INDEL variation in the regulatory region of the major fl associated with vernalization response and flowering ti (<i>Lupinus angustifolius</i> L.)

Plant, Cell and Environment 42, 174-187 DOI: 10.1111/pce.13320

Citation Report

#	Article	IF	CITATIONS
1	The western Mediterranean region provided the founder population of domesticated narrow-leafed lupin. Theoretical and Applied Genetics, 2018, 131, 2543-2554.	1.8	28
2	The Impact of Genetic Changes during Crop Domestication. Agronomy, 2018, 8, 119.	1.3	146
3	Development of gene-based molecular markers tagging low alkaloid pauper locus in white lupin (Lupinus albus L.). Journal of Applied Genetics, 2019, 60, 269-281.	1.0	17
4	The first genetic map for yellow lupin enables genetic dissection of adaptation traits in an orphan grain legume crop. BMC Genetics, 2019, 20, 68.	2.7	14
5	Altered Expression of an FT Cluster Underlies a Major Locus Controlling Domestication-Related Changes to Chickpea Phenology and Growth Habit. Frontiers in Plant Science, 2019, 10, 824.	1.7	38
6	Candidate Domestication-Related Genes Revealed by Expression Quantitative Trait Loci Mapping of Narrow-Leafed Lupin (Lupinus angustifolius L.). International Journal of Molecular Sciences, 2019, 20, 5670.	1.8	23
7	Revolutions in agriculture chart a course for targeted breeding of old and new crops. Science, 2019, 366, .	6.0	197
8	FLOWERING LOCUS T, GIGANTEA, SEPALLATA, and FRIGIDA homologs are candidate genes involved in white lupin (Lupinus albus L.) early flowering. Molecular Breeding, 2019, 39, 1.	1.0	24
9	Legumes—The art and science of environmentally sustainable agriculture. Plant, Cell and Environment, 2019, 42, 1-5.	2.8	28
10	Connecting genome structural variation with complex traits in crop plants. Theoretical and Applied Genetics, 2019, 132, 733-750.	1.8	97
11	INDEL variation in the regulatory region of the major flowering time gene <i>LanFTc1</i> is associated with vernalization response and flowering time in narrowâ€leafed lupin (<i>Lupinus angustifolius</i>) Tj ETQq0 C) 02 . gBT /O	verlock 10 Ti
12	Changing water use and adaptive strategies along rainfall gradients in Mediterranean lupins. Plant Biology, 2020, 22, 298-308.	1.8	6
13	State and Progress of Andean Lupin Cultivation in Europe: A Review. Agronomy, 2020, 10, 1038.	1.3	20
14	Phenotypic characterisation and linkage mapping of domestication syndrome traits in yellow lupin (Lupinus luteus L.). Theoretical and Applied Genetics, 2020, 133, 2975-2987.	1.8	15
15	Innovative transcriptomeâ€based genotyping highlights environmentally responsive genes for phenology, growth and yield in a nonâ€model grain legume. Plant, Cell and Environment, 2020, 43, 2680-2698.	2.8	8
16	Photoperiod and Vernalization Control of Flowering-Related Genes: A Case Study of the Narrow-Leafed Lupin (Lupinus angustifolius L.). Frontiers in Plant Science, 2020, 11, 572135.	1.7	7
17	Wholeâ€genome assembly and resequencing reveal genomic imprint and key genes of rapid domestication in narrowâ€leafed lupin. Plant Journal, 2021, 105, 1192-1210.	2.8	12
18	The Resistance of Narrow-Leafed Lupin to Diaporthe toxica Is Based on the Rapid Activation of Defense Response Genes. International Journal of Molecular Sciences, 2021, 22, 574.	1.8	7

#	Article	IF	CITATIONS
19	Characterization of Mungbean CONSTANS-LIKE Genes and Functional Analysis of CONSTANS-LIKE 2 in the Regulation of Flowering Time in Arabidopsis. Frontiers in Plant Science, 2021, 12, 608603.	1.7	13
20	Genomic resources for lupins are coming of age. , 2021, 3, e77.		5
21	Zea mays RNA-seq estimated transcript abundances are strongly affected by read mapping bias. BMC Genomics, 2021, 22, 285.	1.2	3
22	Quantitative Control of Early Flowering in White Lupin (Lupinus albus L.). International Journal of Molecular Sciences, 2021, 22, 3856.	1.8	4
23	A Trimethylguanosine Synthase1-like (TGS1) homologue is implicated in vernalisation and flowering time control. Theoretical and Applied Genetics, 2021, 134, 3411-3426.	1.8	9
25	Genetic Diversity in Narrow-Leafed Lupin Breeding After the Domestication Bottleneck. Compendium of Plant Genomes, 2020, , 1-17.	0.3	10
26	Genomics of Yellow Lupin (Lupinus luteus L.). Compendium of Plant Genomes, 2020, , 151-159.	0.3	1
27	Ecophysiology and Phenology: Genetic Resources for Genetic/Genomic Improvement of Narrow-Leafed Lupin. Compendium of Plant Genomes, 2020, , 19-30.	0.3	6
28	Molecular Marker Resources Supporting the Australian Lupin Breeding Program. Compendium of Plant Genomes, 2020, , 73-86.	0.3	4
29	How Have Narrow-Leafed Lupin Genomic Resources Enhanced Our Understanding of Lupin Domestication?. Compendium of Plant Genomes, 2020, , 95-108.	0.3	5
30	Genomic Applications and Resources to Dissect Flowering Time Control in Narrow-Leafed Lupin. Compendium of Plant Genomes, 2020, , 109-137.	0.3	2
31	The genetics of vigour-related traits in chickpea (Cicer arietinum L.): insights from genomic data. Theoretical and Applied Genetics, 2021, 135, 107.	1.8	4
32	A multiplex PCR marker distinguishes between a series of four LanFTc1 alleles regulating flowering time in narrowâ€leafed lupin (Lupinus angustifolius). Plant Breeding, 2021, 140, 1090-1101.	1.0	0
33	Genetic analysis of early phenology in lentil identifies distinct loci controlling component traits. Journal of Experimental Botany, 2022, 73, 3963-3977.	2.4	8
34	Progress of Genomics-Driven Approaches for Sustaining Underutilized Legume Crops in the Post-Genomic Era. Frontiers in Genetics, 2022, 13, 831656.	1.1	8
39	Evaluation of the Major Seed Storage Proteins, the Conglutins, Across Genetically Diverse Narrow-Leafed Lupin Varieties. Frontiers in Nutrition, 2022, 9, .	1.6	4
40	A successful defense of the narrow-leafed lupin against anthracnose involves quick and orchestrated reprogramming of oxidation–reduction, photosynthesis and pathogenesis-related genes. Scientific Reports, 2022, 12, 8164.	1.6	3
41	How Could the Use of Crop Wild Relatives in Breeding Increase the Adaptation of Crops to Marginal Environments?. Frontiers in Plant Science, 0, 13, .	1.7	22

CITATION REPORT

#	Article	IF	CITATIONS
42	<i>FLOWERING LOCUS T</i> indel variants confer vernalization-independent and photoperiod-insensitive flowering of yellow lupin (<i>Lupinus luteus</i> L.). Horticulture Research, 0, , .	2.9	0
43	Mechanisms of Vernalization-Induced Flowering in Legumes. International Journal of Molecular Sciences, 2022, 23, 9889.	1.8	8
44	Genomic analysis of sugar transporter genes in peanut (Arachis hypogaea): Characteristic, evolution and expression profiles during development and stress. Oil Crop Science, 2022, 7, 189-199.	0.9	1
45	Pearl lupin (Lupinus mutabilis). , 2023, , 413-436.		Ο
46	Study of rose <i>RoFT</i> transgenic plants. Acta Horticulturae, 2023, , 29-36.	0.1	1
47	The unique <i>LcFT1</i> gene sequence linked to early-flowering in the tropical litchi â€~Khom'. Acta Horticulturae, 2023, , 389-396.	0.1	1

CITATION REPORT