A new variant of cuckoo search algorithm with self adap RFID network planning problem

Wireless Networks 25, 1585-1604 DOI: 10.1007/s11276-017-1616-9

Citation Report

#	Article	IF	CITATIONS
1	Improvement and Application of Adaptive Hybrid Cuckoo Search Algorithm. IEEE Access, 2019, 7, 145489-145515.	2.6	13
2	Improved cuckoo search algorithm and its application to permutation flow shop scheduling problem. Journal of Algorithms and Computational Technology, 2020, 14, 174830262096240.	0.4	9
3	LBTM: Listen-before-Talk Protocol for Multiclass UHF RFID Networks. Sensors, 2020, 20, 2313.	2.1	2
4	A new algorithm based CSP framework for RFID network planning. Journal of Ambient Intelligence and Humanized Computing, 2021, 12, 2905-2914.	3.3	4
5	A Self-Adaptive Cuckoo Search Algorithm Using a Machine Learning Technique. Mathematics, 2021, 9, 1840.	1.1	8
6	Multi-objective optimal RFID reader deployment using a Leaders and Followers algorithm. Computers and Electrical Engineering, 2021, 94, 107323.	3.0	3
7	Swarm intelligence RFID network planning using multi-antenna readers for asset tracking in hospital environments. Computer Networks, 2021, 198, 108427.	3.2	23
8	A novel version of Cuckoo search algorithm for solving optimization problems. Expert Systems With Applications, 2021, 186, 115669.	4.4	95
9	Research on RFID Network Planning Based on Directional and Omnidirectional Antenna Readers. Lecture Notes on Data Engineering and Communications Technologies, 2021, , 1192-1202.	0.5	0
10	RFID systems optimisation through the use of a new RFID network planning algorithm to support the design of receiving gates. Journal of Intelligent Manufacturing, 2023, 34, 1389-1407.	4.4	3
11	RFID Network Planning for Flexible Manufacturing Workshop with Multiple Coverage Requirements. , 2020, , .		1
12	Application of Bare-bones Cuckoo Search Algorithm for Generator Fault Diagnosis. Recent Advances in Electrical and Electronic Engineering, 2022, 15, 4-11.	0.2	0
13	Neighborhood Learning-Based Cuckoo Search Algorithm for Global Optimization. International Journal of Pattern Recognition and Artificial Intelligence, 2022, 36, .	0.7	4
14	Multi-Objective Mayfly Optimization Algorithm Based on Dimensional Swap Variation for RFID Network Planning. IEEE Sensors Journal, 2022, 22, 7311-7323.	2.4	3
15	RFID Indoor Positioning Based on AP Clustering and Improved Particle Swarm Algorithm. Journal of Sensors, 2022, 2022, 1-19.	0.6	3
16	Mayfly Sparrow Search Hybrid Algorithm for RFID Network Planning. IEEE Sensors Journal, 2022, 22, 16673-16686.	2.4	8
18	Cuckoo Search Algorithm with Normal Distribution and Its Application in Lychee Image Segmentation. , 2023, , .		0