Chemical and physical pretreatments of fruits and vege characteristics and quality attributes $\hat{a} \in \hat{a}$ comprehense

Critical Reviews in Food Science and Nutrition 59, 1408-1432 DOI: 10.1080/10408398.2017.1409192

Citation Report

#	Article	IF	CITATIONS
1	Combining osmotic–steam blanching with infrared–microwave–hot air drying: Production of dried lemon (<i>Citrus limon</i> L.) slices and enzyme inactivation. Drying Technology, 2018, 36, 1719-1737.	1.7	39
2	Pulsed vacuum drying enhances drying kinetics and quality of lemon slices. Journal of Food Engineering, 2018, 224, 129-138.	2.7	176
3	High humidity hot air impingement blanching (HHAIB) enhances drying rate and softens texture of apricot via cell wall pectin polysaccharides degradation and ultrastructure modification. Food Chemistry, 2018, 261, 292-300.	4.2	84
4	Effects of microwave blanching conditions on the quality of green asparagus (Asparagus officinalis) Tj ETQq1 1 C).784314 ı 1.5	rgBT /Overlo
5	The effect of freezing on the hot air and microwave vacuum drying kinetics and texture of whole cranberries. Drying Technology, 2019, 37, 1714-1730.	1.7	24
6	Effects of ultrasound, osmotic dehydration, and osmosonication pretreatments on bioactive compounds, chemical characterization, enzyme inactivation, color, and antioxidant activity of dried ginger slices. Journal of Food Biochemistry, 2019, 43, e12832.	1.2	73
7	Comparison of non-contact blanching and traditional blanching pretreatment in improving the product quality, bioactive compounds, and antioxidant capacity of vacuum-dehydrated apricot. Journal of Food Processing and Preservation, 2019, 43, e13890.	0.9	8
8	Thermal kinetics of enzyme inactivation, color changes, and allicin degradation of garlic under blanching treatments. Journal of Food Process Engineering, 2019, 42, e12991.	1.5	17
9	Fingerprinting study of tuber ultimate compressive strength at different microwave drying times using mid-infrared imaging spectroscopy. Drying Technology, 2019, 37, 1113-1130.	1.7	21
10	Safety, Quality, and Processing of Fruits and Vegetables. Foods, 2019, 8, 569.	1.9	13
11	Effect of high-humidity hot air impingement blanching (HHAIB) and drying parameters on drying characteristics and quality of broccoli florets. Drying Technology, 2019, 37, 1251-1264.	1.7	65
12	Convective air, microwave, and combined drying of potato pre-treated by pulsed electric fields. Drying Technology, 2019, 37, 1704-1713.	1.7	20
13	Pulsed vacuum drying of Chinese ginger (Zingiber officinale Roscoe) slices: Effects on drying characteristics, rehydration ratio, water holding capacity, and microstructure. Drying Technology, 2019, 37, 301-311.	1.7	63
14	On the effects of freeze-drying processes on the nutritional properties of foodstuff: A review. Drying Technology, 2020, 38, 846-868.	1.7	53
15	Nanotechnology – A shelf life extension strategy for fruits and vegetables. Critical Reviews in Food Science and Nutrition, 2020, 60, 1706-1721.	5.4	47
16	Multivariate analyses of the physicochemical properties of turnip (<i>Brassica rapa</i> L.) chips dried using different methods. Drying Technology, 2020, 38, 411-419.	1.7	16
17	Effect of gliding arc discharge plasma pretreatment on drying kinetic, energy consumption and physico-chemical properties of saffron (Crocus sativus L.). Journal of Food Engineering, 2020, 270, 109766.	2.7	43
18	Emerging chemical and physical disinfection technologies of fruits and vegetables: a comprehensive review. Critical Reviews in Food Science and Nutrition, 2020, 60, 2481-2508.	5.4	131

TATION REDO

#	Article	IF	CITATIONS
19	Design and performance evaluation of a pilot-scale pulsed vacuum infrared drying (PVID) system for drying of berries. Drying Technology, 2020, 38, 1340-1355.	1.7	25
20	Review of recent applications and research progress in hybrid and combined microwave-assisted drying of food products: Quality properties. Critical Reviews in Food Science and Nutrition, 2020, 60, 2212-2264.	5.4	54
21	Hot air impingement drying kinetics and quality attributes of orange peel. Journal of Food Processing and Preservation, 2020, 44, e14294.	0.9	51
22	Effects of hot air and combined microwave and hot air drying on the quality attributes of celery stalk slices. Journal of Food Processing and Preservation, 2020, 44, e14310.	0.9	10
23	Application of ultrasound technology in the drying of food products. Ultrasonics Sonochemistry, 2020, 63, 104950.	3.8	110
24	Effect of vacuum freeze-drying on the antioxidant properties of eggplants (Solanum melongena L.). Drying Technology, 2020, 39, 3-18.	1.7	11
25	Effect of ultrasoundâ€ethanol pretreatment on drying kinetics, quality parameters, functional group, and amino acid profile of apple slices using pulsed vacuum drying. Journal of Food Process Engineering, 2020, 43, e13347.	1.5	26
26	Effect of cabinet drying on nutritional quality and drying kinetics of fenugreek leaves (Trigonella) Tj ETQq1 1 C	.784314 rgB ⁻ 1.2	$\Gamma/Overlock$
27	Identifying <i>in silico</i> how microstructural changes in cellular fruit affect the drying kinetics. Soft Matter, 2020, 16, 9929-9945.	1.2	12
28	Recent advances in non-thermal decontamination technologies for microorganisms and mycotoxins in low-moisture foods. Trends in Food Science and Technology, 2020, 106, 104-112.	7.8	62
29	Influence of Pear Variety and Drying Methods on the Quality of Dried Fruit. Molecules, 2020, 25, 5146.	1.7	6
30	Combined Hot Air and Microwave-Vacuum Drying of Cranberries: Effects of Pretreatments and Pulsed Vacuum Osmotic Dehydration on Drying Kinetics and Physicochemical Properties. Food and Bioprocess Technology, 2020, 13, 1848-1856.	2.6	32
31	Influence of blanching medium on the quality of crisps from red―and purpleâ€fleshed potatoes. Journal of Food Processing and Preservation, 2020, 44, e14937.	0.9	3
32	Influence of Pre-Drying Treatments on Physico-Chemical and Phytochemical Potential of Dried mahua Flowers. Plant Foods for Human Nutrition, 2020, 75, 576-582.	1.4	9
33	Effect of pretreatment on physicochemical, microbiological, and aflatoxin quality of solar sliced dried ginger (<i>Zingiber officinale</i> Roscoe) rhizome. Food Science and Nutrition, 2020, 8, 5934-5942.	1.5	7
34	Hydrocolloid coating pretreatment makes explosion puffing drying applicable in protein-rich foods – A case study of scallop adductors. Drying Technology, 2022, 40, 50-64.	1.7	10
35	Impact of gliding arc plasma pretreatment on drying efficiency and physicochemical properties of grape. Innovative Food Science and Emerging Technologies, 2020, 63, 102381.	2.7	69
36	Convective drying of spine gourd (<i>Momordica dioica</i>): Effect of ultrasound preâ€treatmentÂon drying characteristics, color, and texture attributes. Journal of Food Processing and Preservation, 2020, 44, e14639.	0.9	14

# 37	ARTICLE Study of Physicochemical Properties of Dried Kiwifruits Using the Natural Hypertonic Solution in Ultrasound-assisted Osmotic Dehydration as Pretreatment. International Journal of Fruit Science,	IF 1.2	Citations
38	2020, 20, S491-S507. The effect of UV-C and electrolyzed water on yeasts on fresh-cut apple at 4°C. Journal of Food Engineering, 2020, 282, 110034.	2.7	23
39	Challenges and solutions for addressing critical shortage of supply chain for personal and protective equipment (PPE) arising from Coronavirus disease (COVID19) pandemic – Case study from the Republic of Ireland. Science of the Total Environment, 2020, 725, 138532.	3.9	322
40	Effect of continuous and intermittent drying on water mobility of fresh walnuts (<i>Juglans regia</i>) Tj ETQq1	1 0.78431 1.7	4 rgBT /Overld
41	Effect of Chemical Pretreatment on Drying Kinetics and Physio-chemical Characteristics of Yellow European Plums. International Journal of Fruit Science, 2020, 20, S252-S279.	1.2	13
42	Comparative nutritional and microbiological quality of ready to cook mixed vegetable curry. Journal of Food Science and Technology, 2020, 57, 2099-2106.	1.4	4
43	Characterization and management strategies for process discharge streams in California industrial tomato processing. Science of the Total Environment, 2020, 723, 137976.	3.9	14
44	A review of drying methods for improving the quality of dried herbs. Critical Reviews in Food Science and Nutrition, 2021, 61, 1763-1786.	5.4	137
45	Evaluation on drying performance of typical technical solid waste during microwave-combined hot air. Experimental Heat Transfer, 2021, 34, 121-139.	2.3	3
46	Effects of triâ€frequency ultrasoundâ€ethanol pretreatment combined with infrared convection drying on the quality properties and drying characteristics of scallion stalk. Journal of the Science of Food and Agriculture, 2021, 101, 2809-2817.	1.7	21
47	Ultrasound freeze-thawing style pretreatment to improve the efficiency of the vacuum freeze-drying of okra (Abelmoschus esculentus (L.) Moench) and the quality characteristics of the dried product. Ultrasonics Sonochemistry, 2021, 70, 105300.	3.8	64
48	Microwave hydrodiffusion and gravity as pretreatment for grape dehydration with simultaneous obtaining of high phenolic grape extract. Food Chemistry, 2021, 337, 127723.	4.2	19
49	The ohmic and conventional heating methods in concentration of sour cherry juice: Quality and engineering factors. Journal of Food Engineering, 2021, 291, 110242.	2.7	32
50	Activated release of ethyl formate vapor from its precursor encapsulated in ethyl Cellulose/Poly(Ethylene oxide) electrospun nonwovens intended for active packaging of fresh produce. Food Hydrocolloids, 2021, 112, 106313.	5.6	20
51	Food processing needs, advantages and misconceptions. Trends in Food Science and Technology, 2021, 108, 103-110.	7.8	65
52	Extension of shelf life of semi-dry longan pulp with gaseous chlorine dioxide generating film. International Journal of Food Microbiology, 2021, 337, 108938.	2.1	6
53	Effect of ozonated water combined with sodium bicarbonate on microbial load and shelf life of cold stored clementine (Citrus clementina Hort. ex Tan.). Scientia Horticulturae, 2021, 276, 109775.	1.7	14
54	Thermal Decontamination Technologies for Microorganisms and Mycotoxins in Low-Moisture Foods. Annual Review of Food Science and Technology, 2021, 12, 287-305.	5.1	27

#	Article	IF	CITATIONS
55	Evaluation of process conditions on osmotic dehydration and quality indexes of pumpkin (<i>Cucurbita moschata</i>) and further polymeric film selection for packaging and refrigerated storage. International Journal of Food Science and Technology, 2021, 56, 1959-1971.	1.3	4
56	Assessment of fresh star anise (Illicium verum Hook.f.) drying methods for influencing drying characteristics, color, flavor, volatile oil and shikimic acid. Food Chemistry, 2021, 342, 128359.	4.2	29
57	Nanofertilizers for sustainable fruit production: a review. Environmental Chemistry Letters, 2021, 19, 1693-1714.	8.3	29
58	Convective Hot-air Drying of Green Mango: Influence of Hot Water Blanching and Chemical Pretreatments on Drying Kinetics and Physicochemical Properties of Dried Product. International Journal of Fruit Science, 2021, 21, 732-757.	1.2	11
59	Effect of Selected Drying Methods and Emerging Drying Intensification Technologies on the Quality of Dried Fruit: A Review. Processes, 2021, 9, 132.	1.3	36
60	Mass Transfer During Osmotic Dehydration of Fruits and Vegetables: Process Factors and Non-Thermal Methods. Food Engineering Reviews, 2021, 13, 344-374.	3.1	30
61	Influence of microwave vacuum drying process parameters on phytochemical properties of sohiong (<i>Prunus nepalensis</i>) fruit. Journal of Food Processing and Preservation, 2021, 45, e15290.	0.9	13
62	Phenolic compounds in Lycium berry: Composition, health benefits and industrial applications. Journal of Functional Foods, 2021, 77, 104340.	1.6	61
63	Mediterranean Raisins/Currants as Traditional Superfoods: Processing, Health Benefits, Food Applications and Future Trends within the Bio-Economy Era. Applied Sciences (Switzerland), 2021, 11,	1.3	13
	1603.		
64	Effect of Different Modified Atmosphere Packaging on the Quality of Mulberry Fruit (Morus alba L. cv) Tj ETQq1	1 0,78431 0.9	L4 rgBT /Overi
64 65	Effect of Different Modified Atmosphere Packaging on the Quality of Mulberry Fruit (Morus alba L. cv) Tj ETQq1 Effect of pre-treatment and drying methods on the content of minerals, B-group vitamins and tocopherols in kale (Brassica oleracea L. var. acephala) leaves. Journal of Food Science and Technology, 2022, 59, 279-287.	1 0,78431 0,9 1.4	14 rgBT /Over
64 65 66	Effect of Different Modified Atmosphere Packaging on the Quality of Mulberry Fruit (Morus alba L. cv) Tj ETQq1 Effect of pre-treatment and drying methods on the content of minerals, B-group vitamins and tocopherols in kale (Brassica oleracea L. var. acephala) leaves. Journal of Food Science and Technology, 2022, 59, 279-287. Quality of fresh-cut apples as affected by dip wash treatments with organic acids and acidic electrolyzed water. Food Science and Technology, 0, 42, .	1 0,78431 1.4 0.8	14 rgBT /Over
64 65 66 67	 Effect of Different Modified Atmosphere Packaging on the Quality of Mulberry Fruit (Morus alba L. cv) Tj ETQq1 Effect of pre-treatment and drying methods on the content of minerals, B-group vitamins and tocopherols in kale (Brassica oleracea L. var. acephala) leaves. Journal of Food Science and Technology, 2022, 59, 279-287. Quality of fresh-cut apples as affected by dip wash treatments with organic acids and acidic electrolyzed water. Food Science and Technology, 0, 42, . Drying Treatments Change the Composition of Aromatic Compounds from Fresh to Dried Centennial Seedless Grapes. Foods, 2021, 10, 559. 	1 0,78431 1.4 0.8 1.9	4 rgBT /Overl 5 6 9
 64 65 66 67 68 	 Effect of Different Modified Atmosphere Packaging on the Quality of Mulberry Fruit (Morus alba L. cv) Tj ETQq1 Effect of pre-treatment and drying methods on the content of minerals, B-group vitamins and tocopherols in kale (Brassica oleracea L. var. acephala) leaves. Journal of Food Science and Technology, 2022, 59, 279-287. Quality of fresh-cut apples as affected by dip wash treatments with organic acids and acidic electrolyzed water. Food Science and Technology, 0, 42, . Drying Treatments Change the Composition of Aromatic Compounds from Fresh to Dried Centennial Seedless Grapes. Foods, 2021, 10, 559. Physicochemical and mechanical properties during storage-cum maturity stages of raw harvested wild banana (Musa balbisiana, BB). Journal of Food Measurement and Characterization, 2021, 15, 3336-3349. 	1 0,78431 1.4 0.8 1.9 1.6	4 rgBT /Overl 5 6 9 7
 64 65 66 67 68 69 	 Effect of Different Modified Atmosphere Packaging on the Quality of Mulberry Fruit (Morus alba L. cv) Tj ETQq1 Effect of pre-treatment and drying methods on the content of minerals, B-group vitamins and tocopherols in kale (Brassica oleracea L. var. acephala) leaves. Journal of Food Science and Technology, 2022, 59, 279-287. Quality of fresh-cut apples as affected by dip wash treatments with organic acids and acidic electrolyzed water. Food Science and Technology, 0, 42, . Drying Treatments Change the Composition of Aromatic Compounds from Fresh to Dried Centennial Seedless Grapes. Foods, 2021, 10, 559. Physicochemical and mechanical properties during storage-cum maturity stages of raw harvested wild banana (Musa balbisiana, BB). Journal of Food Measurement and Characterization, 2021, 15, 3336-3349. Drying of Selected Major Spices: Characteristics and Influencing Parameters, Drying Technologies, Quality Retention and Energy Saving, and Mathematical Models. Food and Bioprocess Technology, 2021, 14, 1028-1054. 	1 0 ₀ 78431 1.4 0.8 1.9 1.6 2.6	4 rgBT /Overl 5 6 9 7 14
 64 65 66 67 68 69 70 	 Effect of Different Modified Atmosphere Packaging on the Quality of Mulberry Fruit (Morus alba L. cv) Tj ETQq1 Effect of pre-treatment and drying methods on the content of minerals, B-group vitamins and tocopherols in kale (Brassica oleracea L. var. acephala) leaves. Journal of Food Science and Technology, 2022, 59, 279-287. Quality of fresh-cut apples as affected by dip wash treatments with organic acids and acidic electrolyzed water. Food Science and Technology, 0, 42, . Drying Treatments Change the Composition of Aromatic Compounds from Fresh to Dried Centennial Seedless Grapes. Foods, 2021, 10, 559. Physicocchemical and mechanical properties during storage-cum maturity stages of raw harvested wild banana (Musa balbisiana, BB). Journal of Food Measurement and Characterization, 2021, 15, 3336-3349. Drying of Selected Major Spices: Characteristics and Influencing Parameters, Drying Technologies, Quality Retention and Energy Saving, and Mathematical Models. Food and Bioprocess Technology, 2021, 14, 1028-1054. Utilization of Cumbeba (Tacinga inamoena) Residue: Drying Kinetics and Effect of Process Conditions on Antioxidant Bioactive Compounds. Foods, 2021, 10, 788. 	1 0 ₀ 78431 1.4 0.8 1.9 1.6 2.6 1.9	4 rgBT /Over1
 64 65 66 67 68 69 70 71 	 Effect of Different Modified Atmosphere Packaging on the Quality of Mulberry Fruit (Morus alba L. cv) Tj ETQq1 Effect of pre-treatment and drying methods on the content of minerals, B-group vitamins and tocopherols in kale (Brassica oleracea L. var. acephala) leaves. Journal of Food Science and Technology, 2022, 59, 279-287. Quality of fresh-cut apples as affected by dip wash treatments with organic acids and acidic electrolyzed water. Food Science and Technology, 0, 42, . Drying Treatments Change the Composition of Aromatic Compounds from Fresh to Dried Centennial Seedless Grapes. Foods, 2021, 10, 559. Physicochemical and mechanical properties during storage-cum maturity stages of raw harvested wild banana (Musa balbisiana, BB). Journal of Food Measurement and Characterization, 2021, 15, 3336-3349. Drying of Selected Major Spices: Characteristics and Influencing Parameters, Drying Technologies, Quality Retention and Energy Saving, and Mathematical Models. Food and Bioprocess Technology, 2021, 14, 1028-1054. Utilization of Cumbeba (Tacinga inamoena) Residue: Drying Kinetics and Effect of Process Conditions on Antioxidant Bioactive Compounds. Foods, 2021, 10, 788. Effects of ultrasound pretreatment on the drying kinetics, water status and distribution in scallop adductors during heat pump drying. Journal of the Science of Food and Agriculture, 2021, 101, 6239-6247. 	1 0 ₀ 7,8431 1.4 0.8 1.9 1.6 2.6 1.9 1.7	222

#	Article	IF	CITATIONS
73	Vacuum and Infrared-Assisted Hot Air Impingement Drying for Improving the Processing Performance and Quality of Poria cocos (Schw.) Wolf Cubes. Foods, 2021, 10, 992.	1.9	17
74	Heat transfer analysis of convective and microwave drying of dragon fruit. Journal of Food Process Engineering, 2021, 44, e13775.	1.5	12
75	Novel nonthermal and thermal pretreatments for enhancing drying performance and improving quality of fruits and vegetables. Trends in Food Science and Technology, 2021, 112, 137-148.	7.8	80
76	Development of a Fluidized Bed Dryer for Drying of a Sago Bagasse. Pertanika Journal of Science and Technology, 2021, 29, .	0.3	2
77	Vacuum-steam pulsed blanching (VSPB): An emerging blanching technology for beetroot. LWT - Food Science and Technology, 2021, 147, 111532.	2.5	13
78	Effect of abrasive preâ€treatment on drying rate of grape berries and raisin quality. Journal of Food Processing and Preservation, 2021, 45, e15746.	0.9	1
79	Do non-thermal pretreatments followed by intermediate-wave infrared drying affect toxicity, allergenicity, bioactives, functional groups, and flavor components of Ginkgo biloba seed? A case study. Industrial Crops and Products, 2021, 165, 113421.	2.5	22
80	Effect of sucrose and citric acid on the quality of explosion puffing dried yellow peach slices. Drying Technology, 2022, 40, 2783-2793.	1.7	3
81	Mathematical modeling of nutritional, color, texture, and microbial activity changes in fruit and vegetables during drying: A critical review. Critical Reviews in Food Science and Nutrition, 2023, 63, 1877-1900.	5.4	11
82	Impact of drying temperature and salt pre-treatments on drying behavior and instrumental color and investigations on spectral product monitoring during drying of beef slices. Meat Science, 2021, 178, 108525.	2.7	10
83	Osmotic, osmovacuum, sonication, and osmosonication pretreatment on the infrared drying of <i>Ginkgo</i> seed slices: Mass transfer, mathematical modeling, drying, and rehydration kinetics and energy consumption. Journal of Food Science, 2021, 86, 4577-4593.	1.5	11
84	Roles of Drying, Size Reduction, and Blanching in Sustainable Extraction of Phenolics from Olive Leaves. Processes, 2021, 9, 1662.	1.3	5
85	Effect of blanching and drying methods of spinach on the physicochemical properties and cooking quality of enriched pasta. Journal of Food Measurement and Characterization, 0, , 1.	1.6	0
86	Recent developments in radio frequency drying for food and agricultural products using a multi-stage strategy: a review. Critical Reviews in Food Science and Nutrition, 2023, 63, 2654-2671.	5.4	22
87	Microwave technology: a novel approach to the transformation of natural metabolites. Chinese Medicine, 2021, 16, 87.	1.6	25
88	Biochemical composition, drying kinetics and chromatic parameters of red pepper as affected by cultivars and drying methods. Journal of Food Composition and Analysis, 2021, 102, 103976.	1.9	36
89	Influence of ultrasonic pretreatments on microwave hotâ€air flow rolling drying mechanism, thermal characteristics and rehydration dynamics of <i>Pleurotus eryngii</i> . Journal of the Science of Food and Agriculture, 2022, 102, 2100-2109.	1.7	7
90	The effect of reversible permeabilization and post-electroporation resting on the survival of Thai basil (O. Basilicum cv. thyrsiflora) leaves during drying. Bioelectrochemistry, 2021, 142, 107912.	2.4	2

#	Article	IF	CITATIONS
91	Characterizing and alleviating the browning of Choerospondias axillaris fruit cake during drying. Food Control, 2022, 132, 108522.	2.8	15
92	Traditional and recent development of pretreatment and drying process of grapes during raisin production: A review of novel pretreatment and drying methods of grapes. Food Frontiers, 2021, 2, 46-61.	3.7	18
93	Evaluation of nutrient and antioxidant activity on steam blanching of Moringa oleifera leaves. E3S Web of Conferences, 2021, 306, 04016.	0.2	0
94	Application of immersion pre-treatments and drying temperatures to improve the comprehensive quality of pineapple (Ananas comosus) slices. Heliyon, 2021, 7, e05882.	1.4	40
95	The Main Parameters of the Physalis Convection Drying Process. Lecture Notes in Mechanical Engineering, 2021, , 306-315.	0.3	23
96	Effects of pretreatments on drying of Turkey berry (Solanum torvum) in fluidized bed dryer. Chemical Industry and Chemical Engineering Quarterly, 2022, 28, 169-178.	0.4	1
97	Recent advances in non-thermal disinfection technologies in the food industry. Food Science and Technology Research, 2021, 27, 695-710.	0.3	3
98	Effect of dielectric barrier discharge (DBD) plasma on the activity and structural changes of horseradish peroxidase. Quality Assurance and Safety of Crops and Foods, 2021, 13, 92-101.	1.8	10
99	Hot Air Drying Characteristics and Quality Analysis of Ginger (Zingiber Officinale): Effect of Pretreatment and Process Intermittency. Lecture Notes in Mechanical Engineering, 2022, , 207-216.	0.3	2
100	INVESTIGATION OF POTATO DRYING KINETICS AND QUALITY PARAMETERS APPLYING ULTRASOUND PRE-TREATMENTS. Latin American Applied Research, 2020, 50, 261-269.	0.2	0
101	Effect of Osmotic Pretreatment Combined with Vacuum Impregnation or High Pressure on the Water Diffusion Coefficients of Convection Drying: Case Study on Apples. Foods, 2021, 10, 2605.	1.9	7
102	Comparison of Microwave Short Time and Oven Heating Pretreatment on Crystallization of Raisins. Foods, 2021, 10, 39.	1.9	2
103	Microwave and steam blanching as pre-treatments before air drying of Moringa oleifera leaves. Journal of Agricultural Engineering, 2020, 51, 200-208.	0.7	2
104	Impact on blanching and drying of Moringa oleifera flower and its process parameter optimization. AIP Conference Proceedings, 2021, , .	0.3	0
105	Ultrasound Pretreatment Applications in the Drying of Agricultural Products. Advances in Environmental Engineering and Green Technologies Book Series, 2020, , 128-145.	0.3	0
106	Hot air convective drying of hog plum fruit (Spondias mombin): effects of physical and edible-oil-aided chemical pretreatments on drying and quality characteristics. Heliyon, 2021, 7, e08312.	1.4	15
107	Possibility of Pulsed Electric Field and Essential Oil Pre-treatment, Microwave-air Dehydration to the Quality of the Dehydrated Sesban (Sesbania sesban) Flower. Journal of Pure and Applied Microbiology, O, , .	0.3	1
108	Sustainable food processing of selected North American native berries to support agroforestry. Critical Reviews in Food Science and Nutrition, 2023, 63, 4235-4260.	5.4	10

#	Article	IF	CITATIONS
109	Characterization and Genome Study of Novel Lytic Bacteriophages against Prevailing Saprophytic Bacterial Microflora of Minimally Processed Plant-Based Food Products. International Journal of Molecular Sciences, 2021, 22, 12460.	1.8	3
111	Drying kinetics, chemical, and bioactive compounds of yellow sweet pepper as affected by processing conditions. Journal of Food Processing and Preservation, 2022, 46, e16330.	0.9	5
112	Comparative study of biogas production with cow dung and kitchen waste in Fiber-Reinforced Plastic (FRP) biodigesters. Materials Today: Proceedings, 2022, 52, 2264-2267.	0.9	4
113	Application of High-Intensity Ultrasound to Improve Food Processing Efficiency: A Review. Foods, 2022, 11, 122.	1.9	59
114	Effect of pretreatment on quality of frozen Cau Duc pineapple (Ananas comosus). Materials Today: Proceedings, 2022, , .	0.9	2
115	Sodium metabisulfite in dried plum and its cytotoxic effects on Kâ€562 and Lâ€929 normal cell lines. Journal of Food Science, 2022, 87, 856-866.	1.5	2
116	Kinetics of structural change of pineapple (Ananas comosus) under the influence of PME (Pectin) Tj ETQq0 0 0 rgl	BT /Overlo 0.9	ck 10 Tf 50
117	Valorization of Pineapple Pomace for Food or Feed: Effects of Pre-treatment with Ethanol on Convective Drying and Quality Properties. Waste and Biomass Valorization, 2022, 13, 2253-2266.	1.8	8
118	Health Benefits and Applications of Goji Berries in Functional Food Products Development: A Review. Antioxidants, 2022, 11, 248.	2.2	46
119	Effect of Different Predrying Treatments on Physicochemical Quality and Drying Kinetics of Twin Layer Solar Tunnel Dried Tomato (Lycopersicon esculentum L.) Slices. Journal of Food Quality, 2022, 2022, 1-10.	1.4	5
120	Effects of carboxymethyl cellulose/pectin coating combined with ultrasound pretreatment before drying on quality of turmeric (Curcuma longa L.). International Journal of Biological Macromolecules, 2022, 202, 354-365.	3.6	12
121	Pulsed pressure enhances osmotic dehydration and subsequent hot air drying kinetics and quality attributes of red beetroot. Drying Technology, 2023, 41, 262-276.	1.7	10
122	Processing of Fruits and Vegetables. , 2022, , 535-579.		3
123	Postharvest processing of tree nuts: Current status and future prospects—A comprehensive review. Comprehensive Reviews in Food Science and Food Safety, 2022, 21, 1702-1731.	5.9	22
124	An emerging pretreatment technology for reducing postharvest loss of vegetables-a case study of red pepper (<i>Capsicum annuum</i> L.) drying. Drying Technology, 2022, 40, 1620-1628.	1.7	8
125	Processing of Tree Nuts. , 0, , .		3
126	Effects of acidified blanching water and pectinase enzyme pretreatments on physicochemical properties and antioxidant capacity of <i>Carica papaya</i> Juice. Journal of Food Science, 2022, 87, 1684-1695.	1.5	5

127Effect of Thermal and Non-Thermal Technologies on Kinetics and the Main Quality Parameters of Red
Bell Pepper Dried with Convective and Microwaveâ€"Convective Methods. Molecules, 2022, 27, 2164.1.713

#	Article	IF	CITATIONS
128	Determination of drying characteristics, rehydration properties, and shrinkage ratio of convective dried melon slice with some pretreatments. Journal of Food Processing and Preservation, 2022, 46, .	0.9	9
129	High-humidity hot air impingement blanching (HHAIB): An emerging technology for tomato peeling. Innovative Food Science and Emerging Technologies, 2022, 77, 102987.	2.7	6
130	Conventional and novel peeling methods for fruits and vegetables: A review. Innovative Food Science and Emerging Technologies, 2022, 77, 102961.	2.7	7
131	Exploring effects of slice thickness, pretreatment and drying air temperature on nutritional, functional and pasting properties of Gardenia erubescens Stapf. & Hutch. fruit powder. Journal of Agriculture and Food Research, 2022, 8, 100283.	1.2	1
132	Vacuum infrared dryer for drying fruit. IOP Conference Series: Earth and Environmental Science, 2021, 937, 022092.	0.2	0
133	Nonâ€thermal pretreatment affects <i>Ginkgo biloba</i> L. seed's product qualities, sensory, and physicochemical properties. Journal of Food Science, 2022, 87, 94-111.	1.5	16
134	Hot-air impingement roast drying of beef jerky: Effect of relative humidity on quality attributes. Drying Technology, 2023, 41, 277-289.	1.7	5
135	Effect of far infrared and far infrared combined with hot air drying on the drying kinetics, bioactives, aromas, physicochemical qualities of Anoectochilus roxburghii (Wall.) Lindl LWT - Food Science and Technology, 2022, 162, 113452.	2.5	12
136	Experimental investigation and statistical validation of mathematical models for hot air drying traits of carrot. Food Science and Technology International, 2023, 29, 345-360.	1.1	3
138	Effects of different drying techniques on the quality and bioactive compounds of plant-based products: a critical review on current trends. Drying Technology, 2022, 40, 1539-1561.	1.7	22
139	Seeds as Potential Sources of Phenolic Compounds and Minerals for the Indian Population. Molecules, 2022, 27, 3184.	1.7	6
140	Tarımsal Ürünlerin Kurutulmasında Kullanılan Kurutma Yöntemleri. , 0, , .		3
143	Advances in drying techniques for retention of antioxidants in agro produces. Critical Reviews in Food Science and Nutrition, 2023, 63, 10849-10865.	5.4	3
144	Blanching. , 2022, , 317-326.		0
145	Drying Parameter Influence on the Qualitative Rosehip Fruits Characteristics. Food Industry, 2022, 7, 15-25.	0.3	0
146	Novel drying techniques for controlling microbial contamination in fresh food: A review. Drying Technology, 2023, 41, 172-189.	1.7	16
147	Effectiveness of cranberry (Vaccinium macrocarpon, cv. Pilgrim) vacuum impregnation: The effect of sample pretreatment, pressure, and processing time. Food and Bioproducts Processing, 2022, 134, 223-234.	1.8	6
148	Biochemical characterization of apple slices dried using low temperature and stored in modified atmosphere packaging. Journal of Food Composition and Analysis, 2022, 112, 104694.	1.9	1

		CITATION RE	EPORT	
#	Article		IF	Citations
149	Influence of Convective and Vacuum-Type Drying on Quality, Microstructural, Antioxida Thermal Properties of Pretreated Boletus edulis Mushrooms. Molecules, 2022, 27, 4063	nt and 3.	1.7	5
150	<i>>Vernonia amygdalina</i> processing as a functional ingredient: Oilâ€thermal influen antioxidant, vitamin, mineral, and functional group retention. Journal of Food Processin Preservation, 0, , .	ce on g and	0.9	0
151	BRS Clara raisins production: Effect of the pre-treatment and the drying process on the composition. Journal of Food Composition and Analysis, 2022, 114, 104771.	phenolic	1.9	4
152	Effect of Osmotic Dehydration Pretreatment on the Drying Characteristics and Quality Semi-Dried (Intermediate) Kumquat (Citrus japonica) Slices by Vacuum Dryer. Foods, 20	Properties of 022, 11, 2139.	1.9	8
153	Effect of Pulsed Electric Field Pre-Treatment and the Freezing Methods on the Kinetics of Freeze-Drying Process of Apple and Its Selected Physical Properties. Foods, 2022, 11, 20	of the 407.	1.9	4
154	Adaptive neuro fuzzy inference system modeling of Synsepalum dulcificum L. drying ch and sensitivity analysis of the drying factors. Scientific Reports, 2022, 12, .	aracteristics	1.6	5
155	Impact of pretreatments and hybrid microwave assisting on drying characteristics and b properties of apple slices. Journal of Food Processing and Preservation, 2022, 46, .	vioactive	0.9	12
156	Postharvest Operations of Cannabis and Their Effect on Cannabinoid Content: A Reviev Bioengineering, 2022, 9, 364.	ı.	1.6	10
157	Thin layer modeling of drying kinetics, rehydration kinetics and color changes of osmot pineapple (Ananas comosus) slices during drying: Development of a mechanistic model transfer. Innovative Food Science and Emerging Technologies, 2022, 80, 103094.	c pre-treated for mass	2.7	17
158	Effects of ultrasound pretreatment assisted drying methods on drying characteristics, p bioactive properties of windfall apples. Journal of the Science of Food and Agriculture, 2 534-547.	hysical and 023, 103,	1.7	8
159	Electrochemical sensor based Chitine modified GO for determination of sulphite in food International Journal of Electrochemical Science, 0, , ArticleID:220963.	samples.	0.5	1
161	A comprehensive review of fluidized bed drying: Sustainable design approaches, hydrod thermodynamic performance characteristics, and product quality. Sustainable Energy T and Assessments, 2022, 53, 102643.	ynamic and echnologies	1.7	3
162	Application of blanching pretreatment in herbaceous peony (Paeonia lactiflora Pall.) flor processing: Improved drying efficiency, enriched volatile profile and increased phytoche content. Industrial Crops and Products, 2022, 188, 115663.	wer mical	2.5	10
163	Effects of pretreatment method on antioxidant activity of Ficus racemosa (L.) fruits. Alf Proceedings, 2022, , .	Conference	0.3	0
164	Recent advancements and applications of explosion puffing. Food Chemistry, 2023, 40	3, 134452.	4.2	3
165	Improving food drying performance by cold plasma pretreatment: A systematic review. Reviews in Food Science and Food Safety, 2022, 21, 4402-4421.	Comprehensive	5.9	18
166	A Review of Discoloration in Fruits and Vegetables: Formation Mechanisms and Inhibition Reviews International, 2023, 39, 6478-6499.	ın. Food	4.3	4
167	Enhanced mass transfer of pulsed vacuum pressure pickling and changes in quality of s shoots. Frontiers in Microbiology, 0, 13, .	bur bamboo	1.5	0

#	Article	IF	CITATIONS
168	Factors affecting energy efficiency of microwave drying of foods: an updated understanding. Critical Reviews in Food Science and Nutrition, 0, , 1-16.	5.4	7
169	Dehydrated fruits and vegetables using low temperature drying technologies and their application in functional beverages: a review. Drying Technology, 2023, 41, 868-889.	1.7	5
170	Prospecting the role of nanotechnology in extending the shelf-life of fresh produce and in developing advanced packaging. Food Packaging and Shelf Life, 2022, 34, 100955.	3.3	9
171	Recent processing of fruits and vegetables using emerging thermal and non-thermal technologies. A critical review of their potentialities and limitations on bioactives, structure, and drying performance. Critical Reviews in Food Science and Nutrition, 0, , 1-35.	5.4	9
172	Artificial Neural Network Assisted Multiobjective Optimization of Postharvest Blanching and Drying of Blueberries. Foods, 2022, 11, 3347.	1.9	5
173	Design and Validation of Automated Sensor-Based Artificial Ripening System Combined with Ultrasound Pretreatment for Date Fruits. Agronomy, 2022, 12, 2805.	1.3	6
174	Extraction, Quantification and Characterization Techniques for Anthocyanin Compounds in Various Food Matrices—A Review. Horticulturae, 2022, 8, 1084.	1.2	9
175	Effects of cold plasma, high hydrostatic pressure, ultrasound, and high-pressure carbon dioxide pretreatments on the quality characteristics of vacuum freeze-dried jujube slices. Ultrasonics Sonochemistry, 2022, 90, 106219.	3.8	9
176	Sustainability and Gender Perspective in Food Innovation: Foods and Food Processing Coproducts as Source of Macro- and Micro-Nutrients for Woman-Fortified Foods. Foods, 2022, 11, 3661.	1.9	4
177	Nonthermal food processing: A step towards a circular economy to meet the sustainable development goals. Food Chemistry: X, 2022, 16, 100516.	1.8	6
178	High-humidity hot air impingement blanching (HHAIB) enhances drying behavior of red pepper via altering cellular structure, pectin profile and water state. Innovative Food Science and Emerging Technologies, 2023, 83, 103246.	2.7	8
179	Individual and interactive effect of ultrasound pre-treatment on drying kinetics and biochemical qualities of food: A critical review. Ultrasonics Sonochemistry, 2023, 92, 106261.	3.8	32
180	Effect of slice thickness and hot-air temperature on the kinetics of hot-air drying of Crabapple slices. Food Science and Technology, 0, 43, .	0.8	3
181	Application of Lytic Bacteriophages and Their Enzymes to Reduce Saprophytic Bacteria Isolated from Minimally Processed Plant-Based Food Products—In Vitro Studies. Viruses, 2023, 15, 9.	1.5	3
182	Effects of Processing Methods on the Quality of Black Pepper (<i>Piper nigrum</i> L.). Contemporary Agriculture, 2022, 71, 195-202.	0.3	0
183	Thermal and Nonthermal Assisted Drying of Fruits and Vegetables. Underlying Principles and Role in Physicochemical Properties and Product Quality. Food Engineering Reviews, 2023, 15, 113-155.	3.1	3
184	Biocolorants in food: Sources, extraction, applications and future prospects. Critical Reviews in Food Science and Nutrition, 0, , 1-40.	5.4	9
186	Advances in Peeling Techniques for Tomato:A Comprehensive Review. Food Reviews International, 2024, 40, 212-229.	4.3	3

#	Article	IF	CITATIONS
187	Effectiveness of a Phage Cocktail as a Potential Biocontrol Agent against Saprophytic Bacteria in Ready-To-Eat Plant-Based Food. Viruses, 2023, 15, 172.	1.5	9
188	Drying of Chinese medicine residues (CMR) by hot air for potential utilization as renewable fuels: drying behaviors, effective moisture diffusivity, and pollutant emissions. Biomass Conversion and Biorefinery, 0, , .	2.9	3
189	Valorization of peach peels: preservation with an optimized drying process based on ultrasounds pretreatment with ethanol. Biomass Conversion and Biorefinery, 2023, 13, 16345-16357.	2.9	4
190	A comparative study of electrical and conventional pre-treatments for quality assessment of hot air dried green bell pepper. Food Science and Technology International, 2024, 30, 185-196.	1.1	1
191	Fig (Ficus carica) Drying Technologies. , 2023, , 665-688.		0
192	Effect of ultrasound pretreatment and microwave vacuum drying in the production of dried poniol fruit. Journal of Food Process Engineering, 0, , .	1.5	1
193	Drying conditions and varietal impacts on physicochemical, antioxidant and functional properties of onion powder. Journal of Agriculture and Food Research, 2023, 12, 100578.	1.2	3
194	Steam blanching strengthened far-infrared drying of broccoli: Effects on drying kinetics, microstructure, moisture migration, and quality attributes. Scientia Horticulturae, 2023, 317, 112040.	1.7	5
195	Novel alternative pretreatment approaches for production of quality raisins from grapes: Opportunities and future prospects. Journal of Food Process Engineering, 2023, 46, .	1.5	1
196	Physical Pretreatments to Enhance Purple-Fleshed Potatoes Drying: Effects of Blanching, Ohmic Heating and Ultrasound Pretreatments on Quality Attributes. Potato Research, 2023, 66, 1117-1142.	1.2	3
197	A Catalytic Infrared System as a Hot Water Replacement Strategy: A Future Approach for Blanching Fruits and Vegetables to Save Energy and Water. Food Reviews International, 2024, 40, 641-657.	4.3	0
198	Kinetic analysis of sludge low-temperature drying experiments: Apparent activation energy consistency. Thermal Science and Engineering Progress, 2023, 40, 101798.	1.3	0
199	Farklı Ön İşlemlerin Patates Dilimlerinin Kuruma Karakteristikleri ve Rehidrasyon Yetenekleri Üzerine Etkisi. Karadeniz Fen Bilimleri Dergisi, 2023, 13, 187-201.	0.1	0
200	Infrared drying kinetics of <i>Capsicum annuum</i> L. var. <i>glabriusculum</i> (Piquin pepper) and mathematical modeling. Journal of Food Process Engineering, 2023, 46, .	1.5	2
201	PAMUK ćEKİRDEĞİ PROTEİN KONSANTRESİNİN KARAKTERİSTİK ÖZELLİKLERİNİN BELİRLEN	MESİ. G	ı d a, 0, , 483
202	Research on the Process of Convective Drying of Apples and Apricots Using an Original Drying Installation. Agriculture (Switzerland), 2023, 13, 820.	1.4	3
203	Effects of Different Blanching Methods on the Quality of Tremella fuciformis and Its Moisture Migration Characteristics. Foods, 2023, 12, 1669.	1.9	2
209	Valorization of food waste biomass and biomaterials from a circular economy approach. , 2023, , 183-226.		1

		CITATION	Report	
#	Article		IF	CITATIONS
210	Postharvest sanitation of produce with conventional and novel technologies. , 2023, , 2	299-333.		0
236	A review on the impact of physical, chemical, and novel treatments on the quality and r of fruits and vegetables. Systems Microbiology and Biomanufacturing, 0, , .	nicrobial safety	1.5	0
253	Nanofertilizers for sustainable fruit growing. , 2024, , 281-298.			0
255	Vision-Based Moisture Prediction for Food Drying. , 2023, , .			0
262	Thermal Processing of Citrus Juice and Related Products. , 2024, , 161-186.			0