aryl-1,5-dihydro-2 <i>H</i> -pyrrol-2-ones. Organic Chemistry Frontiers, 2020, 7, 1006-1010.	4.5	16

#	Article	IF	CITATIONS
93	Copper atalyzed Regioselective Borocarbonylative Coupling of Unactivated Alkenes with Alkyl Halides: Synthesis of βâ€Boryl Ketones. Angewandte Chemie - International Edition, 2020, 59, 10451-10455.	13.8	57
94	Copper atalyzed Regioselective Borocarbonylative Coupling of Unactivated Alkenes with Alkyl Halides: Synthesis of βâ€Boryl Ketones. Angewandte Chemie, 2020, 132, 10537-10541.	2.0	39
95	Nickel-Catalyzed Formal Aminocarbonylation of Unactivated Alkyl Iodides with Isocyanides. Organic Letters, 2020, 22, 3245-3250.	4.6	30
96	Palladium atalyzed Enantioselective Heck Carbonylation with a Monodentate Phosphoramidite Ligand: Asymmetric Synthesis of (+)â€Physostigmine, (+)â€Physovenine, and (+)â€Folicanthine. Angewandte Chemie - International Edition, 2020, 59, 12199-12205.	13.8	83
97	Synthesis of α,β-unsaturated carbonyl compounds by carbonylation reactions. Chemical Society Reviews, 2020, 49, 3187-3210.	38.1	151
98	Direct Access to Isotopically Labeled Aliphatic Ketones Mediated by Nickel(I) Activation. Angewandte Chemie, 2020, 132, 8176-8180.	2.0	8
99	Nickel-catalyzed carboxylation of aryl iodides with lithium formate through catalytic CO recycling. Chemical Communications, 2020, 56, 4067-4069.	4.1	13
100	Chelating Group Enabled Palladiumâ€Catalyzed Regiodivergent Carbonylative Synthesis of 2,3â€Đihydroquinolinâ€4(1 <i>H</i>)â€ones. Chemistry - A European Journal, 2020, 26, 14565-14569.	3.3	17
101	Palladium atalyzed Oneâ€Pot Coupling / Cyclization through Mo(CO) 6 as the Carbon Monoxide Donor: Synthesis of Quinazolinones. ChemistrySelect, 2020, 5, 7332-7337.	1.5	6
102	Earth-Abundant d-Block Metal Nanocatalysis for Coupling Reactions in Polyols. Molecular Catalysis, 2020, , 249-280.	1.3	2
103	Palladium atalyzed Chlorocarbonylation of Aryl (Pseudo)Halides Through In Situ Generation of Carbon Monoxide. Angewandte Chemie - International Edition, 2020, 59, 17887-17896.	13.8	20
104	<i>Ex situ</i> gas generation for lab scale organic synthesis. Reaction Chemistry and Engineering, 2020, 5, 615-631.	3.7	26
105	Silverâ€Triggered Activity of a Heterogeneous Palladium Catalyst in Oxidative Carbonylation Reactions. Angewandte Chemie - International Edition, 2020, 59, 10391-10395.	13.8	25
106	Switchable Polymerization Triggered by Fast and Quantitative Insertion of Carbon Monoxide into Cobalt–Oxygen Bonds. Angewandte Chemie, 2020, 132, 6044-6050.	2.0	7
107	Silverâ€Triggered Activity of a Heterogeneous Palladium Catalyst in Oxidative Carbonylation Reactions. Angewandte Chemie, 2020, 132, 10477-10481.	2.0	10
108	Carbonylative Suzuki–Miyaura couplings of sterically hindered aryl halides: synthesis of 2-aroylbenzoate derivatives. Organic and Biomolecular Chemistry, 2020, 18, 1754-1759.	2.8	9
109	Copper-Catalyzed Carbonylative Synthesis of β-Homoprolines from <i>N</i> -Fluoro-sulfonamides. Organic Letters, 2020, 22, 1889-1893.	4.6	26
110	Palladium-catalyzed C3-selective C–H oxidative carbonylation of imidazo[1,2-a]pyridines with CO and alcohols: a way to access esters. Organic Chemistry Frontiers, 2020, 7, 697-701.	4.5	15

#	Article	IF	CITATIONS
111	Palladium/aluminium-cocatalyzed carbonylative synthesis of 2-chloroethyl benzoates from epoxides and aryl iodides. Journal of Organometallic Chemistry, 2020, 910, 121114.	1.8	2
112	Nickel-catalyzed allylic carbonylative coupling of alkyl zinc reagents with tert-butyl isocyanide. Nature Communications, 2020, 11, 392.	12.8	35
113	Direct Access to Isotopically Labeled Aliphatic Ketones Mediated by Nickel(I) Activation. Angewandte Chemie - International Edition, 2020, 59, 8099-8103.	13.8	32
114	Switchable Polymerization Triggered by Fast and Quantitative Insertion of Carbon Monoxide into Cobalt–Oxygen Bonds. Angewandte Chemie - International Edition, 2020, 59, 5988-5994.	13.8	21
115	Carbonylative synthesis of heterocycles involving diverse CO surrogates. Chemical Communications, 2020, 56, 6016-6030.	4.1	93
116	Palladium atalyzed Enantioselective Heck Carbonylation with a Monodentate Phosphoramidite Ligand: Asymmetric Synthesis of (+)â€Physostigmine, (+)â€Physovenine, and (+)â€Folicanthine. Angewandte Chemie, 2020, 132, 12297-12303.	2.0	16
117	Enhancing regioselectivity via tuning the microenvironment in heterogeneous hydroformylation of olefins. Journal of Catalysis, 2020, 387, 196-206.	6.2	46
118	Rhodium-Catalyzed Carbonylative Coupling of Alkyl Halides with Phenols under Low CO Pressure. ACS Catalysis, 2020, 10, 5147-5152.	11.2	30
119	A multicomponent palladium-catalyzed carbonylative approach to imidazopyridinyl-N,N-dialkylacetamides. Journal of Catalysis, 2020, 386, 53-59.	6.2	12
120	Nickel-catalyzed carbonylative synthesis of dihydrobenzofurans. Catalysis Communications, 2021, 148, 106170.	3.3	13
121	Ligand ontrolled Copper atalyzed Regiodivergent Carbonylative Synthesis of αâ€Amino Ketones and αâ€Boryl Amides from Imines and Alkyl Iodides. Angewandte Chemie, 2021, 133, 705-710.	2.0	4
122	Chromium atalyzed Selective Dimerization/Hydroboration of Allenes to Access Borylâ€Functionalized Skipped (<i>E</i> , <i>Z</i>)â€Dienes. Angewandte Chemie - International Edition, 2021, 60, 2149-2154.	13.8	23
123	Carboxyboronate as a Versatile In Situ CO Surrogate in Palladium atalyzed Carbonylative Transformations. Angewandte Chemie - International Edition, 2021, 60, 4342-4349.	13.8	27
124	Vermiculites catalyze unusual benzaldehyde and dioxane reactivity. Catalysis Today, 2021, 366, 218-226.	4.4	4
125	A General and Highly Selective Palladium atalyzed Hydroamidation of 1,3â€Điynes. Angewandte Chemie, 2021, 133, 375-383.	2.0	7
126	General Synthesis of Secondary Alkylamines by Reductive Alkylation of Nitriles by Aldehydes and Ketones. Chemistry - A European Journal, 2021, 27, 1609-1614.	3.3	13
127	Palladium catalysis with sulfurated substrates under aerobic conditions: A direct oxidative carbonylation approach to thiophene-3-carboxylic esters. Journal of Catalysis, 2021, 393, 335-343.	6.2	16
128	Photocatalytic Carbonylation Strategies: A Recent Trend in Organic Synthesis. Journal of Organic Chemistry, 2021, 86, 24-48.	3.2	52

# 129	ARTICLE Palladium-catalyzed directing group assisted and regioselectivity reversed cyclocarbonylation of arylallenes with 2-iodoanilines. Organic Chemistry Frontiers, 2021, 8, 792-798.	IF 4.5	CITATIONS
130	Carboxyboronate as a Versatile In Situ CO Surrogate in Palladium atalyzed Carbonylative Transformations. Angewandte Chemie, 2021, 133, 4388-4395.	2.0	2
131	Palladium imine-pyridine-imine complex immobilized on graphene oxide as a recyclable catalyst for the carbonylative homo-coupling of aryl halides. Journal of Coordination Chemistry, 2021, 74, 850-863.	2.2	5
132	Chromiumâ€Catalyzed Selective Dimerization/Hydroboration of Allenes to Access Borylâ€Functionalized Skipped (E , Z)â€Dienes. Angewandte Chemie, 2021, 133, 2177-2182.	2.0	6
133	A General and Highly Selective Palladium atalyzed Hydroamidation of 1,3â€Diynes. Angewandte Chemie - International Edition, 2021, 60, 371-379.	13.8	26
134	Copper-catalyzed enantioselective carbonylation toward α-chiral secondary amides. Chemical Science, 2021, 12, 12676-12681.	7.4	23
135	Rhodium-catalyzed carbonylative coupling of alkyl halides with thiols: a radical process faster than easier nucleophilic substitution. Chemical Communications, 2021, 57, 1466-1469.	4.1	12
136	Palladium-catalyzed carbonylative cyclization of 2-alkynylanilines and aryl iodides to access N-acyl indoles. Organic Chemistry Frontiers, 2021, 8, 1926-1929.	4.5	11
137	A "one pot―mass spectrometry technique for characterizing solution- and gas-phase photochemical reactions by electrospray mass spectrometry. RSC Advances, 2021, 11, 19500-19507.	3.6	5
138	Palladium-catalyzed [2 + 2 + 1] annulation: access to chromone fused cyclopentanones with cyclopropenone as the CO source. Organic Chemistry Frontiers, 2021, 8, 3082-3090.	4.5	19
139	Catalytic three-component dicarbofunctionalization reactions involving radical capture by nickel. Chemical Society Reviews, 2021, 50, 10836-10856.	38.1	154
140	A general strategy for the synthesis of α-trifluoromethyl- and α-perfluoroalkyl-β-lactams via palladium-catalyzed carbonylation. Chemical Science, 2021, 12, 10467-10473.	7.4	14
141	Palladium-catalyzed gaseous CO-free carbonylative C–C bond activation of cyclobutanones. Organic Chemistry Frontiers, 2021, 8, 3398-3403.	4.5	13
142	Palladium-catalyzed carbonylative cyclization of benzyl chlorides with anthranils for the synthesis of 3-arylquinolin-2(1 <i>H</i>)-ones. Organic and Biomolecular Chemistry, 2021, 19, 3584-3588.	2.8	10
143	Copper-catalyzed borofunctionalization of styrenes with B ₂ pin ₂ and CO. Chemical Science, 2021, 12, 13777-13781.	7.4	13
144	Recent advances in the synthesis of 1,1-diarylalkanes by transition-metal catalysis. Science China Chemistry, 2021, 64, 513-533.	8.2	35
145	Recent advances in NHC–palladium catalysis for alkyne chemistry: versatile synthesis and applications. Organic Chemistry Frontiers, 2021, 8, 3502-3524.	4.5	19
146	Ruthenium(<scp>II</scp>) atalyzed CH/NH Carbonylative Cyclization of <scp>2â€Aryl</scp> Quinazolinones with Isocyanates as <scp>CO</scp> Surrogates. Bulletin of the Korean Chemical Society, 2021, 42, 542-547.	1.9	8

#	Article	IF	CITATIONS
147	Palladium-catalyzed carbonylation of iminoquinones and aryl iodides to access aryl <i>p</i> -amino benzoates. Organic and Biomolecular Chemistry, 2021, 19, 8246-8249.	2.8	1
148	Catalytic challenges and strategies for the carbonylation of lf -bonds. Green Chemistry, 2021, 23, 723-739.	9.0	14
149	Palladium-catalyzed regioselective direct C–H bond alkoxycarbonylation of 2-arylimidazo[1,2- <i>a</i>]pyridines. New Journal of Chemistry, 2021, 45, 12145-12149.	2.8	5
150	Palladium-catalyzed carbonylative synthesis of aryl esters from <i>p</i> -benzoquinones and aryl triflates. Organic and Biomolecular Chemistry, 2021, 19, 7353-7356.	2.8	4
151	Palladium Catalyzed Cascade Azidation/Carbonylation of Aryl Halides with Sodium Azide for the Synthesis of Amides. Chemistry - an Asian Journal, 2021, 16, 503-506.	3.3	9
152	Palladium Catalyzed Aminocarbonylation of Benzylic Ammonium Triflates with Nitroarenes: Synthesis of Phenylacetamides. Advanced Synthesis and Catalysis, 2021, 363, 2061-2065.	4.3	16
153	Efficient Palladiumâ€Catalyzed Carbonylation of 1,3â€Dienes: Selective Synthesis of Adipates and Other Aliphatic Diesters. Angewandte Chemie - International Edition, 2021, 60, 9527-9533.	13.8	26
154	Enantioselective α arbonylative Arylation for Facile Construction of Chiral Spirocyclic β,β′â€Diketones. Angewandte Chemie - International Edition, 2021, 60, 9978-9983.	13.8	20
155	Enantioselective α arbonylative Arylation for Facile Construction of Chiral Spirocyclic β,β′â€Diketones. Angewandte Chemie, 2021, 133, 10066-10071.	2.0	2
156	Efficient Palladiumâ€Catalyzed Carbonylation of 1,3â€Dienes: Selective Synthesis of Adipates and Other Aliphatic Diesters. Angewandte Chemie, 2021, 133, 9613-9619.	2.0	4
157	Palladium atalyzed Thiocarbonylation of Benzyl Chlorides with Sulfonyl Chlorides for the Synthesis of Arylacetyl Thioesters. Advanced Synthesis and Catalysis, 2021, 363, 2541-2545.	4.3	15
158	Palladium-Catalyzed Tandem Carbonylative Diels–Alder Reaction for Construction of Bridged Polycyclic Skeletons. Organic Letters, 2021, 23, 2125-2129.	4.6	10
159	Pd/Cuâ€Catalyzed Defluorinative Carbonylative Coupling of Aryl Iodides and gem â€Difluoroalkenes: Efficient Synthesis of αâ€Fluorochalcones. Angewandte Chemie, 2021, 133, 8900-8904.	2.0	4
160	Manganese-Mediated C–C Bond Formation: Alkoxycarbonylation of Organoboranes. Organometallics, 2021, 40, 674-681.	2.3	6
161	Pd/Cuâ€Catalyzed Defluorinative Carbonylative Coupling of Aryl Iodides and <i>gem</i> â€Difluoroalkenes: Efficient Synthesis of αâ€Fluorochalcones. Angewandte Chemie - International Edition, 2021, 60, 8818-8822.	13.8	42
162	Cobalt-Catalyzed C(sp ²)–H Carbonylation of Amino Acids Using Picolinamide as a Traceless Directing Group. Organic Letters, 2021, 23, 2748-2753.	4.6	19
163	Highly γâ€Selective Arylation and Carbonylative Arylation of 3â€Bromoâ€3,3â€difluoropropene via Nickel Catalysis. Angewandte Chemie, 2021, 133, 12494-12499.	2.0	1
164	Metal-Free C–H [5 + 1] Carbonylation of 2-Alkenyl/Pyrrolylanilines Using Dioxazolones as Carbonylating Reagents. Organic Letters, 2021, 23, 3761-3766.	4.6	12

#	Article	IF	CITATIONS
165	Copper-Catalyzed Carbonylative Coupling of Alkyl Halides. Accounts of Chemical Research, 2021, 54, 2261-2274.	15.6	84
166	Highly γâ€Selective Arylation and Carbonylative Arylation of 3â€Bromoâ€3,3â€difluoropropene via Nickel Catalysis. Angewandte Chemie - International Edition, 2021, 60, 12386-12391.	13.8	47
167	Palladiumâ€Catalyzed Threeâ€Component Coupling Reaction via Benzylpalladium Intermediate. Chemical Record, 2021, , .	5.8	4
168	Recent advances in the total synthesis of natural products bearing the contiguous all-carbon quaternary stereocenters. Tetrahedron Letters, 2021, 71, 153029.	1.4	30
169	Palladium iodide catalyzed carbonylative double cyclization to a new class of S,O-bicyclic heterocycles. Catalysis Today, 2022, 397-399, 631-638.	4.4	9
170	The first bismuth self-mediated oxidative carbonylative coupling reaction via Billl/BiV redox intermediates. Journal of Catalysis, 2021, 397, 201-204.	6.2	9
171	Solar photothermal catalytic effect promotes carbonylation reaction based on palladium doped g-C3N4 catalyst. Materials Research Bulletin, 2021, 137, 111194.	5.2	7
172	Oneâ€Pot Palladiumâ€Catalyzed Carbonylative Sonogashira Coupling using Carbon Dioxide as Carbonyl Source. ChemCatChem, 2021, 13, 2843-2851.	3.7	8
173	Palladium-Catalyzed Markovnikov Hydroaminocarbonylation of 1,1-Disubstituted and 1,1,2-Trisubstituted Alkenes for Formation of Amides with Quaternary Carbon. Journal of the American Chemical Society, 2021, 143, 7298-7305.	13.7	42
174	Palladium-catalyzed carbonylative synthesis of quinazolines: Silane act as better nucleophile than amidine. Molecular Catalysis, 2021, 509, 111627.	2.0	2
175	Recent Advances in Nonprecious Metal Catalysis. Organic Process Research and Development, 2021, 25, 1471-1495.	2.7	17
176	Ligand ontrolled Regiodivergent Thiocarbonylation of Alkynes toward Linear and Branched α,l²â€Unsaturated Thioesters. Angewandte Chemie - International Edition, 2021, 60, 17178-17184.	13.8	29
177	Rhodium-Catalyzed Reductive trans-Alkylacylation of Internal Alkynes via a Formal Carborhodation/C–H Carbonylation Cascade. Organic Letters, 2021, 23, 5039-5043.	4.6	8
178	Ligand ontrolled Regiodivergent Thiocarbonylation of Alkynes toward Linear and Branched α,l²â€Unsaturated Thioesters. Angewandte Chemie, 2021, 133, 17315-17321.	2.0	4
179	Visible-Light-Induced Carbonylation of Indoles with Phenols under Metal-Free Conditions: Synthesis of Indole-3-carboxylates. Organic Letters, 2021, 23, 4769-4773.	4.6	5
180	Pincer Iron Hydride Complexes for Alkene Isomerization: Catalytic Approach to Trisubstituted (<i>Z</i>)-Alkenyl Boronates. ACS Catalysis, 2021, 11, 10138-10147.	11.2	22
181	Advances in Visible-Light-Mediated Carbonylative Reactions via Carbon Monoxide (CO) Incorporation. Catalysts, 2021, 11, 918.	3.5	16
182	On the origin of nitrogen-containing promoters in the cobalt-catalyzed methoxycarbonylation of epoxides. Applied Catalysis A: General, 2021, 623, 118291.	4.3	4

		CITATION REPORT		
# 183	ARTICLE Synthesis of 1,3-diketones from esters via liberation of hydrogen. Chem Catalysis, 2021,	, 1, 681-690.	IF 6.1	CITATIONS 25
184	Nickel-Catalyzed Multicomponent Coupling: Synthesis of α-Chiral Ketones by Reductive Hydrocarbonylation of Alkenes. Journal of the American Chemical Society, 2021, 143, 14	4089-14096.	13.7	77
185	Nickel-Catalyzed One-Pot Carbonylative Synthesis of 2-Mono- and 2,3-Disubstituted Thio from 2-Bromobenzenesulfonyl Chlorides and Alkynes. Organic Letters, 2021, 23, 6589-6	ochromenones 5593.	4.6	19
186	Palladium-Catalyzed Reductive Aminocarbonylation of Benzylammonium Triflates with <i>o</i> -Nitrobenzaldehydes for the Synthesis of 3-Arylquinolin-2(1 <i>H</i>)-ones. Jourr Chemistry, 2021, 86, 13824-13832.	nal of Organic	3.2	14
187	Cobalt Carbonyls Stabilized by N,P‣igands: Synthesis, Structure, and Catalytic Proper Oxide Hydroalkoxycarbonylation. Chemistry - an Asian Journal, 2021, 16, 3453-3461.	ty for Ethylene	3.3	4
188	TFBen (Benzeneâ€1,3,5â€triyl triformate): A Powerful and Versatile CO Surrogate. Chen 22, .	nical Record, 2022,	5.8	19
189	Bimetallic anchoring catalysis for C-H and C-C activation. Science China Chemistry, 2021	l, 64, 1923-1937.	8.2	24
190	Doping [Ru(bpy)3]2+ into metal-organic framework to facilitate the separation and reus noble-metal photosensitizer during CO2 photoreduction. Chinese Journal of Catalysis, 2 1790-1797.	e of 021, 42,	14.0	20
191	Multi-functional Co3O4 embedded carbon nanotube architecture for oxygen evolution r benzoin oxidation. Journal of Molecular Liquids, 2021, 343, 117616.	reaction and	4.9	7
192	Palladium atalyzed Carbonylative Synthesis of 2â€(Trifluoromethyl)quinazolinâ€4(3< Trifluoroacetimidoyl Chlorides and Nitro Compounds. Advanced Synthesis and Catalysis 1417-1426.	:i>H)â€ones from , 2021, 363,	4.3	22
193	Metallaphotoredox-catalyzed C–H activation: regio-selective annulation of allenes witl Organic Chemistry Frontiers, 2021, 8, 928-935.	h benzamide.	4.5	16
194	One-pot multi-step cascade protocols toward β-indolyl sulfoximidoyl amides <i>via</i> i trapping of an α-indolylpalladium complex by CO. Organic and Biomolecular Chemistry, 3359-3369.	ntermolecular 2021, 19,	2.8	4
195	Palladium-catalyzed benzylic C(sp ³)–H carbonylative arylation of azaaryl with aryl bromides. Chemical Science, 2021, 12, 10862-10870.	methyl amines	7.4	9
196	Palladium-catalyzed 1,2-amino carbonylation of 1,3-dienes with (<i>N</i> -SO ₂ Py)-2-iodoanilines: 2,3-dihydroquinolin-4(1 <i>H</i>)-ones syn Chemistry Frontiers, 2021, 8, 2429-2433.	nthesis. Organic	4.5	6
197	Palladium-catalysed carboformylation of alkynes using acid chlorides as a dual carbon m carbon source. Nature Chemistry, 2021, 13, 123-130.	onoxide and	13.6	21
198	Ligand ontrolled Copper atalyzed Regiodivergent Carbonylative Synthesis of αâ€ αâ€Boryl Amides from Imines and Alkyl Iodides. Angewandte Chemie - International Edit 695-700.	Amino Ketones and ion, 2021, 60,	13.8	32
199	<pre><scp>Palladiumâ€Catalyzed</scp> Tandem Carbonylative <scp>Azaâ€Wackerâ€Type</scp></pre> Nucleophile Tethered Alkene to Access Fused <scp><i>N</i>â€Heterocycles</scp> . Chir Chemistry, 2021, 39, 317-322.	scp> Cyclization of nese Journal of	4.9	14
200	Site-Selective Double and Tetracyclization Routes to Fused Polyheterocyclic Structures b Pd-Catalyzed Carbonylation Reactions. Organic Letters, 2020, 22, 1569-1574.	by	4.6	21

	ARTICLE	IF	CHAHONS
201	Nickel-Catalyzed Four-Component Carbocarbonylation of Alkenes under 1 atm of CO. Journal of the American Chemical Society, 2020, 142, 18191-18199.	13.7	79
202	Asymmetric Markovnikov Hydroaminocarbonylation of Alkenes Enabled by Palladium-Monodentate Phosphoramidite Catalysis. Journal of the American Chemical Society, 2021, 143, 85-91.	13.7	89
203	Chelation-assisted transition metal-catalysed C–H chalcogenylations. Organic Chemistry Frontiers, 2020, 7, 1022-1060.	4.5	68
204	Enantioselective Synthesis of Chiral Carboxylic Acids from Alkynes and Formic Acid by Nickelâ€Catalyzed Cascade Reactions: Facile Synthesis of Profens. Angewandte Chemie, 0, , .	2.0	14
205	Divergent Aminocarbonylations of Alkynes Enabled by Photoredox/Nickel Dual Catalysis**. Angewandte Chemie, 0, , .	2.0	4
206	Copperâ€Catalyzed 1,2â€Trifluoromethylation Carbonylation of Unactivated Alkenes: Efficient Access to βâ€Trifluoromethylated Aliphatic Carboxylic Acid Derivatives. Angewandte Chemie - International Edition, 2021, 60, 25787-25792.	13.8	34
207	Oxidative Cyclization of Trifluoroacetimidohydrazides with Dâ€Glucose for the Metalâ€Free Synthesis of 3â€Trifluoromethylâ€1,2,4â€Triazoles. Advanced Synthesis and Catalysis, 2021, 363, 4982.	4.3	11
208	Cobaltâ€Catalyzed Dehydrogenative Câ^'H Silylation of Alkynylsilanes. Chemistry - A European Journal, 2022, 28, .	3.3	21
209	Copperâ€Catalyzed 1,2â€Trifluoromethylation Carbonylation of Unactivated Alkenes: Efficient Access to βâ€Trifluoromethylated Aliphatic Carboxylic Acid Derivatives. Angewandte Chemie, 2021, 133, 25991-25996.	2.0	10
211	Visible Light-Induced Transition Metal Catalysis. Chemical Reviews, 2022, 122, 1543-1625.	47.7	322
212	Copper-Catalyzed Alkoxycarbonylation of Alkyl Iodides for the Synthesis of Aliphatic Esters: Hydrogen Makes the Difference. Organic Letters, 2021, 23, 8062-8066.	4.6	9
010			(
210	Divergent Aminocarbonylations of Alkynes Enabled by Photoredox/Nickel Dual Catalysis. Angewandte Chemie - International Edition, 2021, 60, 26511-26517.	13.8	37
213	Divergent Aminocarbonylations of Alkynes Enabled by Photoredox/Nickel Dual Catalysis. Angewandte Chemie - International Edition, 2021, 60, 26511-26517. Palladium-catalyzed carbonylation of propargyl diols with primary amines for the synthesis of functionalized acids. Journal of Organometallic Chemistry, 2021, 956, 122115.	13.8 1.8	37
213 214 215	Divergent Aminocarbonylations of Alkynes Enabled by Photoredox/Nickel Dual Catalysis. Angewandte Chemie - International Edition, 2021, 60, 26511-26517. Palladium-catalyzed carbonylation of propargyl diols with primary amines for the synthesis of functionalized acids. Journal of Organometallic Chemistry, 2021, 956, 122115. Iron-catalyzed hydroaminocarbonylation of alkynes to produce succinimides with NH4HCO3. Journal of Catalysis, 2021, 404, 224-230.	13.8 1.8 6.2	37 1 7
213214215216	Divergent Aminocarbonylations of Alkynes Enabled by Photoredox/Nickel Dual Catalysis. Angewandte Chemie - International Edition, 2021, 60, 26511-26517.Palladium-catalyzed carbonylation of propargyl diols with primary amines for the synthesis of functionalized acids. Journal of Organometallic Chemistry, 2021, 956, 122115.Iron-catalyzed hydroaminocarbonylation of alkynes to produce succinimides with NH4HCO3. Journal of Catalysis, 2021, 404, 224-230.Enantioselective Synthesis of Chiral Carboxylic Acids from Alkynes and Formic Acid by Nickelâ€Catalyzed Cascade Reactions: Facile Synthesis of Profens. Angewandte Chemie - International Edition, 2022, 61,.	13.8 1.8 6.2 13.8	37 1 7 22
 213 214 215 216 217 	Divergent Aminocarbonylations of Alkynes Enabled by Photoredox/Nickel Dual Catalysis. Angewandte Chemie - International Edition, 2021, 60, 26511-26517. Palladium-catalyzed carbonylation of propargyl diols with primary amines for the synthesis of functionalized acids. Journal of Organometallic Chemistry, 2021, 956, 122115. Iron-catalyzed hydroaminocarbonylation of alkynes to produce succinimides with NH4HCO3. Journal of Catalysis, 2021, 404, 224-230. Enantioselective Synthesis of Chiral Carboxylic Acids from Alkynes and Formic Acid by Nickelâ€Catalyzed Cascade Reactions: Facile Synthesis of Profens. Angewandte Chemie - International Edition, 2022, 61, . Palladiumâ€Catalyzed Carbonylative Synthesis of 1â€Acylâ€1,5â€dihydroâ€2 H â€pyrrolâ€2â€ones from Proparg	13.8 1.8 6.2 13.8 yl Amines	37 1 7 22 2
 213 214 215 216 217 218 	Divergent Aminocarbonylations of Alkynes Enabled by Photoredox/Nickel Dual Catalysis. Angewandte Chemie - International Edition, 2021, 60, 26511-26517. Palladium-catalyzed carbonylation of propargyl diols with primary amines for the synthesis of functionalized acids. Journal of Organometallic Chemistry, 2021, 956, 122115. Iron-catalyzed hydroaminocarbonylation of alkynes to produce succinimides with NH4HCO3. Journal of Catalysis, 2021, 404, 224-230. Enantioselective Synthesis of Chiral Carboxylic Acids from Alkynes and Formic Acid by Nickelâ€Catalyzed Cascade Reactions: Facile Synthesis of Profens. Angewandte Chemie - International Edition, 2022, 61, . Palladiumâ€Catalyzed Carbonylative Synthesis of 1â€Acylâ€1,5â€dihydroâ€2 H â€pyrrolâ€2â€ones from Proparg and Acid Chlorides. ChemistrySelect, 2021, 6, 12220-12223. A palladium iodide catalyzed regioselective carbonylative route to isocoumarin and thienopyranone carboxylic esters. Journal of Catalysis, 2022, 405, 164-182.	13.8 1.8 6.2 13.8 yl _{1.5} mines 6.2	 37 1 7 22 2 9

#	Article	IF	CITATIONS
220	Heterogeneous copper-catalyzed synthesis of diaryl sulfones. Organic and Biomolecular Chemistry, 2021, 19, 10662-10668.	2.8	8
222	Recent Advances in Visible-Light-Mediated Amide Synthesis. Molecules, 2022, 27, 517.	3.8	29
223	Synthesis of unprotected glyco-alkynones via molybdenum-catalyzed carbonylative Sonogashira cross-coupling reaction. RSC Advances, 2022, 12, 2145-2149.	3.6	3
224	Palladium-catalyzed tandem hydrocarbonylative cycloaddition for expedient construction of bridged lactones. Organic Chemistry Frontiers, 2022, 9, 715-719.	4.5	4
226	Copper-catalyzed thiocarbonylation and thiolation of alkyl iodides. Organic and Biomolecular Chemistry, 2022, 20, 1186-1190.	2.8	4
227	<i>In Silico</i> Investigation of Ligand-Regulated Palladium-Catalyzed Formic Acid Dehydrative Decomposition under Acidic Conditions. Organometallics, 2022, 41, 246-258.	2.3	3
228	Iron-catalyzed hydroaminocarbonylation of alkynes: Selective and efficient synthesis of primary α,β-unsaturated amides. Chinese Chemical Letters, 2022, 33, 4842-4845.	9.0	18
229	Palladium-Catalyzed Carbonylative Sonogashira/Annulation Reaction: Synthesis of Indolo[1,2- <i>b</i>]isoquinolines. Organic Letters, 2022, 24, 1201-1206.	4.6	10
230	In-situ Formed Surface Complexes Promoting NIR-Light-Driven Carbonylation of Diamine with CO on Ultrathin Co2CO3(OH)2 Nanosheets. Applied Catalysis B: Environmental, 2022, 306, 121103.	20.2	6
231	Ruthenium pincer complex-catalyzed heterocycle compatible alkoxycarbonylation of alkyl iodides: substrate keeps the catalyst active. Chemical Science, 2022, 13, 2481-2486.	7.4	8
232	Additive-Controlled Divergent Synthesis of Indole and 4H-Benzo[d][1,3]oxazine Derivatives: Palladium-Catalyzed Carbonylative Cyclization of 2-Alkynylanilines and Benzyl Chlorides. Journal of Organic Chemistry, 2022, , .	3.2	3
233	Feeding Carbonylation with CO ₂ via the Synergy of Single-Site/Nanocluster Catalysts in a Photosensitizing MOF. Journal of the American Chemical Society, 2021, 143, 20792-20801.	13.7	91
234	Nickel-catalyzed alkoxycarbonylation of aryl iodides with 1 atm CO. Chemical Communications, 2022, 58, 4643-4646.	4.1	18
235	Palladium-catalyzed cascade Heck-type cyclization and reductive aminocarbonylation for the synthesis of functionalized amides. Organic and Biomolecular Chemistry, 2022, 20, 2605-2608.	2.8	7
236	Palladium-catalyzed reductive desulfonative aminocarbonylation of benzylsulfonyl chlorides with nitroarenes towards arylacetamides. Organic Chemistry Frontiers, 2022, 9, 2079-2083.	4.5	9
237	Catalyst-controlled selective borocarbonylation of benzylidenecyclopropanes: regiodivergent synthesis of γ-vinylboryl ketones and β-cyclopropylboryl ketones. Chemical Science, 2022, 13, 4321-4326.	7.4	15
238	Nickel-catalyzed carbonylative domino cyclization of arylboronic acid pinacol esters with 2-alkynyl nitroarenes toward <i>N</i> -aroyl indoles. Organic Chemistry Frontiers, 2022, 9, 2685-2689.	4.5	12
239	Copper atalyzed Substrate ontrolled Carbonylative Synthesis of αâ€Keto Amides and Amides from Alkyl Halides. Angewandte Chemie - International Edition, 2022, 61,	13.8	27

#	Article	IF	CITATIONS
240	Copper atalyzed Substrate ontrolled Carbonylative Synthesis of αâ€Keto Amides and Amides from Alkyl Halides. Angewandte Chemie, 2022, 134, .	2.0	6
241	Rapid Access to Multisubstituted Acrylamides from Cyclic Ketones via Palladium/Norbornene Cooperative Catalysis. Angewandte Chemie - International Edition, 2022, 61, .	13.8	3
242	Rapid Access to Multisubstituted Acrylamides from Cyclic Ketones via Palladium/Norbornene Cooperative Catalysis. Angewandte Chemie, 2022, 134, .	2.0	0
243	Copper-catalyzed carbonylative catenation of olefins: Direct synthesis of Î ³ -boryl esters. CheM, 2022, 8, 1982-1992.	11.7	18
244	Palladium-Catalyzed Reductive Aminocarbonylation of <i>o</i> -lodophenol-Derived Allyl Ethers with <i>o</i> -Nitrobenzaldehydes to 3-Alkenylquinolin-2(1 <i>H</i>)-ones. Organic Letters, 2022, 24, 2248-2252.	4.6	4
245	Reinvestigation of Methoxyâ€methoxycarbonylation of Monosubstituted Allenes. ChemistrySelect, 2022, 7, .	1.5	0
246	Nickel-Catalyzed Carbonylation of Cyclopropanol with Benzyl Bromide for Multisubstituted Cyclopentenone Synthesis. Organic Letters, 2022, 24, 2699-2704.	4.6	23
247	Cobaltâ€Catalyzed Direct Aminocarbonylation of Ethers: Efficient Access to αâ€Amide Substituted Ether Derivatives. Angewandte Chemie - International Edition, 2022, , .	13.8	11
248	Supported palladium-catalyzed carbonylative cyclization of 2-bromonitrobenzenes and alkynes to access quinolin-4(1H)-ones. Journal of Catalysis, 2022, 408, 81-87.	6.2	11
249	Cobaltâ€Catalyzed Direct Aminocarbonylation of Ethers: Efficient Access to αâ€Amide Substituted Ether Derivatives. Angewandte Chemie, 2022, 134, .	2.0	3
250	Construction of abundant Co3O4/Co(OH)2 heterointerfaces as air electrocatalyst for flexible all-solid-state zinc-air batteries. Electrochimica Acta, 2022, 413, 140158.	5.2	15
251	Palladiumâ€Catalyzed Carbamoylâ€Carbamoylation/ Carboxylation/Thioesterification of Alkeneâ€Tethered Carbamoyl Chlorides Using Mo(CO) ₆ as the Carbonyl Source. Advanced Synthesis and Catalysis, 2022, 364, 794-801.	4.3	6
252	Dual Roles of Co ₂ (CO) ₈ Enable Carbonylative Ring Expansion of Thietane under Ambient CO Pressure. ChemistrySelect, 2021, 6, 13964-13968.	1.5	2
253	Palladium-Catalyzed Four-Component Cascade Imidoyl-Carbamoylation of Unactivated Alkenes. ACS Catalysis, 2022, 12, 837-845.	11.2	24
254	Palladium-Catalyzed Carbonylative Synthesis of Aryl Selenoesters Using Formic Acid as an <i>Ex Situ</i> CO Source. Journal of Organic Chemistry, 2022, 87, 595-605.	3.2	11
255	Mn-Mediated α-Radical Addition of Carbonyls to Olefins: Systematic Study, Scope, and Electrocatalysis. Journal of Organic Chemistry, 2022, 87, 5690-5702.	3.2	6
257	Palladium-Catalyzed Asymmetric Dearomative Carbonylation of Indoles. Organic Letters, 2022, 24, 3033-3037.	4.6	18
258	Palladium-catalyzed aminocarbonylative cyclization of benzyl chlorides with 2-nitroaryl alkynes to construct indole derivatives. Molecular Catalysis, 2022, 524, 112302.	2.0	2

		CITATION REPORT		
#	Article		IF	CITATIONS
259	Palladium-Catalyzed Aminocarbonylation of Aryl Halides. Current Organic Synthesis, 20	23, 20, 308-331.	1.3	2
260	Synthesis of Benzothiophene-3-carboxylic Esters by Palladium Iodide-Catalyzed Oxidativ Cyclization–Deprotection–Alkoxycarbonylation Sequence under Aerobic Condition Organic Chemistry, 2023, 88, 5180-5186.	ve s. Journal of	3.2	9
261	Palladium atalyzed Carbonylative Cross oupling of Aryl Iodides and Alkenyl Bromi Halides under Reductive Conditions. Asian Journal of Organic Chemistry, 2022, 11, .	ides with Benzyl	2.7	4
262	Revisiting Nickel-Catalyzed Carbonylations: (Unexpected) Observation of Substrate-Dep Mechanistic Differences. Organometallics, 2022, 41, 1184-1196.	pendent	2.3	2
263	Recyclable palladium-catalyzed cyclocarbonylation between benzyl chlorides and salicyl towards coumarins. Molecular Catalysis, 2022, 526, 112404.	ic aldehydes	2.0	1
264	Visible-light-induced defluorinative carbonylative coupling of alkyl iodides with α-trifluo substituted styrenes. Organic and Biomolecular Chemistry, 2022, 20, 5264-5269.	romethyl	2.8	2
265	Catalytic metal-enabled story of isocyanides for use as "C1N1―synthons in cycliza chemistry. Organic Chemistry Frontiers, 2022, 9, 4209-4220.	tion: beyond radical	4.5	10
266	Transition metal-catalysed carbene- and nitrene transfer to carbon monoxide and isocya Chemical Society Reviews, 2022, 51, 5842-5877.	anides.	38.1	23
267	Metal-Free N–H/C–H Carbonylation by Phenyl Isocyanate: Divergent Synthesis of Si <i>N</i> -Heterocycles. Journal of Organic Chemistry, 2022, 87, 8719-8729.	x-Membered	3.2	7
268	Palladium-Catalyzed Regio- and Stereoselective Hydroaminocarbonylation of Unsymmet Alkynes toward α,β-Unsaturated Amides. Organic Letters, 2022, 24, 4464-4469.	trical Internal	4.6	9
269	Recent Advance of Ketones Synthesis from Carboxylic Esters. Chinese Journal of Organi 2022, 42, 1626.	c Chemistry,	1.3	0
270	An Update on Oxidative C–H Carbonylation with CO. ACS Catalysis, 2022, 12, 7470-7	7485.	11.2	32
271	Visible light-induced perfluoroalkylative carbonylation of unactivated alkenes. Journal of 2022, 413, 214-220.	⁻ Catalysis,	6.2	14
272	Palladium Catalyzed Dicarbonylation of α-lodo-Substituted Alkylidenecyclopropanes: Sy Carbamoyl Substituted Indenones. Organic Letters, 2022, 24, 5624-5628.	ynthesis of	4.6	7
273	Carbonylative Crossâ €Coupling Reaction of Allylic Alcohols and Organoalanes with 1 at by Nickel Catalysis. Angewandte Chemie, 0, , .	m CO Enabled	2.0	0
274	Copper-catalyzed synthesis of cyclopropyl bis(boronates) from aryl olefins and carbon r Organic Chemistry Frontiers, 2022, 9, 4943-4948.	nonoxide.	4.5	9
275	Palladium-Catalyzed Carbonylative [5+1] Cycloaddition of <i>N</i> -Tosyl Vinylaziridines Solvent-Controlled Divergent Synthesis of α,β- and β,γ-Unsaturated δ-Lactams. Journa Chemistry, 2022, 87, 10408-10415.	s: l of Organic	3.2	4
276	Dearomative Aminocarbonylation of Arenes via Bifunctional Coordination to Chromium Chemie, 2022, 134, .	. Angewandte	2.0	4

#	Article	IF	CITATIONS
277	Dearomative Aminocarbonylation of Arenes via Bifunctional Coordination to Chromium. Angewandte Chemie - International Edition, 2022, 61, .	13.8	10
278	Carbonylative Cross oupling Reaction of Allylic Alcohols and Organoalanes with 1â€atm CO Enabled by Nickel Catalysis. Angewandte Chemie - International Edition, 2022, 61, .	13.8	12
279	Palladium-Catalyzed Synthesis of Esters from Arenes through C–H Thianthrenation. Organic Letters, 2022, 24, 6031-6036.	4.6	8
280	Activated carbon fibers supported palladium as efficient and easy-separable catalyst for carbonylative cyclization of o-alkynylphenols with nitroarenes: Facile construction of benzofuran-3-carboxamides. Journal of Catalysis, 2022, 413, 713-719.	6.2	8
281	Palladium-catalyzed domino carbonylative cyclization to access functionalized heterocycles. Journal of Catalysis, 2022, 414, 313-318.	6.2	6
282	Cobalt-catalyzed alkoxycarbonylation of ethers: Direct synthesis of α-oxy esters from phenols and alcohols. Journal of Catalysis, 2022, 414, 84-89.	6.2	1
283	Palladium-catalyzed desulfonylative aminocarbonylation of benzylsulfonyl chlorides with <i>o</i> -aminobenzaldehydes/ <i>o</i> -aminoacetophenones for the synthesis of quinoin-2(1 <i>H</i>)-ones. Organic Chemistry Frontiers, 2022, 9, 6223-6228.	4.5	1
284	Direct conversion of glyceric acid to succinic acid by reductive carbonylation. Green Chemistry, 2022, 24, 7644-7651.	9.0	2
285	Palladium-catalyzed difluoroalkylative carbonylation of styrenes toward difluoropentanedioates. Chemical Science, 2022, 13, 9387-9391.	7.4	12
286	Palladium-catalyzed carbonylative synthesis of indole-3-carboxamides from 2-ethynylanilines and nitroarenes. Organic Chemistry Frontiers, 2022, 9, 5219-5224.	4.5	4
287	Palladium-catalyzed regio- and stereoselective alkoxycarbonylation of unsymmetrical internal alkynes toward α, β-unsaturated succinates. , 2022, 3, 100029.		3
288	Palladium-Catalyzed Perfluoroalkylative Carbonylation of 2-Allylaryl Trifluoromethanesulfonates: Base-Controlled Selective Access to β-Perfluoroalkyl Amides. Organic Letters, 2022, 24, 6845-6850.	4.6	10
289	Nonâ€Noble Metal atalyzed Carbonylative Multi omponent Reactions. Chemistry - an Asian Journal, 2022, 17, .	3.3	16
290	Enantioselective Nickelâ€Catalyzed C(sp ³)â^'H Activation of Formamides. Angewandte Chemie - International Edition, 0, , .	13.8	10
291	Copperâ€Catalyzed Boroaminomethylation of Olefins to <i>γ</i> â€Boryl Amines with CO as C1 Source. Angewandte Chemie - International Edition, 2022, 61, .	13.8	8
292	Convenient Synthesis of <scp>Thioesterâ€Substituted</scp> Oxindoles by <scp>Palladiumâ€Catalyzed</scp> Thiocarbonylative Cyclization with Sulfonyl Chlorides as the Sulfur Source. Chinese Journal of Chemistry, 2023, 41, 188-192.	4.9	3
293	Enantioselective Nickel atalyzed C(sp ³)â^'H Activation of Formamides. Angewandte Chemie, 0, , .	2.0	0
294	Ironâ€Catalyzed Alkoxycarbonylation of Alkyl Bromides via a Twoâ€Electron Transfer Process. Angewandte Chemie - International Edition, 2022, 61, .	13.8	15

#	Article	IF	CITATIONS
295	Copper atalyzed Boroaminomethylation of Olefins to γâ€Boryl Amines with CO as C1 Source. Angewandte Chemie, 0, , .	2.0	0
296	Ironâ€Catalyzed Alkoxycarbonylation of Alkyl Bromides via a Twoâ€Electron Transfer Process. Angewandte Chemie, 2022, 134, .	2.0	1
297	Palladium-catalyzed carbonylative cyclization of alkene-tethered indoles with phenols or arylboronic acids: Construction of carbonyl-containing indolo[2,1-a]isoquinoline derivatives. Chinese Chemical Letters, 2023, 34, 107873.	9.0	1
298	Recent advances in Cu-catalyzed carbonylation with CO. Organic Chemistry Frontiers, 2022, 9, 6749-6765.	4.5	7
299	Zn-Catalyzed Regioselective and Chemoselective Reduction of Aldehydes, Ketones and Imines. International Journal of Molecular Sciences, 2022, 23, 12679.	4.1	4
300	Electrochemical Metal atalyzed Azidoesterification of Alkenes. European Journal of Organic Chemistry, 0, , .	2.4	1
301	Recent Advances in Alkenyl sp ² C–H and C–F Bond Functionalizations: Scope, Mechanism, and Applications. Chemical Reviews, 2022, 122, 17479-17646.	47.7	78
302	Recyclable Palladium-Catalyzed Carbonylative Cyclization of Aryl Iodides and 2-Hydroxyacetophenones towards Flavones. Synthesis, 0, , .	2.3	1
303	A review on photo-, electro- and photoelectro- catalytic strategies for selective oxidation of alcohols. Journal of Energy Chemistry, 2023, 77, 80-118.	12.9	42
304	Visible-light-driven carbonylation reaction over palladium supported on spherical-like graphitic carbon nitride. Molecular Catalysis, 2022, 532, 112736.	2.0	1
305	The lower the better: Efficient carbonylative reactions under atmospheric pressure of carbon monoxide. Coordination Chemistry Reviews, 2023, 475, 214900.	18.8	15
306	Rh-catalyzed alkoxycarbonylation of unactivated alkyl chlorides. Chemical Science, 2022, 13, 13459-13465.	7.4	4
307	Nickel atalyzed Aminocarbonylation of Aryl Iodides with 1 atm CO. Chemistry - an Asian Journal, 2023, 18, .	3.3	3
308	Palladium-Catalyzed Chemodivergent Carbonylation of <i>ortho-</i> Bromoarylimine to Biisoindolinones and Spiroisoindolinones. Journal of Organic Chemistry, 0, , .	3.2	4
309	Carbonylative Cross-Electrophile Coupling between Aryl Bromides and Aryl Triflates Enabled by Palladium and Rhodium Cooperative Catalysis and CO as Reductant. ACS Catalysis, 2022, 12, 14582-14591.	11.2	5
310	Highly Active Rh Catalysts with Strong π-Acceptor Phosphine-Containing Porous Organic Polymers for Alkene Hydroformylation. Journal of Organic Chemistry, 2023, 88, 5059-5068.	3.2	5
311	Rhodium-catalyzed aminoacylation of alkenes via carbonylative C–H activation toward poly(hetero)cyclic alkylarylketones. Organic Chemistry Frontiers, 0, , .	4.5	0
312	Efficient Synthesis of Novel Plasticizers by Direct Palladiumâ€Catalyzed Di―or Multiâ€carbonylations. Angewandte Chemie - International Edition, 2023, 62, .	13.8	10

#	Article	IF	CITATIONS
313	Direct C–H Radiocyanation of Arenes via Organic Photoredox Catalysis. Organic Letters, 2022, 24, 9316-9321.	4.6	8
314	Difluoroalkylative carbonylation of alkenes to access carbonyl difluoro-containing heterocycles: convenient synthesis of gemigliptin. Science China Chemistry, 2023, 66, 139-146.	8.2	7
315	Ni-Catalyzed Enantioselective Hydrofunctionalizations of 1,3-Dienes. ACS Catalysis, 2022, 12, 15638-15647.	11.2	18
316	Efficient Synthesis of Novel Plasticizers by Direct Palladiumâ€Catalyzed Di―or Multi arbonylations. Angewandte Chemie, 2023, 135, .	2.0	1
317	Palladium-Catalyzed Asymmetric C–C Bond Activation/Carbonylation of Cyclobutanones. Organic Letters, 2022, 24, 9157-9162.	4.6	7
318	Palladium-Mediated Synthesis of [Carbonyl- ¹¹ C]acyl Amidines from Aryl Iodides and Aryl Bromides and Their One-Pot Cyclization to ¹¹ C-Labeled Oxadiazoles. Journal of Organic Chemistry, 0, , .	3.2	0
319	Palladium-catalyzed alkyne hydrocarbonylation under atmospheric pressure of carbon monoxide in the presence of hydrosilane. Green Chemistry, 2023, 25, 1120-1127.	9.0	5
320	Ligand-Free Palladium-Catalyzed Substoichiometric Base ÂMediated Carbonylation of Aryl Iodides with Alkenylboronic Acids under Ambient Conditions. Synlett, 2023, 34, 1280-1284.	1.8	1
321	Recent advances in nickel catalyzed Suzuki-Miyaura cross coupling reaction via C-O& C-N bond activation. Sustainable Chemistry and Pharmacy, 2023, 32, 100953.	3.3	4
322	A Visible Light Driven Nickel Carbonylation Catalyst: The Synthesis of Acid Chlorides from Alkyl Halides. Angewandte Chemie - International Edition, 2023, 62, .	13.8	13
323	A Visible Light Driven Nickel Carbonylation Catalyst: The Synthesis of Acid Chlorides from Alkyl Halides. Angewandte Chemie, 2023, 135, .	2.0	1
324	Palladium-Catalyzed Regioselective Carbonylation of 2-Trifluoromethyl-1,3-enynes to Multisubstituted Conjugated Dienes. Organic Letters, 2023, 25, 682-687.	4.6	5
325	Current-controlled nickel-catalyzed multi-electrophile electroreductive cross-coupling. Green Chemistry, 2023, 25, 1522-1529.	9.0	5
326	Palladium-Catalyzed Carbonylative Synthesis of Amide-Containing Indolo[2,1- <i>a</i>]isoquinolines from Alkene-Tethered Indoles and Nitroarenes. Organic Letters, 2023, 25, 821-825.	4.6	6
327	Sustainable Production of Emerging Diesel Additive from Butene by Palladium-Catalyzed Alkoxycarbonylation. ACS Sustainable Chemistry and Engineering, 2023, 11, 1837-1845.	6.7	3
328	Palladium-catalyzed four-component cascade carbonylative cyclization to access carbonyl-bridged bisheterocycles. Organic Chemistry Frontiers, 2023, 10, 1289-1295.	4.5	9
329	Catalysts for Carbonylation of Alcohols to Obtain Carboxylic Acids and Esters. Russian Journal of Applied Chemistry, 2022, 95, 1085-1106.	0.5	2
330	Visible light-induced cascade <i>N</i> -alkylation/amidation reaction of quinazolin-4(3 <i>H</i>)-ones and related N-heterocycles. Organic and Biomolecular Chemistry, 2023, 21, 2423-2428.	2.8	1

ARTICLE IF CITATIONS # Synthesis of α-CF₃ Amides via Palladium-Catalyzed Carbonylation of 331 3.5 3 2-Bromo-3,3,3-trifluoropropene. ACS Omega, 2023, 8, 7128-7134. Nickel-Catalyzed Carbonylative Coupling of Alkylzinc Reagents and α-Bromo-α,α-difluoroacetamides. 1.8 Synlett, 0, , . Abundant metal-catalyzed carbonylation of alkyl bromides and alkyl chlorides. Organic Chemistry 333 4.53 Frontiers, 2023, 10, 1587-1591. Ligand-Promoted Bifunctional Cobalt-Catalyzed Carbonylation-Polymerization of Epoxides: One Step 334 11.2 to Polyhydroxyalkanoates. ACS Catalysis, 2023, 13, 3317-3322. Mechanism and origins of ligand-controlled regioselectivity of copper-catalyzed borocarbonylation of imines with B₂pin₂ and alkyl iodides: a computational study. Organic 335 4.5 0 Chemistry Frontiers, 2023, 10, 2024-2032. Homogeneous Catalysis for the Conversion of CO₂, CO, CH₃OH, and CH₄ to C₂₊ Chemicals via C–C Bond Formation. ACS Catalysis, 2023, 13, 11.2 4231-4249. Copper-Catalyzed Direct Carbonylation of Carbenes toward the Synthesis of Propanedioic Acid 337 4.6 4 Derivatives. Órganic Letters, 2023, 25, 1963-1968. Palladium atalyzed Direct Carbonylation of Bromoacetonitrile to Synthesize 338 2.0 2â€Cyanoâ€<i>N</i>â€acetamide and 2â€Cyanoacetate Compounds. Angewandte Chemie, 2023, 135, . Palladiumâ€Catalvzed Direct Carbonvlation of Bromoacetonitrile to Svnthesize 339 2â€Cyanoâ€<i>N</i>>â€acetamide and 2â€Cyanoacetate Compounds. Angewandte Chemie - International Edition, 13.8 5 2023, 62, . SET or TET? Iron-catalyzed aminocarbonylation of unactivated alkyl halides with amines, amides, and 340 14.0 indoles via a substrate dependent mechanism. Chinese Journal of Catalysis, 2023, 47, 121-128. Mechanistic insights and computational design of Cu/M bimetallic synergistic catalysts for Suzuki-Miyaura coupling of arylboronic esters with alkyl halides. Molecular Catalysis, 2023, 541, 341 2 2.0 113098. Nickel-catalyzed divergent formylation and carboxylation of aryl halides with isocyanides. Organic 342 2.8 and Biomolécular Chemistry, 2023, 21, 3360-3364. Modern Strategies for Carbon Isotope Exchange. Angewandte Chemie - International Edition, 2023, 62, . 343 13.8 8 Modern Strategies for Carbon Isotope Exchange. Angewandte Chemie, 0, , . 344 Intermolecular Dearomative 1,2â€Amination/Carbonylation via Nucleophilic Addition of Simple Amines to 345 2 3.3 Arene πâ€Bonds. Chemistry - A European Journal, 2023, 29, . Cobalt-Catalyzed Multicomponent Carbonylation of Olefins: Efficient Synthesis of Î2-Perfluoroalkyl 346 11.2 Imides, Amides, and Esters. ACS Catalysis, 2023, 13, 6744-6753. Nickel-Catalyzed Highly Selective Reductive Carbonylation Using Oxalyl Chloride as the Carbonyl 347 11.2 4 Source. ACS Catalysis, 2023, 13, 8161-8168. A Pdâ€"Sn heterobimetallic catalyst for carbonylative Suzuki, Sonogashira and aminocarbonylation 348 reactions using chloroform as a ĆO surrogate. Organic and Biomolecular Chemistry, 2023, 21, 2.8 5601-5608.

#	Article	IF	CITATIONS
349	Palladium atalyzed Carbonylative Difunctionalization of Unactivated Alkenes Initiated by Unstabilized Enolates. Angewandte Chemie, 2023, 135, .	2.0	0
350	Palladium atalyzed Carbonylative Difunctionalization of Unactivated Alkenes Initiated by Unstabilized Enolates. Angewandte Chemie - International Edition, 2023, 62, .	13.8	0
351	Radical bicyclization of 1,6-enynes with sulfonyl hydrazides by the use of TBAI/TBHP in the aqueous phase. Chemical Communications, 2023, 59, 6391-6394.	4.1	10
352	Phosphine-catalyzed photo-induced alkoxycarbonylation of alkyl iodides with phenols and 1,4-dioxane through charge-transfer complex. Chinese Journal of Catalysis, 2023, 48, 214-223.	14.0	2
353	Transition-Metal-Catalyzed C–H Bond Activation for the Formation of C–C Bonds in Complex Molecules. Chemical Reviews, 2023, 123, 7692-7760.	47.7	39
354	Carbonylative Synthesis of Fused Quinoxalinones via Palladium-Catalyzed Cascade Cyclization of 2-Heteroaryl Iodobenzene and NaN ₃ . Organic Letters, 2023, 25, 3984-3988.	4.6	0
355	Facile Endâ€Functionalization of Poly(Quinolyleneâ€2,3â€Methylene) Using the Terminal Palladium Complex: Thiocarbonylation through Formation of an Acyl Palladium Complex at the Polymer Terminal. Macromolecular Rapid Communications, 2023, 44, .	3.9	1
356	From intramolecular cyclization to intermolecular hydrolysis: TMSCF ₂ Br-enabled carbonylation of aldehydes/ketones and amines to α-hydroxyamides. Organic Chemistry Frontiers, 2023, 10, 5343-5351.	4.5	2
357	<scp>Palladium atalyzed</scp> Carbonylation of Multifunctionalized Substituted Alkynes to Quinolinone Derivatives under Mild Conditions ^{â€} . Chinese Journal of Chemistry, 2023, 41, 3223-3228.	4.9	0
358	Unlocking full and fast conversion in photocatalytic carbon dioxide reduction for applications in radio-carbonylation. Nature Communications, 2023, 14, .	12.8	6
359	Recent Advances in <scp>Baseâ€Metal atalyzed</scp> Carbonylation of Unactivated Alkyl Electrophiles ^{â€} . Chinese Journal of Chemistry, 2023, 41, 3419-3432.	4.9	3
360	Synthesis of 4Hâ€Indazolâ€4â€ones and Fused Pyrazoles via Copperâ€Catalyzed Annulation of Hydrazones with Cyclic Enones. Asian Journal of Organic Chemistry, 0, , .	2.7	0
361	Palladium-Catalyzed Carbonylative Dearomatization of Indoles to Achieve Carbonyl-Containing Spirocyclic Indolenines Bearing an All-Carbon Quaternary Center. Organic Letters, 2023, 25, 5951-5956.	4.6	1
362	One metal two tasks: Reentering the catalytic ending PdII-H for the relay-catalytic cycle for dicarbonylation of amines. Journal of Catalysis, 2023, 426, 368-375.	6.2	1
363	Polyhaloalkanes as the C1 source: radical-mediated migratory carbonylation of alkenes with polyhaloalkanes toward α,β-unsaturated carbonyls. Organic Chemistry Frontiers, 2023, 10, 4670-4678.	4.5	3
364	Palladium-catalyzed Heck-carbonylation of alkene-tethered carbamoyl chlorides with aryl formates. Organic and Biomolecular Chemistry, 0, , .	2.8	0
365	Palladium-catalyzed carbonylative synthesis of carboxamide substituted 2-pynones from methyl enynoates and nitroarenes. Journal of Catalysis, 2023, 427, 115095.	6.2	1
366	Palladium-catalyzed carbonylation of activated alkyl halides <i>via</i> radical intermediates. , 0, , .		1

#	Article	IF	CITATIONS
367	Photoinduced Five omponent Radical Relay Aminocarbonylation of Alkenes. Angewandte Chemie, 2023, 135, .	2.0	0
368	Iron-catalysed highly selective hydroalkoxycarbonylation of alkynes using CO as C1 source. Catalysis Science and Technology, 2023, 13, 5549-5555.	4.1	0
369	Photoâ€Induced Carbonylation of Aryl Bromides for the Synthesis of Aryl Esters and Amides Under Transition Metalâ€Free Conditions. Chemistry - an Asian Journal, 0, , .	3.3	0
370	Pdâ€catalyzed Threeâ€component Crossâ€coupling of Arylhydrazides with Arylboronic Acids and TFBen: Facile Access to Diaryl Ketones via Denitrogenative Carbonylation. Asian Journal of Organic Chemistry, 2023, 12, .	2.7	1
371	Review on catalytic significance of 3d-transition metal-carbonyl complexes for general and selective organic reactions. Inorganic Chemistry Communication, 2023, 158, 111488.	3.9	0
372	Aluminum-Containing Heterobimetallic Complexes as Versatile Platforms for Homogeneous Catalysis. ACS Catalysis, 2023, 13, 12519-12542.	11.2	1
373	Palladium Iodide Catalyzed Multicomponent Carbonylative Synthesis of 2-(4-Acylfuran-2-yl)acetamides. Molecules, 2023, 28, 6764.	3.8	0
374	Photoâ€ŧhermal Cooperative Carbonylation of Ethanol with CO ₂ on Cu ₂ O‣rTiCuO _{3â€x} . Angewandte Chemie - International Edition, 2023, 62, .	13.8	0
375	Photoâ€ŧhermal Cooperative Carbonylation of Ethanol with CO ₂ on Cu ₂ O‣rTiCuO _{3â€x} . Angewandte Chemie, 2023, 135, .	2.0	0
376	Electrochemical Oxidative Carbonylation of <i>N</i> H-Sulfoximines. Organic Letters, 2023, 25, 7529-7534.	4.6	0
377	Photoinduced Five omponent Radical Relay Aminocarbonylation of Alkenes. Angewandte Chemie - International Edition, 2023, 62, .	13.8	6
378	Co(II), Ni(II), Cu(II) and Zn(II) complexes of 1,8-naphthalimide-based ligand: syntheses, characterizations and evaluation of antibacterial activities. Journal of Coordination Chemistry, 2023, 76, 1586-1603.	2.2	0
379	Highly selective and recyclable homogeneous hydroformylation of olefins with [Rh(cod)Cl]2/PPh3 regulated by Et3N as additive. Molecular Catalysis, 2023, 548, 113459.	2.0	0
380	Recent Advances in Nickel Catalyzed Carbonylative Reactions <i>via</i> the Insertion of Carbon Monoxide ^{â€} . Chinese Journal of Chemistry, 2024, 42, 177-189.	4.9	4
381	Carbon Monoxide as <scp>C1</scp> Building Block in Fine Chemical Synthesis ^{â€} . Chinese Journal of Chemistry, 2024, 42, 199-221.	4.9	0
382	Palladium-catalyzed cyclization/carbonylation of iodoarene-tethered propargyl ethers with nitroarenes for the synthesis of acetamides-functionalized benzofurans. Journal of Catalysis, 2023, 428, 115166.	6.2	1
383	Carbonylative Transformations Using a DMAP-Based Pd-Catalyst through Ex Situ CO Generation. Journal of Organic Chemistry, 0, , .	3.2	0
384	Palladium-catalyzed tandem carbonylative synthesis of indeno[1,2-b]indol-10(5H)-one scaffolds from 2-alkynylanilines. Journal of Catalysis, 2023, 428, 115199.	6.2	0

		CITATION REPORT		
#	ARTICLE	5 906-919	١F	Citations
380	Radical strategies for chemodivergent cyclization reactions. Trends in chemistry, 2025	, 3, 900-919.	8.5	0
386	Transforming carbon dioxide and carbon monoxide into value-added products: boracar boracarbonylation. Catalysis Science and Technology, 2023, 13, 6878-6902.	boxylation and	4.1	0
387	Photoinduced copper-catalyzed alkoxyl radical-triggered ring-expansion/aminocarbony Chinese Chemical Letters, 2023, , 109263.	lation cascade.	9.0	0
388	Regiodivergent Carbonylation of Alkenes: Selective Palladiumâ€Catalyzed Synthesis of Branched Selenoesters. Angewandte Chemie - International Edition, 0, , .	Linear and	13.8	0
389	Functional-Group-Tolerant Pd-Catalyzed Carbonylative Negishi Coupling with Aryl Iodic Organic Chemistry, 2023, 88, 16633-16638.	les. Journal of	3.2	0
390	Cobalt-catalyzed aminoalkylative carbonylation of alkenes toward direct synthesis of $\hat{I}^{\hat{s}}$ derivatives and peptides. Nature Communications, 2023, 14, .	-amino acid	12.8	2
391	Visible light-induced manganese-catalyzed aminocarbonylation of alkyl iodides under a pressure at room temperature. Organic Chemistry Frontiers, 0, , .	tmospheric	4.5	1
392	<scp>Nickel atalyzed</scp> Regiodivergent Acylzincation of Styrenes with Organo <scp>CO</scp> ^{â€} . Chinese Journal of Chemistry, 2024, 42, 599-604.	zincs and	4.9	1
393	Regiodivergent Carbonylation of Alkenes: Selective Palladiumâ€Catalyzed Synthesis of Branched Selenoesters. Angewandte Chemie, 0, , .	Linear and	2.0	0
394	Carbonylation of α-Aminoalkyl radicals to the direct synthesis of α-Amino acid derivat Catalysis, 2023, 428, 115193.	ives. Journal of	6.2	0
395	Nickel-Catalyzed Enantioselective Hydrothiocarbonylation of Cyclopropenes. Organic I 25, 8683-8687.	.etters, 2023,	4.6	1
396	Deconstructive Carboxylation of Activated Alkenes with Carbon Dioxide. Angewandte 136, .	Chemie, 2024,	2.0	0
397	Deconstructive Carboxylation of Activated Alkenes with Carbon Dioxide. Angewandte International Edition, 2024, 63, .	Chemie -	13.8	0
398	Copper-catalyzed trichloromethylative carbonylation of ethylene. Chemical Science, 20)24, 15, 1418-1423.	7.4	Ο
399	Palladium atalyzed Oxidative Carbonylation of Diarylamines for the Synthesis of Ac Derivatives. Asian Journal of Organic Chemistry, 0, , .	ridone	2.7	0
400	Copper-Catalyzed Carbonylation Reactions: A Personal Account. Synthesis, 0, , .		2.3	0
401	Ruthenium-Catalyzed Carbonylation of α-Aminoaryl-Tethered Alkylidenecyclopropanes Eight-Membered Benzolactams. Organic Letters, 2024, 26, 231-235.	: Synthesis of	4.6	1
402	Palladium-catalyzed desulfonylative carbonylation reaction of benylsulfonyl chlorides w anthranils for the synthesis of 3-arylquinoin-2(1H)-ones. Journal of Catalysis, 2024, 429	vith 9, 115297.	6.2	0

#	Article	IF	CITATIONS
403	Generation and transformation of $\hat{l}\pm$ -oxy carbene intermediates enabled by copper-catalyzed carbonylation. , 2024, 2, 70-80.		0
404	Cobaltâ€Catalyzed Enantioselective Câ^'H Carbonylation towards Chiral Isoindolinones. Angewandte Chemie - International Edition, 2024, 63, .	13.8	1
405	Cobaltâ€Catalyzed Enantioselective Câ^'H Carbonylation towards Chiral Isoindolinones. Angewandte Chemie, 2024, 136, .	2.0	0
406	The tale of alkyl- and acylcobalt carbonyls. Journal of Organometallic Chemistry, 2024, 1007, 123029.	1.8	Ο
407	Direct synthesis of α,ω-dicarboxylic acids via dicarbonylation of cyclic ethers. Chinese Journal of Catalysis, 2024, 56, 122-129.	14.0	0
408	Palladium-catalyzed allylation and carbonylation: access to allylhydrazones and allyl acylhydrazones. Chemical Communications, 2024, 60, 1638-1641.	4.1	0
409	Development of ligand-free Pd@TiO2 catalyst for efficient perfluoroalkylative carbonylation of terminal alkenes. Journal of Catalysis, 2024, 430, 115298.	6.2	0
410	<scp>Visibleâ€Lightâ€Driven Fourâ€Component</scp> Radical Relay Aminocarbonylation of Unactivated Alkenes ^{â€} . Chinese Journal of Chemistry, 2024, 42, 990-996.	4.9	0
411	Electrochemical Cascade Cyclization of N entered Radicals with Electroâ€Deficient Alkynes. ChemCatChem, 2024, 16, .	3.7	0
412	Recent progress in stereoselective transformations enabled by thermally activated delayed fluorescence photocatalysts. Chem Catalysis, 2024, , 100915.	6.1	0
413	Pdâ€Catalyzed Synthesis of Aryl Esters Involving Difluorocarbene Transfer Carbonylation. European Journal of Organic Chemistry, 2024, 27, .	2.4	0
414	EtOS ₂ K as a C1 Source: Solvent- and Temperature-Controlled Selective Synthesis of Quinoline-2-thione and Quinoline-2-one Derivatives. Organic Letters, 2024, 26, 1985-1990.	4.6	0
415	Enhanced regioselectivity in propylene hydroformylation using Xantphos-modified single-atom Rh/CeO2 catalyst. Journal of Catalysis, 2024, 431, 115394.	6.2	0
416	Nickel/photoredox-catalyzed carbonylative transformations of α-phosphorus-, α-sulfur-, and α-boron-substituted alkyl halides. Organic Chemistry Frontiers, 2024, 11, 2297-2305.	4.5	0
417	Visible Light-Induced One-Pot Carbonylation of Alkyl Halides with Aryl Formates. Journal of Organic Chemistry, 2024, 89, 4205-4209.	3.2	0
419	Nickel-Catalyzed Carbonylative Negishi Cross-Coupling of Unactivated Secondary Alkyl Electrophiles with 1 atm CO Gas. Journal of the American Chemical Society, 2024, 146, 7971-7978.	13.7	0
420	Light-Driven Three-Component Carbonylation of Aryl Halides Using Abundant Metal Carbonyl. Organic Letters, 2024, 26, 2169-2174.	4.6	0
421	One-pot C–N/C–C bond formation and oxidation of donor–acceptor cyclopropanes with tetrahydroisoquinolines: access to benzo-fused indolizines. Chemical Communications, 2024, 60, 4068-4071.	4.1	0