Coexistence and association between heavy metals, tetr resistance genes in vermicomposts originating from dif

Environmental Pollution 244, 28-37 DOI: 10.1016/j.envpol.2018.10.022

Citation Report

#	Article	IF	CITATIONS
1	Effects of tetracycline residuals on humification, microbial profile and antibiotic resistance genes during vermicomposting of dewatered sludge. Environmental Pollution, 2019, 252, 1068-1077.	3.7	60
2	The effects of tetracycline concentrations on tetracycline resistance genes and their bacterial hosts in the gut passages of earthworms (Eisenia fetida) feeding on domestic sludge. Environmental Science and Pollution Research, 2019, 26, 34412-34420.	2.7	6
3	Synergistic co-removal of zinc(II) and cefazolin by a Fe/amine-modified chitosan composite. Chinese Chemical Letters, 2019, 30, 2196-2200.	4.8	33
4	Distribution of antibiotics, metals and antibiotic resistance genes during landfilling process in major municipal solid waste landfills. Environmental Pollution, 2019, 255, 113222.	3.7	42
5	A review of bacteriophage therapy for pathogenic bacteria inactivation in the soil environment. Environment International, 2019, 129, 488-496.	4.8	51
6	New insight into adsorption and co-adsorption of arsenic and tetracycline using a Y-immobilized graphene oxide-alginate hydrogel: Adsorption behaviours and mechanisms. Science of the Total Environment, 2020, 701, 134363.	3.9	75
7	Profiles of ARGs and their relationships with antibiotics, metals and environmental parameters in vertical sediment layers of three lakes in China. Journal of Environmental Management, 2020, 255, 109583.	3.8	46
8	Elimination of antibiotic resistance genes and human pathogenic bacteria by earthworms during vermicomposting of dewatered sludge by metagenomic analysis. Bioresource Technology, 2020, 297, 122451.	4.8	75
9	Critical insight into the fate of antibiotic resistance genes during biological treatment of typical biowastes. Bioresource Technology, 2020, 317, 123974.	4.8	39
10	Dose effect of Zn and Cu in sludge-amended soils on vegetable uptake of trace elements, antibiotics, and antibiotic resistance genes: Human health implications. Environmental Research, 2020, 191, 109879.	3.7	20
11	Bacterial Community Tolerance to Tetracycline Antibiotics in Cu Polluted Soils. Agronomy, 2020, 10, 1220.	1.3	10
12	Impact of electrokinetic remediation of heavy metal contamination on antibiotic resistance in soil. Chemical Engineering Journal, 2020, 400, 125866.	6.6	31
13	Ecological role of earthworm intestinal bacteria in terrestrial environments: A review. Science of the Total Environment, 2020, 740, 140008.	3.9	75
14	Evaluating responses of nitrification and denitrification to the co-selective pressure of divalent zinc and tetracycline based on resistance genes changes. Bioresource Technology, 2020, 314, 123769.	4.8	57
15	World within world: Intestinal bacteria combining physiological parameters to investigate the response of Metaphire guillelmi to tetracycline stress. Environmental Pollution, 2020, 261, 114174.	3.7	20
16	Effects of biochars on the fate of antibiotics and their resistance genes during vermicomposting of dewatered sludge. Journal of Hazardous Materials, 2020, 397, 122767.	6.5	30
17	Analysis of heavy metal-related indices in the Eboling permafrost on the Tibetan Plateau. Catena, 2021, 196, 104907.	2.2	8
18	Coexistence between antibiotic resistance genes and metal resistance genes in manure-fertilized soils. Geoderma, 2021, 382, 114760.	2.3	38

#	Article	IF	CITATIONS
19	Effect of immobilized anthraquinone-2-sulfonate on antibiotic resistance genes and microbial community in biofilms of anaerobic reactors. Journal of Environmental Management, 2021, 282, 111967.	3.8	3
20	Effects of struvite-loaded zeolite amendment on the fate of copper, tetracycline and antibiotic resistance genes in microplastic-contaminated soil. Chemical Engineering Journal, 2022, 430, 130478.	6.6	9
21	Heavy Metal Tolerance Genes Associated With Contaminated Sediments From an E-Waste Recycling River in Southern China. Frontiers in Microbiology, 2021, 12, 665090.	1.5	16
22	Heavy metals tolerance in bacteria from industrial wastewater. GSC Biological and Pharmaceutical Sciences, 2021, 15, 307-317.	0.1	0
23	Distribution and Influence on the Microbial Ecological Relationship of Antibiotic Resistance Genes in Soil at a Watershed Scale. Sustainability, 2021, 13, 9748.	1.6	6
24	Distribution of quinolone and macrolide resistance genes and their co-occurrence with heavy metal resistance genes in vegetable soils with long-term application of manure. Environmental Geochemistry and Health, 2022, 44, 3343-3358.	1.8	7
25	Superhigh co-adsorption of tetracycline and copper by the ultrathin g-C3N4 modified graphene oxide hydrogels. Journal of Hazardous Materials, 2022, 424, 127362.	6.5	70
26	Effects of coexistence of tetracycline, copper and microplastics on the fate of antibiotic resistance genes in manured soil. Science of the Total Environment, 2021, 790, 148087.	3.9	47
27	Response of extracellular polymeric substances and microbial community structures on resistance genes expression in wastewater treatment containing copper oxide nanoparticles and humic acid. Bioresource Technology, 2021, 340, 125741.	4.8	24
28	Co-oxidative removal of arsenite and tetracycline based on a heterogeneous Fenton-like reaction using iron nanoparticles-impregnated biochar. Environmental Pollution, 2021, 290, 118062.	3.7	60
29	Incubation trial indicated the earthworm intestinal bacteria as promising biodigestor for mitigating tetracycline resistance risk in anthropogenic disturbed forest soil. Science of the Total Environment, 2021, 798, 149337.	3.9	14
30	Occurrence, fate, and risk assessment of typical tetracycline antibiotics in the aquatic environment: A review. Science of the Total Environment, 2021, 753, 141975.	3.9	476
31	Bacteriophages for Environmental Applications: Effect of Trans-organismic Communication on Wastewater Treatments. , 2020, , 485-502.		1
32	Reducing residues of tetracycline and its resistance genes in soil-maize system and improving plant growth: Selecting the best remediation substance. Pedosphere, 2022, 32, 268-282.	2.1	4
33	Co-Existence and Proliferation of Heavy Metal and Antibiotic Resistance in Urban Sewage Treatment Plants. SSRN Electronic Journal, 0, , .	0.4	0
34	Effects of Mn2+ and humic acid on microbial community structures, functional genes for nitrogen and phosphorus removal, and heavy metal resistance genes in wastewater treatment. Journal of Environmental Management, 2022, 313, 115028.	3.8	22
35	Insight into soilless revegetation of oligotrophic and heavy metal contaminated gold tailing pond by metagenomic analysis. Journal of Hazardous Materials, 2022, 435, 128881.	6.5	15
36	Immobilization of cadmium by mercapto-functionalized palygorskite under stimulated acid rain: Stability performance and micro-ecological response. Environmental Pollution, 2022, 306, 119400	3.7	8

CITATION REPORT

#	Article	IF	CITATIONS
37	Heavy Metals Drive Co-Selection of Antibiotic Resistance Genes by Shifting Soil Bacterial Communities in Paddy Soils Along Middle and Lower Yangtze River. SSRN Electronic Journal, 0, , .	0.4	0
38	Effects of heavy metals on the development and proliferation of antibiotic resistance in urban sewage treatment plants. Environmental Pollution, 2022, 308, 119649.	3.7	14
39	The Dual Roles of Nano Zero-Valent Iron and Zinc Oxide in Antibiotics Resistance Genes (ARGs) Spread in Sediment. International Journal of Environmental Research and Public Health, 2022, 19, 9405.	1.2	1
40	Controlling AMR in the Pig Industry: Is It Enough to Restrict Heavy Metals?. International Journal of Environmental Research and Public Health, 2022, 19, 11265.	1.2	2
42	Heavy metals potentially drive co-selection of antibiotic resistance genes by shifting soil bacterial communities in paddy soils along middle and lower Yangtze River. Pedosphere, 2023, , .	2.1	1
43	The characteristics and metabolic potentials of the soil bacterial community of two typical military demolition ranges in China. Science of the Total Environment, 2023, 874, 162562.	3.9	0
44	Change of tetracycline speciation and its impacts on tetracycline removal efficiency in vermicomposting with epigeic and endogeic earthworms. Science of the Total Environment, 2023, 881, 163410.	3.9	7
45	Can Antibiotic Resistance Genes in Household Food Waste be Reduced by Earthworm Vermicomposting? Underpinning Mechanisms and Strategies. Reviews of Environmental Contamination and Toxicology, 2023, 261, .	0.7	0
46	Vermicompost: A Potential Reservoir of Antimicrobial Resistant Microbes (ARMs) and Genes (ARGs). , 2023, , 307-333.		0
53	Removal of antibiotic resistance genes in sewage sludge vermicomposting. , 2024, , 169-177.		Ο