Spatial–Temporal Recurrent Neural Network for Emo

IEEE Transactions on Cybernetics 49, 839-847

DOI: 10.1109/tcyb.2017.2788081

Citation Report

#	Article	IF	CITATIONS
1	Extended LBP based Facial Expression Recognition System for Adaptive Al Agent Behaviour., 2018,,.		3
2	Cross-Domain Facial Expression Recognition Based on Transductive Deep Transfer Learning. IEEE Access, 2019, 7, 108906-108915.	2.6	20
3	Object detection algorithm based AdaBoost residual correction Fast R-CNN on network. , 2019, , .		5
4	A novel speech emotion recognition algorithm based on wavelet kernel sparse classifier in stacked deep auto-encoder model. Personal and Ubiquitous Computing, 2019, 23, 521-529.	1.9	19
5	MPED: A Multi-Modal Physiological Emotion Database for Discrete Emotion Recognition. IEEE Access, 2019, 7, 12177-12191.	2.6	167
6	A Review on EEG Based Emotion Classification. , 2019, , .		4
7	EEG-Based Emotion Recognition with Combined Deep Neural Networks using Decomposed Feature Clustering Model. , 2019, , .		2
8	A Multi-Column CNN Model for Emotion Recognition from EEG Signals. Sensors, 2019, 19, 4736.	2.1	105
9	Development and Validation of an EEG-Based Real-Time Emotion Recognition System Using Edge AI Computing Platform With Convolutional Neural Network System-on-Chip Design. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2019, 9, 645-657.	2.7	53
10	EEG-Based Multi-Modal Emotion Recognition using Bag of Deep Features: An Optimal Feature Selection Approach. Sensors, 2019, 19, 5218.	2.1	68
11	Making Sense of Spatio-Temporal Preserving Representations for EEG-Based Human Intention Recognition. IEEE Transactions on Cybernetics, 2020, 50, 3033-3044.	6.2	246
12	Dual-modality spatiotemporal feature learning for spontaneous facial expression recognition in e-learning using hybrid deep neural network. Visual Computer, 2020, 36, 743-755.	2.5	17
13	Olfactory EEG Signal Classification Using a Trapezoid Difference-Based Electrode Sequence Hashing Approach. International Journal of Neural Systems, 2020, 30, 2050011.	3.2	13
14	A Coincidence-Filtering-Based Approach for CNNs in EEG-Based Recognition. IEEE Transactions on Industrial Informatics, 2020, 16, 7159-7167.	7.2	33
15	Learning CNN features from DE features for EEG-based emotion recognition. Pattern Analysis and Applications, 2020, 23, 1323-1335.	3.1	79
16	STCAM: Spatial-Temporal and Channel Attention Module for Dynamic Facial Expression Recognition. IEEE Transactions on Affective Computing, 2023, 14, 800-810.	5.7	18
17	Early Screening of Autism in Toddlers via Response-To-Instructions Protocol. IEEE Transactions on Cybernetics, 2022, 52, 3914-3924.	6.2	11
18	EEG-Based Emotion Recognition via Channel-Wise Attention and Self Attention. IEEE Transactions on Affective Computing, 2023, 14, 382-393.	5.7	168

#	ARTICLE	IF	CITATIONS
19	EEG-based emotion recognition using an end-to-end regional-asymmetric convolutional neural network. Knowledge-Based Systems, 2020, 205, 106243.	4.0	133
20	Evolving Connections in Group of Neurons for Robust Learning. IEEE Transactions on Cybernetics, 2022, 52, 3069-3082.	6.2	3
21	An Emotion Recognition Method for Game Evaluation Based on Electroencephalogram. IEEE Transactions on Affective Computing, 2023, 14, 591-602.	5.7	17
22	Expression-EEG Based Collaborative Multimodal Emotion Recognition Using Deep AutoEncoder. IEEE Access, 2020, 8, 164130-164143.	2.6	54
23	Physiological Sensors Based Emotion Recognition While Experiencing Tactile Enhanced Multimedia. Sensors, 2020, 20, 4037.	2.1	45
24	Subject-Independent Emotion Recognition of EEG Signals Based on Dynamic Empirical Convolutional Neural Network. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2021, 18, 1710-1721.	1.9	48
25	Emotion Variation from Controlling Contrast of Visual Contents through EEG-Based Deep Emotion Recognition. Sensors, 2020, 20, 4543.	2.1	5
26	EEG-based emotion recognition using 4D convolutional recurrent neural network. Cognitive Neurodynamics, 2020, 14, 815-828.	2.3	76
27	Facial Expression Recognition Using Frequency Neural Network. IEEE Transactions on Image Processing, 2021, 30, 444-457.	6.0	40
28	Parallel Sequence-Channel Projection Convolutional Neural Network for EEG-Based Emotion Recognition. IEEE Access, 2020, 8, 222966-222976.	2.6	9
29	Minimum Dominating Set of Multiplex Networks: Definition, Application, and Identification. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51, 7823-7837.	5.9	28
30	Current Status, Challenges, and Possible Solutions of EEG-Based Brain-Computer Interface: A Comprehensive Review. Frontiers in Neurorobotics, 2020, 14, 25.	1.6	208
31	Facial Landmark-Based Emotion Recognition via Directed Graph Neural Network. Electronics (Switzerland), 2020, 9, 764.	1.8	38
32	Latent Factor Decoding of Multi-Channel EEG for Emotion Recognition Through Autoencoder-Like Neural Networks. Frontiers in Neuroscience, 2020, 14, 87.	1.4	38
33	Random Shapley Forests: Cooperative Game-Based Random Forests With Consistency. IEEE Transactions on Cybernetics, 2022, 52, 205-214.	6.2	23
34	An Innovative Multi-Model Neural Network Approach for Feature Selection in Emotion Recognition Using Deep Feature Clustering. Sensors, 2020, 20, 3765.	2.1	28
35	Different Contextual Window Sizes Based RNNs for Multimodal Emotion Detection in Interactive Conversations. IEEE Access, 2020, 8, 119516-119526.	2.6	7
36	A Channel-Fused Dense Convolutional Network for EEG-Based Emotion Recognition. IEEE Transactions on Cognitive and Developmental Systems, 2021, 13, 945-954.	2.6	81

#	Article	IF	Citations
37	Deep Learning in Physiological Signal Data: A Survey. Sensors, 2020, 20, 969.	2.1	131
38	Facial expression recognition based on a multi-task global-local network. Pattern Recognition Letters, 2020, 131, 166-171.	2.6	46
39	EEG-based Emotion Recognition for Multi Channel Fast Empirical Mode Decomposition using VGG-16. , 2020, , .		9
40	A Novel Bi-Hemispheric Discrepancy Model for EEG Emotion Recognition. IEEE Transactions on Cognitive and Developmental Systems, 2021, 13, 354-367.	2.6	119
41	Deep Learning for Human Affect Recognition: Insights and New Developments. IEEE Transactions on Affective Computing, 2021, 12, 524-543.	5.7	113
42	A Novel Multivariate-Multiscale Approach for Computing EEG Spectral and Temporal Complexity for Human Emotion Recognition. IEEE Sensors Journal, 2021, 21, 3579-3591.	2.4	69
43	AutoFER: PCA and PSO based automatic facial emotion recognition. Multimedia Tools and Applications, 2021, 80, 3039-3049.	2.6	36
44	Complex networks and deep learning for EEG signal analysis. Cognitive Neurodynamics, 2021, 15, 369-388.	2.3	89
45	Adaptive Weighting of Handcrafted Feature Losses for Facial Expression Recognition. IEEE Transactions on Cybernetics, 2021, 51, 2787-2800.	6.2	21
46	CNN-LSTM-Based Facial Expression Recognition. Lecture Notes in Networks and Systems, 2021, , 379-389.	0.5	1
47	Graph-Embedded Convolutional Neural Network for Image-Based EEG Emotion Recognition. IEEE Transactions on Emerging Topics in Computing, 2022, 10, 1399-1413.	3.2	42
48	Emotional Contagion in Physical–Cyber Integrated Networks: The Phase Transition Perspective. IEEE Transactions on Cybernetics, 2022, 52, 7875-7888.	6.2	5
49	Spatio-Temporal-Spectral Hierarchical Graph Convolutional Network With Semisupervised Active Learning for Patient-Specific Seizure Prediction. IEEE Transactions on Cybernetics, 2022, 52, 12189-12204.	6.2	60
50	Variational Instance-Adaptive Graph for EEG Emotion Recognition. IEEE Transactions on Affective Computing, 2023, 14, 343-356.	5.7	18
51	Review of the emotional feature extraction and classification using EEG signals. Cognitive Robotics, 2021, 1, 29-40.	3.2	67
52	Memristive Circuit Design of Brain-Like Emotional Learning and Generation. IEEE Transactions on Cybernetics, 2023, 53, 222-235.	6.2	14
53	Patch Attention Layer of Embedding Handcrafted Features in CNN for Facial Expression Recognition. Sensors, 2021, 21, 833.	2.1	18
54	Graph Regularized Structured Output SVM for Early Expression Detection With Online Extension. IEEE Transactions on Cybernetics, 2023, 53, 1419-1431.	6.2	4

#	Article	IF	CITATIONS
55	Facial Expression Recognition: A Review of Trends and Techniques. IEEE Access, 2021, 9, 136944-136973.	2.6	18
56	Deep Learning in EEG: Advance of the Last Ten-Year Critical Period. IEEE Transactions on Cognitive and Developmental Systems, 2022, 14, 348-365.	2.6	41
57	SSAS: Spatiotemporal Scale Adaptive Selection for Improving Bias Correction on Precipitation. IEEE Transactions on Cybernetics, 2022, 52, 12175-12188.	6.2	3
58	Facial Expression Recognition Using Hybrid Features of Pixel and Geometry. IEEE Access, 2021, 9, 18876-18889.	2.6	34
59	Self-Paced Dynamic Infinite Mixture Model for Fatigue Evaluation of Pilots' Brains. IEEE Transactions on Cybernetics, 2022, 52, 5623-5638.	6.2	44
60	Core-Brain-Network-Based Multilayer Convolutional Neural Network for Emotion Recognition. IEEE Transactions on Instrumentation and Measurement, 2021, 70, 1-9.	2.4	20
61	Can Emotion Be Transferred?—A Review on Transfer Learning for EEG-Based Emotion Recognition. IEEE Transactions on Cognitive and Developmental Systems, 2022, 14, 833-846.	2.6	35
62	New Global Asymptotic Robust Stability of Dynamical Delayed Neural Networks via Intervalized Interconnection Matrices. IEEE Transactions on Cybernetics, 2022, 52, 11794-11804.	6.2	18
63	EEG Emotion Recognition Based on 3-D Feature Representation and Dilated Fully Convolutional Networks. IEEE Transactions on Cognitive and Developmental Systems, 2021, 13, 885-897.	2.6	20
64	Learning long-term temporal contexts using skip RNN for continuous emotion recognition. Virtual Reality & Intelligent Hardware, 2021, 3, 55-64.	1.8	7
65	Reconstruction of Missing Data in Weather Radar Image Sequences Using Deep Neuron Networks. Applied Sciences (Switzerland), 2021, 11, 1491.	1.3	2
66	A new context-based feature for classification of emotions in photographs. Multimedia Tools and Applications, 2021, 80, 15589-15618.	2.6	7
67	PAENL: personalized attraction enhanced network learning for recommendation. Neural Computing and Applications, 0 , 1 .	3.2	1
68	A survey on deep learning-based non-invasive brain signals: recent advances and new frontiers. Journal of Neural Engineering, 2021, 18, 031002.	1.8	137
69	Efficient convolutional neural network with multi-kernel enhancement features for real-time facial expression recognition. Journal of Real-Time Image Processing, 2021, 18, 2111-2122.	2.2	10
70	A new fractal pattern feature generation function based emotion recognition method using EEG. Chaos, Solitons and Fractals, 2021, 144, 110671.	2.5	70
71	Development of deep learning algorithms for predicting blastocyst formation and quality by time-lapse monitoring. Communications Biology, 2021, 4, 415.	2.0	34
72	Convolutional Neural Networks Model for Emotion Recognition Using EEG Signal. International Journal of Circuits, Systems and Signal Processing, 2021, 15, 417-433.	0.2	1

#	Article	IF	Citations
73	Deep-Emotion: Facial Expression Recognition Using Attentional Convolutional Network. Sensors, 2021, 21, 3046.	2.1	267
74	The convolutional neural network approach from electroencephalogram signals in emotional detection. Concurrency Computation Practice and Experience, 2021, 33, e6356.	1.4	3
75	An Efficient Real Time Face Expression Identification System Using SVM. Journal of Physics: Conference Series, 2021, 1916, 012229.	0.3	1
76	Expression EEG Multimodal Emotion Recognition Method Based on the Bidirectional LSTM and Attention Mechanism. Computational and Mathematical Methods in Medicine, 2021, 2021, 1-12.	0.7	13
77	Hardware Acceleration of EEG-Based Emotion Classification Systems: A Comprehensive Survey. IEEE Transactions on Biomedical Circuits and Systems, 2021, 15, 412-442.	2.7	12
78	Deep neural networks-based classification optimization by reducing the feature dimensionality with the variants of gravitational search algorithm. International Journal of Modern Physics C, 2021, 32, 2150137.	0.8	7
79	Brain-Computer Interface Speller System for Alternative Communication: A Review. Irbm, 2022, 43, 317-324.	3.7	10
80	Auto-FERNet: A Facial Expression Recognition Network With Architecture Search. IEEE Transactions on Network Science and Engineering, 2021, 8, 2213-2222.	4.1	41
81	EEG-Based Emotion Recognition by Convolutional Neural Network with Multi-Scale Kernels. Sensors, 2021, 21, 5092.	2.1	18
82	Facial emotion recognition methods, datasets and technologies: A literature survey. Materials Today: Proceedings, 2023, 80, 2824-2828.	0.9	12
83	Dual Multi-Task Network with Bridge-Temporal-Attention for Student Emotion Recognition via Classroom Video. , $2021, \ldots$		1
85	Facial Expression and EEG Fusion for Investigating Continuous Emotions of Deaf Subjects. IEEE Sensors Journal, 2021, 21, 16894-16903.	2.4	20
86	Differences first in asymmetric brain: A bi-hemisphere discrepancy convolutional neural network for EEG emotion recognition. Neurocomputing, 2021, 448, 140-151.	3.5	79
87	Konuşmalardaki duygunun evrişimsel LSTM modeli ile tespiti. DÜMF Mýhendislik Dergisi, 0, , 581-589.	0.2	3
88	Emotion Correlation Mining Through Deep Learning Models on Natural Language Text. IEEE Transactions on Cybernetics, 2021, 51, 4400-4413.	6.2	43
89	WOA-TLBO: Whale optimization algorithm with Teaching-learning-based optimization for global optimization and facial emotion recognition. Applied Soft Computing Journal, 2021, 110, 107623.	4.1	21
90	On the pitfalls of learning with limited data: A facial expression recognition case study. Expert Systems With Applications, 2021, 183, 114991.	4.4	1
91	3DCANN: A Spatio-Temporal Convolution Attention Neural Network for EEG Emotion Recognition. IEEE Journal of Biomedical and Health Informatics, 2022, 26, 5321-5331.	3.9	61

#	Article	IF	CITATIONS
92	Emotion Recognition From EEG Signals of Hearing-Impaired People Using Stacking Ensemble Learning Framework Based on a Novel Brain Network. IEEE Sensors Journal, 2021, 21, 23245-23255.	2.4	9
93	EEG-Based Brain-Computer Interfaces (BCIs): A Survey of Recent Studies on Signal Sensing Technologies and Computational Intelligence Approaches and Their Applications. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2021, 18, 1645-1666.	1.9	144
94	EEG-Based Emotion Recognition Using Regularized Graph Neural Networks. IEEE Transactions on Affective Computing, 2022, 13, 1290-1301.	5.7	240
95	Decoding Brain Representations by Multimodal Learning of Neural Activity and Visual Features. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43, 3833-3849.	9.7	43
96	Emotion Recognition using EEG and Physiological Data for Robot-Assisted Rehabilitation Systems. , 2020, , .		15
97	A Novel Spatio-Temporal Field for Emotion Recognition Based on EEG Signals. IEEE Sensors Journal, 2021, 21, 26941-26950.	2.4	7
98	Multimodal Information-Based Broad and Deep Learning Model for Emotion Understanding., 2021,,.		4
99	Faceknow: Facial Expression Recognition by a Global-Local Network with a Sub-Images-Related Contextual Attention Mechanism. Journal of Physics: Conference Series, 2021, 2026, 012029.	0.3	0
100	TFE: A Transformer Architecture for Occlusion Aware Facial Expression Recognition. Frontiers in Neurorobotics, 2021, 15, 763100.	1.6	6
101	Emotion Recognition of Chinese Paintings at the Thirteenth National Exhibition of Fines Arts in China Based on Advanced Affective Computing. Frontiers in Psychology, 2021, 12, 741665.	1.1	9
102	A Multi-Domain Adaptive Graph Convolutional Network for EEG-based Emotion Recognition. , 2021, , .		22
104	Non-intrusive Measurement of Player Engagement and Emotions - Real-Time Deep Neural Network Analysis of Facial Expressions During Game Play. Lecture Notes in Computer Science, 2020, , 330-349.	1.0	0
105	Human Abnormality Classification Using Combined CNN-RNN Approach., 2020,,.		4
106	A Computerized Approach for Automatic Human Emotion Recognition Using Sliding Mode Singular Spectrum Analysis. IEEE Sensors Journal, 2021, 21, 26931-26940.	2.4	23
107	CNN-based Broad Learning with Efficient Incremental Reconstruction Model for Facial Emotion Recognition. IFAC-PapersOnLine, 2020, 53, 10236-10241.	0.5	12
108	A Hybrid Recursive Implementation of Broad Learning With Incremental Features. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33, 1650-1662.	7.2	12
110	Two-Channel Feature Extraction Convolutional Neural Network for Facial Expression Recognition. Journal of Advanced Computational Intelligence and Intelligent Informatics, 2020, 24, 792-801.	0.5	5
111	Emotion Recognition with Short-Period Physiological Signals Using Bimodal Sparse Autoencoders. Intelligent Automation and Soft Computing, 2022, 32, 657-673.	1.6	6

#	Article	IF	CITATIONS
112	Capsule neural networks on spatio-temporal EEG frames for cross-subject emotion recognition. Biomedical Signal Processing and Control, 2022, 72, 103361.	3.5	24
113	Fuzzy Cognitive Map-Driven Comprehensive Time-Series Classification. IEEE Transactions on Cybernetics, 2023, 53, 1348-1359.	6.2	7
114	Human emotion recognition based on time–frequency analysis of multivariate EEG signal. Knowledge-Based Systems, 2022, 238, 107867.	4.0	32
115	An efficient EEGNet processor design for portable EEG-Based BCIs. Microelectronics Journal, 2022, 120, 105356.	1.1	11
116	Hierarchical Attention Networks for Grid Text Classification. , 2020, , .		3
117	Grid Text Retrieval based on Deep Learning. , 2020, , .		0
118	Virtual Temporal Samples forÂRecurrent Neural Networks: Applied toÂSemantic Segmentation inÂAgriculture. Lecture Notes in Computer Science, 2021, , 574-588.	1.0	7
119	FSE: aÂPowerful Feature Augmentation Technique forÂClassification Task. Lecture Notes in Computer Science, 2021, , 645-653.	1.0	0
120	Adaptive Spatio-Temporal Graph Information Fusion for Remaining Useful Life Prediction. IEEE Sensors Journal, 2022, 22, 3334-3347.	2.4	11
121	A Hybrid Explainable Al Framework Applied to Global and Local Facial Expression Recognition. , 2021, , .		6
122	EEG-based Emotion Recognition Using Graph Convolutional Network with Learnable Electrode Relations., 2021, 2021, 5953-5957.		3
123	Transformers for EEG-Based Emotion Recognition: A Hierarchical Spatial Information Learning Model. IEEE Sensors Journal, 2022, 22, 4359-4368.	2.4	57
124	Multilayer Network-Based CNN Model for Emotion Recognition. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2022, 32, .	0.7	7
125	Information Symmetry Matters: A Modal-Alternating Propagation Network for Few-Shot Learning. IEEE Transactions on Image Processing, 2022, 31, 1520-1531.	6.0	17
126	Deep Learning Methods for EEG Neural Classification. , 2022, , 1-39.		2
127	A Review of Recurrent Neural Network-Based Methods in Computational Physiology. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34, 6983-7003.	7.2	17
128	Efficient facial emotion recognition model using deep convolutional neural network and modified joint trilateral filter. Soft Computing, 2022, 26, 7817-7830.	2.1	7
129	Psychological and Emotional Recognition of Preschool Children Using Artificial Neural Network. Frontiers in Psychology, 2021, 12, 762396.	1.1	4

#	Article	IF	Citations
130	Deep Feature Mining via the Attention-Based Bidirectional Long Short Term Memory Graph Convolutional Neural Network for Human Motor Imagery Recognition. Frontiers in Bioengineering and Biotechnology, 2021, 9, 706229.	2.0	6
131	EEG-ITNet: An Explainable Inception Temporal Convolutional Network for Motor Imagery Classification. IEEE Access, 2022, 10, 36672-36685.	2.6	24
132	Growing Echo State Network With an Inverse-Free Weight Update Strategy. IEEE Transactions on Cybernetics, 2023, 53, 753-764.	6.2	10
133	<i>K</i> >-Means Clustering-Based Kernel Canonical Correlation Analysis for Multimodal Emotion Recognition in Human–Robot Interaction. IEEE Transactions on Industrial Electronics, 2023, 70, 1016-1024.	5.2	28
134	Linking Multi-Layer Dynamical GCN With Style-Based Recalibration CNN for EEG-Based Emotion Recognition. Frontiers in Neurorobotics, 2022, 16, 834952.	1.6	9
135	Cross-Day EEG-Based Emotion Recognition Using Transfer Component Analysis. Electronics (Switzerland), 2022, 11, 651.	1.8	9
136	Depression Assessment Method: An EEG Emotion Recognition Framework Based on Spatiotemporal Neural Network. Frontiers in Psychiatry, 2021, 12, 837149.	1.3	14
137	Unbalanced Fault Diagnosis Based on an Invariant Temporal-Spatial Attention Fusion Network. Computational Intelligence and Neuroscience, 2022, 2022, 1-15.	1.1	2
138	EEG Based Emotion Recognition: A Tutorial and Review. ACM Computing Surveys, 2023, 55, 1-57.	16.1	58
139	A new approach for product evaluation based on integration of EEG and eye-tracking. Advanced Engineering Informatics, 2022, 52, 101601.	4.0	17
140	Deep Learning Methods for Multi-Channel EEG-Based Emotion Recognition. International Journal of Neural Systems, 2022, 32, 2250021.	3.2	21
141	Non-Acted Text and Keystrokes Database and Learning Methods to Recognize Emotions. ACM Transactions on Multimedia Computing, Communications and Applications, 2022, 18, 1-24.	3.0	5
142	DRS-Net: A spatial–temporal affective computing model based on multichannel EEG data. Biomedical Signal Processing and Control, 2022, 76, 103660.	3.5	13
143	Emotion Recognition from Multi-channel EEG Data through A Dual-pipeline Graph Attention Network. , 2021, , .		6
144	A Survey on Affective Computing for Psychological Emotion Recognition. , 2021, , .		4
145	Singular Learning of Deep Multilayer Perceptrons for EEG-Based Emotion Recognition. Frontiers in Computer Science, 2021, 3, .	1.7	2
146	Temporal Hierarchical Graph Attention Network for Traffic Prediction. ACM Transactions on Intelligent Systems and Technology, 2021, 12, 1-21.	2.9	20
147	Facial expression recognition based on anomaly feature. Optical Review, 0, , .	1.2	0

#	Article	IF	CITATIONS
148	TSception: Capturing Temporal Dynamics and Spatial Asymmetry From EEG for Emotion Recognition. IEEE Transactions on Affective Computing, 2023, 14, 2238-2250.	5.7	44
149	GANSER: A Self-Supervised Data Augmentation Framework for EEG-Based Emotion Recognition. IEEE Transactions on Affective Computing, 2023, 14, 2048-2063.	5.7	21
150	Topological EEG Nonlinear Dynamics Analysis for Emotion Recognition. IEEE Transactions on Cognitive and Developmental Systems, 2023, 15, 625-638.	2.6	7
151	Multiscale Temporal Self-Attention and Dynamical Graph Convolution Hybrid Network for EEG-Based Stereogram Recognition. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2022, 30, 1191-1202.	2.7	12
152	Source Aware Deep Learning Framework for Hand Kinematic Reconstruction Using EEG Signal. IEEE Transactions on Cybernetics, 2023, 53, 4094-4106.	6.2	11
153	Global and local fusion ensemble network for facial expression recognition. Multimedia Tools and Applications, 2023, 82, 5473-5494.	2.6	4
154	Impact of self adaptive-elephant herding optimization towards neural network for facial emotion recognition. Web Intelligence, 2022, , $1\text{-}15$.	0.1	0
155	PTCERE: personality-trait mapping using cognitive-based emotion recognition from electroencephalogram signals. Visual Computer, 2023, 39, 2953-2967.	2.5	4
156	Objectivity meets subjectivity: A subjective and objective feature fused neural network for emotion recognition. Applied Soft Computing Journal, 2022, 122, 108889.	4.1	10
157	Horizontal and vertical features fusion network based on different brain regions for emotion recognition. Knowledge-Based Systems, 2022, 247, 108819.	4.0	15
158	GMSS: Graph-Based Multi-Task Self-Supervised Learning for EEG Emotion Recognition. IEEE Transactions on Affective Computing, 2023, 14, 2512-2525.	5.7	10
159	EEG emotion recognition based on enhanced SPD matrix and manifold dimensionality reduction. Computers in Biology and Medicine, 2022, 146, 105606.	3.9	15
160	IENet: a robust convolutional neural network for EEG based brain-computer interfaces. Journal of Neural Engineering, 2022, 19, 036031.	1.8	6
161	EEG-Based Subject-Independent Emotion Recognition Using Gated Recurrent Unit and Minimum Class Confusion. IEEE Transactions on Affective Computing, 2023, 14, 2740-2750.	5.7	9
162	Detecting Emotional States from Video to Improve the Electronic Patient Record. SSRN Electronic Journal, O, , .	0.4	0
163	SSVEP-Based Emotion Recognition for IoT via Multiobjective Neural Architecture Search. IEEE Internet of Things Journal, 2022, 9, 21432-21443.	5.5	5
164	A Transformer based neural network for emotion recognition and visualizations of crucial EEG channels. Physica A: Statistical Mechanics and Its Applications, 2022, 603, 127700.	1.2	19
165	Comparative analysis on Emotion Recognition by Multi-Channel CapsNet Learning Framework. Journal of Artificial Intelligence and Capsule Networks, 2022, 4, 111-121.	2.1	0

#	Article	IF	CITATIONS
166	SSTD: A Novel Spatio-Temporal Demographic Network for EEG-Based Emotion Recognition. IEEE Transactions on Computational Social Systems, 2023, 10, 376-387.	3.2	4
167	Modeling Hierarchical Uncertainty for Multimodal Emotion Recognition in Conversation. IEEE Transactions on Cybernetics, 2024, 54, 187-198.	6.2	5
168	Representation Learning and Pattern Recognition in Cognitive Biometrics: A Survey. Sensors, 2022, 22, 5111.	2.1	13
169	A Hybrid Hand-Crafted and Deep Neural Spatio-Temporal EEG Features Clustering Framework for Precise Emotional Status Recognition. Sensors, 2022, 22, 5158.	2.1	5
170	2020 International brain–computer interface competition: A review. Frontiers in Human Neuroscience, 0, 16, .	1.0	14
171	Dynamic Expression Recognition-Based Quantitative Evaluation of Teaching Validity Using Valence-Arousal Emotion Space., 2022,,.		1
172	Stress Recognition Using Sound Analysis, k-NN, Decision Tree and Artificial Intelligence Approach. , 2022, , .		3
173	EEG Emotion Recognition using Parallel Hybrid Convolutional-Recurrent Neural Networks. , 2022, , .		1
174	Time efficient real time facial expression recognition with CNN and transfer learning. Sadhana - Academy Proceedings in Engineering Sciences, 2022, 47, .	0.8	7
175	E2ENNet: An end-to-end neural network for emotional brain-computer interface. Frontiers in Computational Neuroscience, 0, 16 , .	1.2	9
176	Improved Deep Learning Method for Intelligent Analysis of Sports Training Posture. Advances in Multimedia, 2022, 2022, 1-9.	0.2	0
177	Multi-domain fusion deep graph convolution neural network for EEG emotion recognition. Neural Computing and Applications, 2022, 34, 22241-22255.	3.2	8
178	An anti-attack method for emotion categorization from images. Applied Soft Computing Journal, 2022, 128, 109456.	4.1	3
179	Suicide Ideation Detection of Covid Patients Using Machine Learning Algorithm. Computer Systems Science and Engineering, 2023, 45, 247-261.	1.9	1
180	Multi-Channel EEG Emotion Recognition Based on Parallel Transformer and 3D-Convolutional Neural Network. Mathematics, 2022, 10, 3131.	1.1	12
181	EEG-based emotion recognition using random Convolutional Neural Networks. Engineering Applications of Artificial Intelligence, 2022, 116, 105349.	4.3	14
182	EEG emotion recognition based on TQWT-features and hybrid convolutional recurrent neural network. Biomedical Signal Processing and Control, 2023, 79, 104211.	3.5	18
183	PARSE: Pairwise Alignment of Representations in Semi-Supervised EEG Learning for Emotion Recognition. IEEE Transactions on Affective Computing, 2022, 13, 2185-2200.	5.7	10

#	Article	IF	CITATIONS
184	Development of a Computer-Aided Education System Inspired by Face-to-Face Learning by Incorporating EEG-Based Neurofeedback Into Online Video Lectures. IEEE Transactions on Learning Technologies, 2023, 16, 78-91.	2.2	1
185	Dew Computing-Inspired Mental Health Monitoring System Framework Powered by a Lightweight CNN. Lecture Notes in Electrical Engineering, 2022, , 309-319.	0.3	2
186	Disentangling Identity and Pose for Facial Expression Recognition. IEEE Transactions on Affective Computing, 2022, 13, 1868-1878.	5.7	11
187	BiSMSM: A Hybrid MLP-Based Model ofÂGlobal Self-Attention Processes forÂEEG-Based Emotion Recognition. Lecture Notes in Computer Science, 2022, , 37-48.	1.0	3
188	Adaptive Hierarchical Graph Convolutional Network for EEG Emotion Recognition., 2022,,.		3
189	TcT: Temporal and channel Transformer for EEG-based Emotion Recognition. , 2022, , .		3
190	A Review of Performance Prediction Based on Machine Learning in Materials Science. Nanomaterials, 2022, 12, 2957.	1.9	8
191	A Dynamic Emotion Recognition System Based onÂConvolutional Feature Extraction andÂRecurrent Neural Network. Lecture Notes in Networks and Systems, 2023, , 134-154.	0.5	1
192	Enhanced Deep Learning Hybrid Model of CNN Based on Spatial Transformer Network for Facial Expression Recognition. International Journal of Pattern Recognition and Artificial Intelligence, 2022, 36, .	0.7	6
194	A Multi-view Spectral-Spatial-Temporal Masked Autoencoder for Decoding Emotions with Self-supervised Learning. , 2022, , .		9
195	Subject-independent EEG emotion recognition with hybrid spatio-temporal GRU-Conv architecture. Medical and Biological Engineering and Computing, 2023, 61, 61-73.	1.6	18
196	A comparison of humans and machine learning classifiers categorizing emotion from faces with different coverings. Applied Soft Computing Journal, 2022, 130, 109701.	4.1	5
197	Siam-GCAN: A Siamese Graph Convolutional Attention Network for EEG Emotion Recognition. IEEE Transactions on Instrumentation and Measurement, 2022, 71, 1-9.	2.4	13
198	Modeling and Analysis of Discrete Facial Expressions with Dense Optical Flow-Derived Features. , 0, , .		0
199	Deep Learning-Based Speech Emotion Recognition Using Multi-Level Fusion of Concurrent Features. IEEE Access, 2022, 10, 125538-125551.	2.6	17
200	Emotion recognition with residual network driven by spatial-frequency characteristics of EEG recorded from hearing-impaired adults in response to video clips. Computers in Biology and Medicine, 2023, 152, 106344.	3.9	8
201	Automatic seizure detection by convolutional neural networks with computational complexity analysis. Computer Methods and Programs in Biomedicine, 2023, 229, 107277.	2.6	19
202	Emotion Recognition based on Double Filtration Signals Learning Network on Different Hemispheres. , 2022, , .		0

#	Article	IF	CITATIONS
203	Dynamic differential entropy and brain connectivity features based EEG emotion recognition. International Journal of Intelligent Systems, 2022, 37, 12511-12533.	3.3	3
204	A progressively-enhanced framework to broad networks for efficient recognition applications. Multimedia Tools and Applications, 0, , .	2.6	0
205	TMLP+SRDANN: A domain adaptation method for EEG-based emotion recognition. Measurement: Journal of the International Measurement Confederation, 2023, 207, 112379.	2.5	6
206	Facial Expression Recognition Based on Spatial-Temporal Fusion with Attention Mechanism. Neural Processing Letters, 0, , .	2.0	1
207	A Spatiotemporal Channel Attention Residual Network With Extended Series Mean Amplitude Spectrum for Epilepsy Detection. IEEE Transactions on Cognitive and Developmental Systems, 2023, 15, 1783-1794.	2.6	1
208	An Al-Inspired Spatio-Temporal Neural Network for EEG-Based Emotional Status. Sensors, 2023, 23, 498.	2.1	3
209	Deep Spatio-Temporal Decision Fusion Network for Facial Expression Recognition. Lecture Notes in Computer Science, 2023, , 106-120.	1.0	0
210	altimg="si9.svg"> <mml:mrow><mml:msub><mml:mrow><mml:mi>â,,"</mml:mi></mml:mrow><mml:mrow><m subgradient to projection: A compact neural network for <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si10.svg"><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mm< td=""><td>3.5</td><td>2</td></mm<></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:math </m </mml:mrow></mml:msub></mml:mrow>	3.5	2
212	logistic regression. Neurocomputing, 2023, 526, 30-38. A review of Deep Learning based methods for Affect Analysis using Physiological Signals. Multimedia Tools and Applications, 2023, 82, 26089-26134.	2.6	6
213	A Method for Classification and Evaluation of Pilot's Mental States Based on CNN. Computer Systems Science and Engineering, 2023, 46, 1999-2020.	1.9	1
214	EEG-Based Emotion Identification Using 1-D Deep Residual Shrinkage Network With Microstate Features. IEEE Sensors Journal, 2023, 23, 5165-5174.	2.4	3
215	SEER-net: Simple EEG-based Recognition network. Biomedical Signal Processing and Control, 2023, 83, 104620.	3.5	5
216	Stochastic weight averaging enhanced temporal convolution network for EEG-based emotion recognition. Biomedical Signal Processing and Control, 2023, 83, 104661.	3.5	3
217	A Deep Learning-Based Pipeline for Multi-Class Motor Imagery Problems with Small Portion of Labeled Datasets., 2022,,.		0
218	Overall mortality risk analysis for rectal cancer using deep learning-based fuzzy systems. Computers in Biology and Medicine, 2023, 157, 106706.	3.9	1
219	A systematic review on automated human emotion recognition using electroencephalogram signals and artificial intelligence. Results in Engineering, 2023, 18, 101027.	2.2	13
220	GLFANet: A global to local feature aggregation network for EEG emotion recognition. Biomedical Signal Processing and Control, 2023, 85, 104799.	3.5	19
221	Emotion Recognition Based onÂMulti-scale Convolutional Neural Network. Communications in Computer and Information Science, 2022, , 152-164.	0.4	1

#	Article	IF	CITATIONS
222	Amplified radio-over-fiber system linearization using recurrent neural networks. Journal of Optical Communications and Networking, 2023, 15, 144.	3.3	4
223	Deep Learning Methods for EEG Neural Classification. , 2023, , 2821-2859.		1
225	EEG-based emotion recognition with cascaded convolutional recurrent neural networks. Pattern Analysis and Applications, 2023, 26, 783-795.	3.1	5
226	Facial expression recognition based on regional adaptive correlation. IET Computer Vision, 2023, 17, 445-460.	1.3	2
227	A Spiking Neural Network With Adaptive Graph Convolution and LSTM for EEG-Based Brain-Computer Interfaces. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2023, 31, 1440-1450.	2.7	6
228	Deep learning-based EEG emotion recognition: Current trends and future perspectives. Frontiers in Psychology, $0,14,.$	1.1	6
229	Deep Learning Taxonomy on Human Face Expression Recognition for Communication Applications. Communications in Computer and Information Science, 2023, , 91-102.	0.4	0
230	Facial emotion recognition using hybrid features-novel leaky rectified triangle linear unit activation function based deep convolutional neural network. I-manager's Journal on Image Processing, 2022, 9, 12.	0.1	0
231	Enhancing Feature Extraction Technique Through Spatial Deep Learning Model for Facial Emotion Detection. Annals of Emerging Technologies in Computing, 2023, 7, 9-22.	1.0	2
232	Dual-Encoder VAE-GAN With Spatiotemporal Features for Emotional EEG Data Augmentation. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2023, 31, 2018-2027.	2.7	5
233	Emotion Recognition from Spatio-Temporal Representation of EEG Signals via 3D-CNN with Ensemble Learning Techniques. Brain Sciences, 2023, 13, 685.	1.1	4
234	From gram to attention matrices: a monotonicity constrained method for eeg-based emotion classification. Applied Intelligence, 0, , .	3.3	0
238	A Survey on Human Face Emotion Recognition using Machine Learning Models., 2023,,.		2
247	Hand 3D Trajectory Estimation for BCI Application. , 2023, , .		1
258	EEG-based Emotion Recognition Using Multi-Dimensional Convolutional Neural LSTM via Attention Mechanism. , 2023, , .		0
259	An Interactive Voicebot for Visually Challenged: Empowering the Realm Among Deaf-Mute and Normal Community. Smart Innovation, Systems and Technologies, 2023, , 139-151.	0.5	0
275	Spatial-Temporal Constraint Learning for Cross-Subject EEG-Based Emotion Recognition., 2023,,.		0
277	Rethinking the Learning Paradigm for Dynamic Facial Expression Recognition. , 2023, , .		7

#	Article	IF	CITATIONS
280	A Short Survey of Elucidating the Emotion Recognition Methodologies Using Facial Images and EEG Signals. Lecture Notes in Networks and Systems, 2023, , 425-438.	0.5	0
292	Unique Covariate Identity (UCI) Detection for Emotion Recognition Through EEG Signals. Lecture Notes in Electrical Engineering, 2024, , 737-749.	0.3	0
297	ASTDF-Net: Attention-Based Spatial-Temporal Dual-Stream Fusion Network for EEG-Based Emotion Recognition. , 2023 , , .		0
298	Transfer Learning-Based Effective Facial Emotion Recognition Using Contrast Limited Adaptive Histogram Equalization (CLAHE). Lecture Notes in Electrical Engineering, 2024, , 273-286.	0.3	0
306	Dynamic Graph Attention: Unraveling Spatio-Temporal Synchrony in EEG Data., 2023,,.		0
308	Spatio-Temporal Swin Transformer-based 4-D EEG Emotion Recognition. , 2023, , .		0
309	A Multitask Framework for Emotion Recognition Using EEG and Eye Movement Signals with Adversarial Training and Attention Mechanism. , 2023, , .		0
312	Multi-Class Image Generation from EEG Features with Conditional Generative Adversarial Networks. , 2023, , .		0
316	Integrating Machine Learning Algorithms with EEG Signals to Identify Emotions Among University Students. Lecture Notes in Networks and Systems, 2024, , 334-342.	0.5	0
318	Enhancing Autism Spectrum Disorder Recognition in EEG Data through Filtering-Driven CNN Approach. , 2024, , .		0
320	EEG-Based Classification of Cognitive Load and Task Conditions for AR Supported Construction Assembly: A Deep Learning Approach. , 2024, , .		0