Robust Malware Detection for Internet of (Battlefield) T Eigenspace Learning

IEEE Transactions on Sustainable Computing

4, 88-95

DOI: 10.1109/tsusc.2018.2809665

Citation Report

#	Article	IF	CITATIONS
1	Recent Advancements in Intrusion Detection Systems for the Internet of Things. Security and Communication Networks, 2019, 2019, 1-19.	1.0	25
2	A Detailed Investigation and Analysis of Deep Learning Architectures and Visualization Techniques forÂMalware Family Identification. Advanced Sciences and Technologies for Security Applications, 2019, , 241-286.	0.4	7
3	Towards a rooted subgraph classifier for IoT botnet detection. , 2019, , .		7
4	Application Specific Internet of Things (ASIoTs): Taxonomy, Applications, Use Case and Future Directions. IEEE Access, 2019, 7, 56577-56590.	2.6	66
5	Demystifying IoT Security: An Exhaustive Survey on IoT Vulnerabilities and a First Empirical Look on Internet-Scale IoT Exploitations. IEEE Communications Surveys and Tutorials, 2019, 21, 2702-2733.	24.8	468
6	New Multiparametric Similarity Measure and Distance Measure for Interval Neutrosophic Set With IoT Industry Evaluation. IEEE Access, 2019, 7, 28258-28280.	2.6	23
7	Protecting IoT and ICS Platforms Against Advanced Persistent Threat Actors: Analysis of APT1, Silent Chollima and Molerats. , 2019, , 225-255.		12
8	A Bibliometric Analysis of Authentication and Access Control in IoT Devices. , 2019, , 25-51.		7
9	Evaluation and Application of Two Fuzzing Approaches for Security Testing of IoT Applications. , 2019, , 301-327.		5
12	Malware Analytics: Review of Data Mining, Machine Learning and Big Data Perspectives. , 2019, , .		9
13	Adversarial Learning Attacks on Graph-based IoT Malware Detection Systems. , 2019, , .		44
14	DLâ€IDS: a deep learning–based intrusion detection framework for securing IoT. Transactions on Emerging Telecommunications Technologies, 2022, 33, e3803.	2.6	109
15	IoMT Malware Detection Approaches: Analysis and Research Challenges. IEEE Access, 2019, 7, 182459-182476.	2.6	95
16	Analysis and Triage of Advanced Hacking Groups Targeting Western Countries Critical National Infrastructure: APT28, RED October, and Regin. Advanced Sciences and Technologies for Security Applications, 2019, , 221-244.	0.4	8
17	An Ensemble Intrusion Detection Technique Based on Proposed Statistical Flow Features for Protecting Network Traffic of Internet of Things. IEEE Internet of Things Journal, 2019, 6, 4815-4830.	5.5	320
18	A novel graph-based approach for IoT botnet detection. International Journal of Information Security, 2020, 19, 567-577.	2.3	71
19	Intrusion Detection Protocols in Wireless Sensor Networks Integrated to Internet of Things Deployment: Survey and Future Challenges. IEEE Access, 2020, 8, 3343-3363.	2.6	103
20	Deep learning and big data technologies for IoT security. Computer Communications, 2020, 151, 495-517.	3.1	209

CITATION REPORT

#	Article	IF	CITATIONS
21	Performance Analysis of Decision Tree C4.5 as a Classification Technique to Conduct Network Forensics for Botnet Activities in Internet of Things. , 2020, , .		7
22	Medium Access Control Protocols for the Internet of Things Based on Unmanned Aerial Vehicles: A Comparative Survey. Sensors, 2020, 20, 5586.	2.1	11
23	Cryptocurrency malware hunting: A deep Recurrent Neural Network approach. Applied Soft Computing Journal, 2020, 96, 106630.	4.1	78
24	IoT Botnet Attack Detection Based on Optimized Extreme Gradient Boosting and Feature Selection. Sensors, 2020, 20, 6336.	2.1	38
25	SOMDROID: android malware detection by artificial neural network trained using unsupervised learning. Evolutionary Intelligence, 2022, 15, 407-437.	2.3	17
26	Cognitive and Scalable Technique for Securing IoT Networks Against Malware Epidemics. IEEE Access, 2020, 8, 138508-138528.	2.6	21
27	MTHAEL: Cross-Architecture IoT Malware Detection Based on Neural Network Advanced Ensemble Learning. IEEE Transactions on Computers, 2020, 69, 1654-1667.	2.4	50
28	V-Sandbox for Dynamic Analysis IoT Botnet. IEEE Access, 2020, 8, 145768-145786.	2.6	20
29	Malicious Code Detection Based on Code Semantic Features. IEEE Access, 2020, 8, 176728-176737.	2.6	11
30	Real time Application of Malware Patching on Decentralized IoT Systems Through Disease Spread Analysis. , 2020, , .		0
31	IoT Vulnerability Assessment for Sustainable Computing: Threats, Current Solutions, and Open Challenges. IEEE Access, 2020, 8, 168825-168853.	2.6	74
32	IoT-Malware Detection Based on Byte Sequences of Executable Files. , 2020, , .		11
33	Research on Artificial Intelligence Enhancing Internet of Things Security: A Survey. IEEE Access, 2020, 8, 153826-153848.	2.6	89
34	Efficient Detection and Classification of Internet-of-Things Malware Based on Byte Sequences from Executable Files. IEEE Open Journal of the Computer Society, 2020, 1, 262-275.	5.2	20
35	The Performance of IoT Malware Detection Technique Using Feature Selection and Feature Reduction in Fog Layer. IOP Conference Series: Materials Science and Engineering, 2020, 928, 022047.	0.3	3
36	On securing IoT from Deep Learning perspective. , 2020, , .		8
38	An Enhanced Stacked LSTM Method With No Random Initialization for Malware Threat Hunting in Safety and Time-Critical Systems. IEEE Transactions on Emerging Topics in Computational Intelligence, 2020, 4, 630-640.	3.4	50
39	A Systematic Literature Review of Android Malware Detection Using Static Analysis. IEEE Access, 2020, 8, 116363-116379.	2.6	80

ARTICLE IF CITATIONS # Intrusion Detection in IoT Networks Using Deep Learning Algorithm. Information (Switzerland), 2020, 40 1.7 90 11, 279. Rider Optimization based Optimized Deep-CNN towards Attack Detection in IoT., 2020, , . 42 A multiview learning method for malware threat hunting: windows, IoT and android as case studies. 43 2.7 36 World Wide Web, 2020, 23, 1241-1260. A Machine Learning Based Intrusion Detection System for Mobile Internet of Things. Sensors, 2020, 20, 44 A novel approach to detect IoT malware by system calls using Deep learning techniques., 2020,,. 45 19 Machine Learning in IoT Security: Current Solutions and Future Challenges. IEEE Communications Surveys and Tutorials, 2020, 22, 1686-1721. 24.8 409 A new network forensic framework based on deep learning for Internet of Things networks: A 47 4.9 108 particle deep framework. Future Generation Computer Systems, 2020, 110, 91-106. NB-IoT Security: A Survey. Wireless Personal Communications, 2020, 113, 2661-2708. 1.8 An internet of things malware classification method based on mixture of experts neural network. 49 2.6 1 Transactions on Emerging Telecommunications Technologies, 2021, 32, e3920. ANGUISH: Security attack in narrowbandâ€Internet of Things (NBâ€IoT) using game theory and hardware 2.6 analysis. Transactions on Emerging Telecommunications Technologies, 2021, 32, e3987. A Multikernel and Metaheuristic Feature Selection Approach for IoT Malware Threat Hunting in the 51 5.535 Edge Layer. IEEE Internet of Things Journal, 2021, 8, 4540-4547. Resilient Machine Learning for Networked Cyber Physical Systems: A Survey for Machine Learning Security to Securing Machine Learning for CPS. IEEE Communications Surveys and Tutorials, 2021, 23, 24.8 524-552. Industrial Internet-of-Things Security Enhanced With Deep Learning Approaches for Smart Cities. IEEE 53 5.5 41 Internet of Things Journal, 2021, 8, 6393-6405. An invisible warfare with the internet of battlefield things: A literature review. Human Behavior and 54 2.5 Emerging Technologies, 2021, 3, 255-260. An Efficient Algorithm to Extract Control Flow-Based Features for IoT Malware Detection. Computer 55 7 1.5 Journal, 2021, 64, 599-609. Diversity-By-Design for Dependable and Secure Cyber-Physical Systems: A Survey. IEEE Transactions on Network and Service Management, 2021, , 1-1. Detection of malware on the internet of things and its applications depends on long short-term 57 3.3 12 memory network. Journal of Ambient Intelligence and Humanized Computing, 0, , 1. DADEM. International Journal of Ambient Computing and Intelligence, 2021, 12, 114-139.

CITATION REPORT

C			Dee	
	IAT	ION	REP	PORT

#	Article	IF	CITATIONS
59	Hierarchical Bidirectional RNN for Safety-Enhanced B5G Heterogeneous Networks. IEEE Transactions on Network Science and Engineering, 2021, 8, 2946-2957.	4.1	39
60	Application of Machine Learning for Ransomware Detection in IoT Devices. Studies in Computational Intelligence, 2021, , 393-420.	0.7	12
61	Parallel machine learning and deep learning approaches for internet of medical things (IoMT). , 2021, , 89-103.		2
62	Security Threats and Artificial Intelligence Based Countermeasures for Internet of Things Networks: A Comprehensive Survey. IEEE Access, 2021, 9, 94668-94690.	2.6	50
63	A Survey on Cross-Architectural IoT Malware Threat Hunting. IEEE Access, 2021, 9, 91686-91709.	2.6	33
64	FSDroid:- A feature selection technique to detect malware from Android using Machine Learning Techniques. Multimedia Tools and Applications, 2021, 80, 13271-13323.	2.6	43
65	CNN-Based Malware Variants Detection Method for Internet of Things. IEEE Internet of Things Journal, 2021, 8, 16946-16962.	5.5	24
66	How Good Are Classification Models inÂHandling Dynamic Intrusion Attacks inÂloT?. Lecture Notes in Networks and Systems, 2021, , 81-94.	0.5	0
67	A hybrid attack detection strategy for cybersecurity using moth elephant herding optimisationâ€based stacked autoencoder. IET Circuits, Devices and Systems, 2021, 15, 224-236.	0.9	4
68	Convolutional Neural Network-Based Cryptography Ransomware Detection for Low-End Embedded Processors. Mathematics, 2021, 9, 705.	1.1	8
69	Backbones for Internet of Battlefield Things. , 2021, , .		6
70	Deep Learning for Network Traffic Monitoring and Analysis (NTMA): A Survey. Computer Communications, 2021, 170, 19-41.	3.1	147
71	CRIDS: Correlation and Regression-Based Network Intrusion Detection System for IoT. SN Computer Science, 2021, 2, 1.	2.3	3
72	A hybrid DL-driven intelligent SDN-enabled malware detection framework for Internet of Medical Things (IoMT). Computer Communications, 2021, 170, 209-216.	3.1	43
73	DDoS detection in 5G-enabled IoT networks using deep Kalman backpropagation neural network. International Journal of Machine Learning and Cybernetics, 2021, 12, 3337-3349.	2.3	22
74	Design and Implementation of Intelligent English Electronic Dictionary System Based on Internet of Things. Wireless Communications and Mobile Computing, 2021, 2021, 1-11.	0.8	4
75	Intelligent Mirai Malware Detection in IoT Devices. , 2021, , .		7
76	Intelligent Mirai Malware Detection for IoT Nodes. Electronics (Switzerland), 2021, 10, 1241.	1.8	16

#	Article	IF	CITATIONS
77	A systematic review on Deep Learning approaches for IoT security. Computer Science Review, 2021, 40, 100389.	10.2	52
78	On the undetectability of payloads generated through automatic tools: A humanâ€oriented approach. Concurrency Computation Practice and Experience, 2021, 33, e6351.	1.4	1
79	Ensemble Detection Model for IoT IDS. Internet of Things (Netherlands), 2021, 16, 100435.	4.9	34
80	A review of artificial intelligence based malware detection using deep learning. Materials Today: Proceedings, 2023, 80, 2678-2683.	0.9	7
81	Cross-Architecture Intemet-of-Things Malware Detection Based on Graph Neural Network. , 2021, , .		9
82	Internet of Things attack detection using hybrid Deep Learning Model. Computer Communications, 2021, 176, 146-154.	3.1	107
83	IoT-Based Intrusion Detection Systems: A Review. Smart Science, 2022, 10, 265-282.	1.9	4
84	Comprehensive Analysis of IoT Malware Evasion Techniques. Engineering, Technology & Applied Science Research, 2021, 11, 7495-7500.	0.8	6
85	A secure and efficient authentication and data sharing scheme for Internet of Things based on blockchain. Journal of Systems Architecture, 2021, 117, 102112.	2.5	38
87	Markov Decision Process based Model for Performance Analysis an Intrusion Detection System in IoT Networks. Journal of Telecommunications and Information Technology, 2021, 3, 42-49.	0.3	3
88	Deep learning in the information service system of agricultural Internet of Things for innovation enterprise. Journal of Supercomputing, 2022, 78, 5010-5028.	2.4	4
89	Generative adversarial network to detect unseen Internet of Things malware. Ad Hoc Networks, 2021, 122, 102591.	3.4	29
90	IoT-Malware Classification Model Using Byte Sequences and Supervised Learning Techniques. Lecture Notes in Networks and Systems, 2021, , 51-60.	0.5	0
91	DL-FHMC: Deep Learning-Based Fine-Grained Hierarchical Learning Approach for Robust Malware Classification. IEEE Transactions on Dependable and Secure Computing, 2022, 19, 3432-3447.	3.7	15
92	IoT Malware Classification Based on Lightweight Convolutional Neural Networks. IEEE Internet of Things Journal, 2022, 9, 3770-3783.	5.5	16
93	Security in 5G-Enabled Internet of Things Communication: Issues, Challenges, and Future Research Roadmap. IEEE Access, 2021, 9, 4466-4489.	2.6	40
94	Artificial Intelligence and Machine Learning for Ensuring Security in Smart Cities. Advanced Sciences and Technologies for Security Applications, 2021, , 23-47.	0.4	29
95	HybriDroid: an empirical analysis on effective malware detection model developed using ensemble methods. Journal of Supercomputing, 2021, 77, 8209-8251.	2.4	14

#	Article	IF	CITATIONS
96	Deep neural network based anomaly detection in Internet of Things network traffic tracking for the applications of future smart cities. Transactions on Emerging Telecommunications Technologies, 2021, 32, e4121.	2.6	46
97	Analysis of APT Actors Targeting IoT and Big Data Systems: Shell_Crew, NetTraveler, ProjectSauron, CopyKittens, Volatile Cedar and Transparent Tribe as a Case Study. , 2019, , 257-272.		3
98	Internet of Things for Sustainable Community Development: Introduction and Overview. Internet of Things, 2020, , 1-31.	1.3	21
99	Feature-Based Semi-supervised Learning to Detect Malware from Android. Learning and Analytics in Intelligent Systems, 2020, , 93-118.	0.5	10
100	Anomaly Detection in Cyber-Physical Systems Using Machine Learning. , 2020, , 219-235.		19
101	Privacy and Security in Smart and Precision Farming: A Bibliometric Analysis. , 2020, , 305-318.		11
102	Industrial Big Data Analytics: Challenges and Opportunities. , 2020, , 37-61.		14
103	Applications of Big Data Analytics and Machine Learning in the Internet of Things. , 2020, , 77-108.		16
104	A Comparison of State-of-the-Art Machine Learning Models for OpCode-Based IoT Malware Detection. , 2020, , 109-120.		7
105	Enhancing Network Security Via Machine Learning: Opportunities and Challenges. , 2020, , 165-189.		12
106	PerbDroid: Effective Malware Detection Model Developed Using Machine Learning Classification Techniques. Intelligent Systems Reference Library, 2020, , 103-139.	1.0	10
107	A Comparison Between Different Machine Learning Models for IoT Malware Detection. , 2020, , 195-202.		9
108	An Ensemble of Deep Recurrent Neural Networks for Detecting IoT Cyber Attacks Using Network Traffic. IEEE Internet of Things Journal, 2020, 7, 8852-8859.	5.5	113
109	A Multilabel Fuzzy Relevance Clustering System for Malware Attack Attribution in the Edge Layer of Cyber-Physical Networks. ACM Transactions on Cyber-Physical Systems, 2020, 4, 1-22.	1.9	22
110	LAMBDA. Transactions on Embedded Computing Systems, 2020, 19, 1-31.	2.1	7
111	A survey of methods supporting cyber situational awareness in the context of smart cities. Journal of Big Data, 2020, 7, .	6.9	19
113	A Novel IoT Based Smart Energy Meter with Backup Battery. International Journal of Computing, 0, , 357-364.	1.5	2
114	Botnet attack detection in Internet of Things devices over cloud environment via machine learning. Concurrency Computation Practice and Experience, 2022, 34, e6662.	1.4	40

#	Article	IF	CITATIONS
115	Subgraph-Based Adversarial Examples Against Graph-Based IoT Malware Detection Systems. Lecture Notes in Computer Science, 2019, , 268-281.	1.0	9
116	A Survey of Machine Learning Techniques Used to Combat Against the Advanced Persistent Threat. Communications in Computer and Information Science, 2019, , 159-172.	0.4	2
117	Forensic Investigation of Cross Platform Massively Multiplayer Online Games: Minecraft as a Case Study. , 2019, , 153-177.		0
118	Distributed Filesystem Forensics: Ceph as a Case Study. , 2019, , 129-151.		2
119	Detection of Advanced Linux Malware Using Machine Learning. Advances in Intelligent Systems and Computing, 2021, , 185-194.	0.5	1
120	Active Spectral Botnet Detection Based on Eigenvalue Weighting. , 2020, , 385-397.		10
121	On the Applicability of Users' Operation-action Characteristics for the Continuous Authentication in IIoT Scenarios. , 2020, , .		0
122	Cross Platform IoT-Malware Family Classification Based on Printable Strings. , 2020, , .		17
123	Enabling Smart Cities with Cognition Based Intelligent Route Decision in Vehicles Empowered with Deep Extreme Learning Machine. Computers, Materials and Continua, 2020, 66, 141-156.	1.5	4
124	Big Data and Privacy: Challenges and Opportunities. , 2020, , 1-5.		8
125	Statically Dissecting Internet of Things Malware: Analysis, Characterization, and Detection. Lecture Notes in Computer Science, 2020, , 443-461.	1.0	4
126	Intrusion Detection Systems for Internet of Things. Advances in Information Security, Privacy, and Ethics Book Series, 2020, , 148-171.	0.4	0
127	Detecting Block Cipher Encryption for Defense Against Crypto Ransomware on Low-End Internet of Things. Lecture Notes in Computer Science, 2020, , 16-30.	1.0	3
128	Big Data Application for Security of Renewable Energy Resources. , 2020, , 237-254.		1
129	IoT Malware Analysis and New Pattern Discovery Through Sequence Analysis Using Meta-Feature Information. IEICE Transactions on Communications, 2020, E103.B, 32-42.	0.4	3
130	Privacy Preserving Abnormality Detection: A Deep Learning Approach. , 2020, , 285-303.		0
131	Machine Learning Framework to Analyze IoT Malware Using ELF and Opcode Features. Digital Threats Research and Practice, 2020, 1, 1-19.	1.7	30
132	Scalable malware detection system using big data and distributed machine learning approach. Soft Computing, 2022, 26, 3987-4003.	2.1	7

#	Article	IF	CITATIONS
133	Review on the Security Threats of Internet of Things. International Journal of Computer Applications, 2020, 176, 37-45.	0.2	9
134	Build a malware detection software for IOT network Using Machine learning. , 2021, , .		2
135	Evaluation of Machine Learning Algorithms on Internet of Things (IoT) Malware Opcodes. , 2022, , 177-191.		1
136	IoT Privacy, Security and Forensics Challenges: An Unmanned Aerial Vehicle (UAV) Case Study. , 2022, , 7-39.		3
137	Detection of Enumeration Attacks in Cloud Environments Using Infrastructure Log Data. , 2022, , 41-52.		1
138	Adaptive Neural Trees for Attack Detection in Cyber Physical Systems. , 2022, , 89-104.		0
139	Cyber Threat Attribution with Multi-View Heuristic Analysis. , 2022, , 53-73.		4
140	Machine Learning for OSX Malware Detection. , 2022, , 209-222.		1
141	Evaluating Performance of Scalable Fair Clustering Machine Learning Techniques in Detecting Cyber Attacks in Industrial Control Systems. , 2022, , 105-116.		4
142	Scalable Fair Clustering Algorithm for Internet of Things Malware Classification. , 2022, , 271-287.		1
143	Evaluation of Supervised and Unsupervised Machine Learning Classifiers for Mac OS Malware Detection. , 2022, , 159-175.		2
144	Cyber-Attack Detection in Cyber-Physical Systems Using Supervised Machine Learning. , 2022, , 131-140.		4
145	Mapping CKC Model Through NLP Modelling for APT Groups Reports. , 2022, , 239-252.		1
146	Mac OS X Malware Detection with Supervised Machine Learning Algorithms. , 2022, , 193-208.		3
147	Evaluation of Scalable Fair Clustering Machine Learning Methods for Threat Hunting in Cyber-Physical Systems. , 2022, , 141-158.		0
148	A Survey of Machine Learning Techniques for IoT Security. Communications in Computer and Information Science, 2021, , 139-157.	0.4	3
149	Smart Detection and Preservation of Privacy Concerns in lot Systems: A Systematic Literature Review. SSRN Electronic Journal, 0, , .	0.4	0
151	IoT Bonet and Network Intrusion Detection using Dimensionality Reduction and Supervised Machine Learning. , 2020, , .		5

9

CITATION REPORT

#	Article	IF	CITATIONS
152	A Comparative Analysis of Machine Learning Techniques for Classification and Detection of Malware. , 2020, , .		8
153	Passive User Authentication Utilizing Behavioral Biometrics for IIoT Systems. IEEE Internet of Things Journal, 2022, 9, 12783-12798.	5.5	3
154	The Approach for IoT Malware Detection Based on Opcodes Sequences Pattern Mining. , 2021, , .		0
155	A Study of Classifying Advanced Persistent Threats With Multi-Layered Deep Learning Approaches. , 2021, , .		0
156	On the Applicability of Multi-Characteristics for the Continuous Authentication in IIoT Scenarios. , 2021, , .		1
158	A Sensitivity Analysis of Poisoning and Evasion Attacks in Network Intrusion Detection System Machine Learning Models. , 2021, , .		6
159	Security threat model under internet of things using deep learning and edge analysis of cyberspace governance. International Journal of Systems Assurance Engineering and Management, 2022, 13, 1164-1176.	1.5	5
160	A comprehensive survey on machine learning approaches for malware detection in IoT-based enterprise information system. Enterprise Information Systems, 2023, 17, .	3.3	64
161	Machine learning and the Internet of Things security: Solutions and open challenges. Journal of Parallel and Distributed Computing, 2022, 162, 89-104.	2.7	30
162	State-of-the-art survey of artificial intelligent techniques for IoT security. Computer Networks, 2022, 206, 108771.	3.2	37
164	Wireless Transmissions, Propagation and Channel Modelling for IoT Technologies: Applications and Challenges. IEEE Access, 2022, 10, 24095-24131.	2.6	23
165	Intelligent Malware Defenses. Lecture Notes in Computer Science, 2022, , 217-253.	1.0	2
166	Malware Detection Using Decision Tree Based SVM Classifier for IoT. Computers, Materials and Continua, 2022, 72, 713-726.	1.5	3
167	A Comparative Analysis of Network Intrusion Detection System for IoT Using Machine Learning. Lecture Notes in Electrical Engineering, 2022, , 211-221.	0.3	1
168	Artificial intelligence empowered threat detection in the Internet of Things: A systematic review. Concurrency Computation Practice and Experience, 2022, 34, .	1.4	1
169	A comprehensive study of Mozi botnet. International Journal of Intelligent Systems, 2022, 37, 6877-6908.	3.3	8
170	Applications of Wireless Sensor Networks and Internet of Things Frameworks in the Industry Revolution 4.0: A Systematic Literature Review. Sensors, 2022, 22, 2087.	2.1	232
171	A wrapper method based on a modified two-step league championship algorithm for detecting botnets in IoT environments. Computing (Vienna/New York), 0, , 1.	3.2	3

	Сітатіс	on Report	
#	Article	IF	CITATIONS
172	Malware Multi Perspective Analytics with Auto Deduction in Cybersecurity. , 2021, , .		6
173	A GAN Based Malware Adversaries Detection Model. , 2021, , .		0
174	lloT Deep Malware Threat Hunting: From Adversarial Example Detection to Adversarial Scenario Detection. IEEE Transactions on Industrial Informatics, 2022, 18, 8477-8486.	7.2	9
175	A Knowledge Transfer-based Semi-Supervised Federated Learning for IoT Malware Detection. IEEE Transactions on Dependable and Secure Computing, 2022, , 1-1.	3.7	13
176	A novel intelligent cognitive computing-based APT malware detection for Endpoint systems. Journal of Intelligent and Fuzzy Systems, 2022, 43, 3527-3547.	0.8	6
177	Scalable Malware Detection System Using Distributed Deep Learning. Cybernetics and Systems, 2023, 54, 619-647.	1.6	4
178	A survey on deep learning for cybersecurity: Progress, challenges, and opportunities. Computer Networks, 2022, 212, 109032.	3.2	35
179	Intrusion Detection in Internet of Things Systems: A Review on Design Approaches Leveraging Multi-Access Edge Computing, Machine Learning, and Datasets. Sensors, 2022, 22, 3744.	2.1	23
180	ThingNet: A Lightweight Real-time Mirai IoT Variants Hunter through CPU Power Fingerprinting. , 2022, , ,		1
181	Detection of Botnets in IoT Networks using Graph Theory and Machine Learning. , 2022, , .		3
182	Hardware-Assisted Machine Learning in Resource-Constrained IoT Environments for Security: Review and Future Prospective. IEEE Access, 2022, 10, 58603-58622.	2.6	21
183	Machine Learning Applications to Smart Cities. Advances in Electronic Government, Digital Divide, and Regional Development Book Series, 2022, , 169-213.	0.2	0
184	DS-SWIPT: Secure Communication with Wireless Power Transfer for Internet of Things. Security and Communication Networks, 2022, 2022, 1-11.	1.0	0
185	Multilayer Backbones for Internet of Battlefield Things. Future Internet, 2022, 14, 186.	2.4	3
186	Cybersecurity for Battlefield of Things — A Comprehensive Review. Journal of Circuits, Systems and Computers, 2022, 31, .	1.0	1
187	A Brief Overview on Security Challenges and Protocols in Internet of Things Application. , 2022, , .		5
188	A Low Computational Cost Method for Mobile Malware Detection Using Transfer Learning and Familial Classification Using Topic Modelling. Applied Computational Intelligence and Soft Computing, 2022, 2022, 1-22.	1.6	3
189	Local Intrinsic Dimensionality ofÂloT Networks forÂUnsupervised Intrusion Detection. Lecture Notes in Computer Science, 2022, , 143-161.	1.0	1

#	Article	IF	CITATIONS
190	Generating realistic cyber data for training and evaluating machine learning classifiers for network intrusion detection systems. Expert Systems With Applications, 2022, 207, 117936.	4.4	9
191	Few-shot IoT attack detection based on RFP-CNN and adversarial unsupervised domain-adaptive regularization. Computers and Security, 2022, 121, 102856.	4.0	3
192	Deep Learning Models for Cyber Security in IoT Networks. Advances in Digital Crime, Forensics, and Cyber Terrorism, 2022, , 112-127.	0.4	0
193	HeuCrip: a malware detection approach for internet of battlefield things. Cluster Computing, 2023, 26, 977-992.	3.5	4
194	On the use of artificial intelligence to deal with privacy in IoT systems: A systematic literature review. Journal of Systems and Software, 2022, 193, 111475.	3.3	7
195	Empirical Analysis of Vulnerabilities in Blockchain-based Smart Contracts. Sir Syed Research Journal of Engineering & Technology, 2022, 12, 78-85.	0.2	1
196	Improved Ant Colony Optimization and Machine Learning Based Ensemble Intrusion Detection Model. Intelligent Automation and Soft Computing, 2023, 36, 849-864.	1.6	6
197	Machine and Deep Learning for IoT Security and Privacy: Applications, Challenges, and Future Directions. Security and Communication Networks, 2022, 2022, 1-41.	1.0	9
198	A Survey of the Recent Trends in Deep Learning Based Malware Detection. Journal of Cybersecurity and Privacy, 2022, 2, 800-829.	2.4	26
199	Security Risk Analysis and Design Reengineering for Smart Healthcare. Lecture Notes in Electrical Engineering, 2022, , 599-612.	0.3	7
200	CNN―and GANâ€based classification of malicious code families: A code visualization approach. International Journal of Intelligent Systems, 2022, 37, 12472-12489.	3.3	7
201	Deep Learning Methods for Malware and Intrusion Detection: A Systematic Literature Review. Security and Communication Networks, 2022, 2022, 1-31.	1.0	7
202	Cyber Situational Awareness Frontiers. , 2022, , 43-75.		0
203	Cooperative Scheduling for Directional Wireless Charging With Spatial Occupation. IEEE Transactions on Mobile Computing, 2024, 23, 286-301.	3.9	4
204	Malware Detection Using Genetic Cascaded Support Vector Machine Classifier in Internet of Things. , 2022, , .		2
205	A Survey of Adversarial Attack and Defense Methods for Malware Classification in Cyber Security. IEEE Communications Surveys and Tutorials, 2023, 25, 467-496.	24.8	10
206	Attack Detection by Using Deep Learning for Cyber-Physical System. , 2023, , 155-179.		0
207	Malware Detection in Internet of Things (IoT) Devices Using Deep Learning. Sensors, 2022, 22, 9305.	2.1	8

CITATION REPORT

		LITATION REPORT	
#	Article	IF	CITATIONS
208	A Review of Emerging Technologies for IoT-Based Smart Cities. Sensors, 2022, 22, 9271.	2.1	21
209	A Review on Malware Analysis for IoT and Android System. SN Computer Science, 2023, 4, .	2.3	0
210	Evaluation of Machine Learning Algorithms for Malware Detection. Sensors, 2023, 23, 946.	2.1	8
211	IoT Commercial and Industrial Applications and AI-Powered IoT. , 2023, , 465-500.		7
212	Efficient and Secured Mechanisms for Data Link in IoT WSNs: A Literature Review. Electronics (Switzerland), 2023, 12, 458.	1.8	7
213	Malware Detection Classification using Recurrent Neural Network. , 2022, , .		0
214	Artificial Algae Optimization with Deep Belief Network Enabled Ransomware Detection in IoT Environment. Computer Systems Science and Engineering, 2023, 46, 1293-1310.	1.9	0
215	Attack Detection in IoT Using Machine Learning—A Survey. , 2023, , 211-228.		0
216	GCDroid: Android Malware Detection Based on Graph Compression With Reachability Relationship Extraction for IoT Devices. IEEE Internet of Things Journal, 2023, 10, 11343-11356.	5.5	5
217	Hybrid classification model with tuned weight for cyber attack detection: Big data perspective. Advances in Engineering Software, 2023, 177, 103408.	1.8	0
218	Malware detection in IOMT (MDI) using RNN-LSTM. , 2023, 3, 99-106.		0
219	Insider Intrusion Detection Techniques: A State-of-the-Art Review. Journal of Computer Information Systems, 2024, 64, 106-123.	2.0	1
220	Comprehensive Survey on Detecting Security Attacks of IoT Intrusion Detection Systems. Advances Science and Technology, 0, , .	in 0.2	3
221	Toward support-vector machine-based ant colony optimization algorithms for intrusion detection. Soft Computing, 2023, 27, 6297-6305.	2.1	3
222	Tensor Recurrent Neural Network With Differential Privacy. IEEE Transactions on Computers, 2024, 683-693.	73, 2.4	8
223	Malware Threat on Edge/Fog Computing Environments From Internet of Things Devices Perspective IEEE Access, 2023, 11, 33584-33606.	. 2.6	10
224	Mitigating Malware Attacks using Machine Learning: A Review. , 2023, , .		0
225	Cybersecurity in Internet of Things Networks using Deep Learning Models. , 2023, , .		1

#	Article		IF	CITATIONS
226	AI Approaches for IoT Security Analysis. Advances in Intelligent Systems and Computing	g, 2021, , 47-70.	0.5	0
230	IoT Security Vulnerabilities and Defensive Measures in Industry 4.0. Advanced Technolo Societal Change, 2023, , 71-112.	gies and	0.8	7
242	Role of AI for Data Security and Privacy in 5G Healthcare Informatics. , 2023, , 29-62.			0
247	A Review of IoT Security Solutions Using Machine Learning and Deep Learning. Lecture Networks and Systems, 2023, , 115-132.	Notes in	0.5	0
249	Preprocessing Network Traffic using Topological Data Analysis for Data Poisoning Dete	ction. , 2023, , .		0
251	A Comparative Analysis of IoT Malware Detection Using CNN and Deep Learning. , 202	3, , .		0