Transition Metal Complexes and Photodynamic Therap Challenges, Opportunities, and Highlights from the Dev

Chemical Reviews 119, 797-828

DOI: 10.1021/acs.chemrev.8b00211

Citation Report

#	Article	IF	CITATIONS
1	Mechanisms of action of Ru(<scp>ii</scp>) polypyridyl complexes in living cells upon light irradiation. Chemical Communications, 2018, 54, 13040-13059.	2.2	80
2	Cationic Chalcogenoviologen Derivatives for Photodynamic Antimicrobial Therapy and Skin Regeneration. Chemistry - A European Journal, 2019, 25, 13472-13478.	1.7	24
3	Photothermal Therapy Nanomaterials Boosting Transformation of Fe(III) into Fe(II) in Tumor Cells for Highly Improving Chemodynamic Therapy. ACS Applied Materials & Interfaces, 2019, 11, 31735-31742.	4.0	109
4	Oxygen self-sufficient NIR-activatable liposomes for tumor hypoxia regulation and photodynamic therapy. Chemical Science, 2019, 10, 9091-9098.	3.7	81
5	Neutral iridium(III) complexes bearing BODIPY-substituted N-heterocyclic carbene (NHC) ligands: synthesis, photophysics, in vitro theranostic photodynamic therapy, and antimicrobial activityâ€. Photochemical and Photobiological Sciences, 2019, 18, 2381-2396.	1.6	23
6	Perspectives of molecular and nanostructured systems with d- and f-block metals in photogeneration of reactive oxygen species for medical strategies. Coordination Chemistry Reviews, 2019, 398, 113012.	9.5	23
7	A biotinylated ruthenium(<scp>ii</scp>) photosensitizer for tumor-targeted two-photon photodynamic therapy. Chemical Communications, 2019, 55, 10972-10975.	2.2	42
8	Iron oxides with a reverse spinel structure: impact of active sites on molecule adsorption. Inorganic Chemistry Frontiers, 2019, 6, 2810-2816.	3.0	12
9	Thermally activated delayed fluorescence molecules and their new applications aside from OLEDs. Chinese Chemical Letters, 2019, 30, 1717-1730.	4.8	57
10	Towards Long Wavelength Absorbing Photodynamic Therapy Photosensitizers via the Extension of a [Ru(bipy) ₃] ²⁺ Core. European Journal of Inorganic Chemistry, 2019, 2019, 3704-3712.	1.0	31
11	Molecular superoxide radical photogeneration in cancer cells by dipyridophenazine iridium(<scp>iii</scp>) complexes. Inorganic Chemistry Frontiers, 2019, 6, 2500-2513.	3.0	36
12	Polymeric Encapsulation of Novel Homoleptic Bis(dipyrrinato) Zinc(II) Complexes with Long Lifetimes for Applications as Photodynamic Therapy Photosensitisers. Angewandte Chemie, 2019, 131, 14472-14478.	1.6	23
13	Polymeric Encapsulation of Novel Homoleptic Bis(dipyrrinato) Zinc(II) Complexes with Long Lifetimes for Applications as Photodynamic Therapy Photosensitisers. Angewandte Chemie - International Edition, 2019, 58, 14334-14340.	7.2	100
14	Binding mechanisms of half-sandwich Rh(III) and Ru(II) arene complexes on human serum albumin: a comparative study. Journal of Biological Inorganic Chemistry, 2019, 24, 703-719.	1.1	43
15	Photophysical Properties and Photobiological Activities of Ruthenium(II) Complexes Bearing Ï€-Expansive Cyclometalating Ligands with Thienyl Groups. Inorganic Chemistry, 2019, 58, 10778-10790.	1.9	34
16	Unconventional Anticancer Metallodrugs and Strategies to Improve Their Pharmacological Profile. Inorganics, 2019, 7, 88.	1.2	7
17	Functionalization and cancer-targeting design of ruthenium complexes for precise cancer therapy. Chemical Communications, 2019, 55, 9904-9914.	2.2	100
18	Synthesis and biological evaluation of an epidermal growth factor receptor-targeted peptide-conjugated phthalocyanine-based photosensitiser. RSC Advances, 2019, 9, 20652-20662.	1.7	20

#	Article	IF	CITATIONS
19	Visible light-induced cytotoxicity studies on Co(<scp>ii</scp>) complexes having an anthracene-based curcuminoid ligand. Dalton Transactions, 2019, 48, 12933-12942.	1.6	18
20	Metal-based antibody drug conjugates. Potential and challenges in their application as targeted therapies in cancer. Journal of Inorganic Biochemistry, 2019, 199, 110780.	1.5	33
21	Ruthenium(II) Complexes as Potential Apoptosis Inducers in Cancer Therapy. Serbian Journal of Experimental and Clinical Research, 2019, .	0.2	0
22	Anticancer platinum agents and light. Inorganica Chimica Acta, 2019, 495, 118981.	1.2	25
23	Partially Solvated Dinuclear Ruthenium Compounds Bridged by Quinoxaline-Functionalized Ligands as Ru(II) Photocage Architectures for Low-Energy Light Absorption. Inorganic Chemistry, 2019, 58, 14568-14576.	1.9	8
24	Tuning Polyamidoamine Design To Increase Uptake and Efficacy of Ruthenium Complexes for Photodynamic Therapy. Inorganic Chemistry, 2019, 58, 14586-14599.	1.9	15
25	Selective Photoinactivation of Methicillinâ€Resistant <i>Staphylococcus aureus</i> by Highly Positively Charged Ru ^{II} Complexes. Chemistry - A European Journal, 2019, 25, 13879-13884.	1.7	30
26	Near-IR/Visible-Emitting Thiophenyl-Based Ru(II) Complexes: Efficient Photodynamic Therapy, Cellular Uptake, and DNA Binding. Inorganic Chemistry, 2019, 58, 14244-14259.	1.9	26
27	Elucidation of the photoaquation reaction mechanism in ferrous hexacyanide using synchrotron x-rays with sub-pulse-duration sensitivity. Journal of Chemical Physics, 2019, 151, 144306.	1.2	24
28	Exploring the Phototoxicity of Hypoxic Active Iridium(III)-Based Sensitizers in 3D Tumor Spheroids. Journal of the American Chemical Society, 2019, 141, 18486-18491.	6.6	80
29	Targeting G-quadruplexes with Organic Dyes: Chelerythrine–DNA Binding Elucidated by Combining Molecular Modeling and Optical Spectroscopy. Antioxidants, 2019, 8, 472.	2.2	15
30	Quinoline onjugated Ruthenacarboranes: Toward Hybrid Drugs with a Dual Mode of Action. ChemMedChem, 2019, 14, 2061-2074.	1.6	9
31	Towards Identification of Essential Structural Elements of Organoruthenium(II)â€Pyrithionato Complexes for Anticancer Activity. Chemistry - A European Journal, 2019, 25, 14169-14182.	1.7	22
32	Fast repetition rate fs pulsed lasers for advanced PLIM microscopy. Journal of Innovative Optical Health Sciences, 2019, 12, 1940004.	0.5	1
33	The stepwise photodamage of organelles by two-photon luminescent ruthenium(<scp>ii</scp>) photosensitizers. Chemical Communications, 2019, 55, 11235-11238.	2.2	24
34	Chemistry and reactivity of ruthenium(II) complexes: DNA/protein binding mode and anticancer activity are related to the complex structure. Coordination Chemistry Reviews, 2019, 398, 113011.	9.5	116
35	Photofunctions of iridium(iii) complexes in vesicles: long-lived excited states and visible-light sensitization for hydrogen evolution in aqueous solution. Dalton Transactions, 2019, 48, 14914-14925.	1.6	18
36	A self-assembled Ru–Pt metallacage as a lysosome-targeting photosensitizer for 2-photon photodynamic therapy. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 20296-20302.	3.3	113

#	Article	IF	CITATIONS
37	Luminescent Ruthenium(II) Polypyridine Complexes for a Wide Variety of Biomolecular and Cellular Applications. Inorganic Chemistry, 2019, 58, 2231-2247.	1.9	119
38	Catalysis Concepts in Medicinal Inorganic Chemistry. Chemistry - A European Journal, 2019, 25, 6651-6660.	1.7	35
39	A ruthenium(II) complex with a methylated polypyridine ligand: synthesis, DNA binding, and antiproliferation activity. Transition Metal Chemistry, 2019, 44, 699-705.	0.7	1
40	New Class of Homoleptic and Heteroleptic Bis(terpyridine) Iridium(III) Complexes with Strong Photodynamic Therapy Effects. ACS Applied Bio Materials, 2019, 2, 2964-2977.	2.3	45
41	Systematic investigation of the antiproliferative activity of a series of ruthenium terpyridine complexes. Journal of Inorganic Biochemistry, 2019, 198, 110752.	1.5	47
42	Epidermal Growth Factor Receptor-Targeted Delivery of a Singlet-Oxygen Sensitizer with Thermal Controlled Release for Efficient Anticancer Therapy. Molecular Pharmaceutics, 2019, 16, 3703-3710.	2.3	14
43	Diazido platinum(<scp>iv</scp>) complexes for photoactivated anticancer chemotherapy. Inorganic Chemistry Frontiers, 2019, 6, 1623-1638.	3.0	84
44	Evaluation of the Potential of Cobalamin Derivatives Bearing Ru(II) Polypyridyl Complexes as Photosensitizers for Photodynamic Therapy. Helvetica Chimica Acta, 2019, 102, e1900104.	1.0	21
45	Preclinical evaluation of an unconventional rutheniumâ€goldâ€based chemotherapeutic: RANCEâ€1, in clear cell renal cell carcinoma. Cancer Medicine, 2019, 8, 4304-4314.	1.3	8
46	A Ru(II) polypyridyl complex bearing aldehyde functions as a versatile synthetic precursor for long-wavelength absorbing photodynamic therapy photosensitizers. Bioorganic and Medicinal Chemistry, 2019, 27, 2666-2675.	1.4	38
47	Cu ^{II} and Au ^{III} Complexes with Glycoconjugated Dithiocarbamato Ligands for Potential Applications in Targeted Chemotherapy. ChemMedChem, 2019, 14, 1162-1172.	1.6	17
48	In Vivo Anticancer Activity of a Rhenium(I) Tricarbonyl Complex. ACS Medicinal Chemistry Letters, 2019, 10, 822-827.	1.3	64
49	Pyridone-containing phenalenone-based photosensitizer working both under light and in the dark for photodynamic therapy. Bioorganic and Medicinal Chemistry, 2019, 27, 2201-2208.	1.4	12
50	Overview of Recent Strategic Advances in Medicinal Chemistry. Journal of Medicinal Chemistry, 2019, 62, 9375-9414.	2.9	108
51	Dual-action platinum(II) Schiff base complexes: Photocytotoxicity and cellular imaging. Polyhedron, 2019, 172, 157-166.	1.0	13
52	G-Quadruplex/Porphyrin Composite Photosensitizer: A Facile Way to Promote Absorption Redshift and Photodynamic Therapy Efficacy. ACS Applied Materials & Interfaces, 2019, 11, 13158-13167.	4.0	44
53	Towards Novel Photodynamic Anticancer Agents Generating Superoxide Anion Radicals: A Cyclometalated Ir ^{III} Complex Conjugated to a Farâ€Red Emitting Coumarin. Angewandte Chemie - International Edition, 2019, 58, 6311-6315.	7.2	142
54	Investigation of photo-activation on ruthenium(II)–arene complexes for the discovery of potential selective cytotoxic agents. Polyhedron, 2019, 172, 22-27.	1.0	16

#	Article	IF	CITATIONS
55	Towards Novel Photodynamic Anticancer Agents Generating Superoxide Anion Radicals: A Cyclometalated Ir ^{III} Complex Conjugated to a Farâ€Red Emitting Coumarin. Angewandte Chemie, 2019, 131, 6377-6381.	1.6	28
56	Polymer encapsulation of ruthenium complexes for biological and medicinal applications. Nature Reviews Chemistry, 2019, 3, 261-282.	13.8	119
57	Preparation of Titanocene–Gold Compounds Based on Highly Active Gold(I)â€ <i>N</i> â€Heterocyclic Carbene Anticancer Agents: Preliminary inâ€vitro Studies in Renal and Prostate Cancer Cell Lines. ChemMedChem, 2019, 14, 1086-1095.	1.6	26
58	Endoplasmic reticulum targeted cyclometalated iridium(<scp>iii</scp>) complexes as efficient photodynamic therapy photosensitizers. Dalton Transactions, 2019, 48, 6408-6415.	1.6	64
59	A nuclear permeable Ru(ii)-based photoactivated chemotherapeutic agent towards a series of cancer cells: in vitro and in vivo studies. Dalton Transactions, 2019, 48, 6492-6500.	1.6	26
60	Luminescent Platinum(IV) Complexes Bearing Cyclometalated 1,2,3â€Triazolylidene and Bi―or Terdentate 2,6â€Điarylpyridine Ligands. Chemistry - A European Journal, 2019, 25, 6014-6025.	1.7	24
61	New organoruthenium compounds with pyrido[2′,3′:5,6]pyrazino[2,3-f][1, 10]phenanthroline: synthesis, characterization, cytotoxicity, and investigation of mechanism of action. Journal of Biological Inorganic Chemistry, 2019, 24, 297-310.	1.1	11
62	Biocompatible ruthenium polypyridyl complexes as efficient radiosensitizers. Dalton Transactions, 2019, 48, 4114-4118.	1.6	10
63	Effects of the Peripheral Substituents, Central Metal, and Solvent on the Photochemical and Photophysical Properties of 5,15â€Diazaporphyrins. ChemPlusChem, 2019, 84, 740-745.	1.3	7
64	Predictive Strength of Photophysical Measurements for in Vitro Photobiological Activity in a Series of Ru(II) Polypyridyl Complexes Derived from π-Extended Ligands. Inorganic Chemistry, 2019, 58, 3156-3166.	1.9	29
65	Luminescent ruthenium(II) polypyridyl complexes acted as radiosensitizer for pancreatic cancer by enhancing radiation-induced DNA damage. Theranostics, 2019, 9, 6665-6675.	4.6	14
66	Photoswitchable phthalocyanine-assembled nanoparticles for controlled "double-lock― photodynamic therapy. Chemical Communications, 2019, 55, 12316-12319.	2.2	18
67	The Influence of Light on Reactive Oxygen Species and NF-кB in Disease Progression. Antioxidants, 2019, 8, 640.	2.2	47
68	Unveiling coupled electronic and vibrational motions of chromophores in condensed phases. Journal of Chemical Physics, 2019, 151, 200901.	1.2	40
69	Selective synthesis, reactivity and luminescence of unsymmetrical bis-cyclometalated Pt(iv) complexes. Dalton Transactions, 2019, 48, 14367-14382.	1.6	16
70	Synthesis, Characterization, and Biological Evaluation of Red-Absorbing Fe(II) Polypyridine Complexes. Inorganics, 2019, 7, 4.	1.2	29
71	Nucleusâ€Targeted Organoiridium–Albumin Conjugate for Photodynamic Cancer Therapy. Angewandte Chemie - International Edition, 2019, 58, 2350-2354.	7.2	134
72	Zâ€6cheme Heterojunction Functionalized Pyrite Nanosheets for Modulating Tumor Microenvironment and Strengthening Photo/Chemodynamic Therapeutic Effects. Advanced Functional Materials, 2020, 30, 1906466.	7.8	89

#	Article	IF	Citations
73	Synthesis, Characterisation and Biological Evaluation of π-Extended Fe(II) Bipyridine Complexes as Potential Photosensitizers for Photodynamic Therapy. Inorganica Chimica Acta, 2020, 499, 119196.	1.2	10
74	Oxidovanadium(V) complexes as promising anticancer photosensitizers. Journal of Inorganic Biochemistry, 2020, 203, 110862.	1.5	10
75	New Designs for Phototherapeutic Transition Metal Complexes. Angewandte Chemie, 2020, 132, 61-73.	1.6	53
76	New Designs for Phototherapeutic Transition Metal Complexes. Angewandte Chemie - International Edition, 2020, 59, 61-73.	7.2	257
77	Synthesis and Characterization of an Epidermal Growth Factor Receptor‧elective Ru ^{II} Polypyridyl–Nanobody Conjugate as a Photosensitizer for Photodynamic Therapy. ChemBioChem, 2020, 21, 531-542.	1.3	35
78	Strained, Photoejecting Ru(II) Complexes that are Cytotoxic Under Hypoxic Conditions. Photochemistry and Photobiology, 2020, 96, 327-339.	1.3	38
79	Classification of Metal-Based Drugs according to Their Mechanisms of Action. CheM, 2020, 6, 41-60.	5.8	231
80	Highly Efficient Singlet Oxygen Generators Based on Ruthenium Phthalocyanines: Synthesis, Characterization and in vitro Evaluation for Photodynamic Therapy. Chemistry - A European Journal, 2020, 26, 1789-1799.	1.7	27
81	A near infrared dye-coated silver nanoparticle/carbon dot nanocomposite for targeted tumor imaging and enhanced photodynamic therapy. Nanoscale Advances, 2020, 2, 489-494.	2.2	10
82	Enhancing Photodynamic Therapy Efficacy of Upconversion-Based Nanoparticles Conjugated with a Long-Lived Triplet Excited State Iridium(III)-Naphthalimide Complex: Toward Highly Enhanced Hypoxia-Inducible Factor-1. ACS Applied Bio Materials, 2020, 3, 252-262.	2.3	31
83	Recent advances and prospects of carbon dots in cancer nanotheranostics. Materials Chemistry Frontiers, 2020, 4, 449-471.	3.2	101
84	Polyphotosensitizer nanogels for GSH-responsive histone deacetylase inhibitors delivery and enhanced cancer photodynamic therapy. Colloids and Surfaces B: Biointerfaces, 2020, 188, 110753.	2.5	19
85	Metal-based photosensitizers for photodynamic therapy: the future of multimodal oncology?. Current Opinion in Chemical Biology, 2020, 56, 23-27.	2.8	224
86	Synthesis and biological assessment of a ruthenium(II) cyclopentadienyl complex in breast cancer cells and on the development of zebrafish embryos. European Journal of Medicinal Chemistry, 2020, 188, 112030.	2.6	31
87	Photodynamic antitumor activity of Ru(<scp>ii</scp>) complexes of imidazo-phenanthroline conjugated hydroxybenzoic acid as tumor targeting photosensitizers. Journal of Materials Chemistry B, 2020, 8, 438-446.	2.9	16
88	Lightâ€Activated Rhenium Complexes with Dual Mode of Action against Bacteria. Chemistry - A European Journal, 2020, 26, 2852-2858.	1.7	34
89	A Ru ^{II} Polypyridyl Alkyne Complex Based Metal–Organic Frameworks for Combined Photodynamic/Photothermal/Chemotherapy. Chemistry - A European Journal, 2020, 26, 1668-1675.	1.7	29
90	Ruthenium(II) Conjugates of Boron-Dipyrromethene and Biotin for Targeted Photodynamic Therapy in Red Light. Inorganic Chemistry, 2020, 59, 913-924.	1.9	35

#	Article	IF	CITATIONS
91	Recent progress in the development of organometallics for the treatment of cancer. Current Opinion in Chemical Biology, 2020, 56, 28-34.	2.8	67
92	Polymetallic Complexes for Applications as Photosensitisers in Anticancer Photodynamic Therapy. Advanced Therapeutics, 2020, 3, 1900139.	1.6	24
93	A Tailored Multifunctional Anticancer Nanodelivery System for Rutheniumâ€Based Photosensitizers: Tumor Microenvironment Adaption and Remodeling. Advanced Science, 2020, 7, 1901992.	5.6	68
94	Toward Optimal Ru(II) Photocages: Balancing Photochemistry, Stability, and Biocompatibility Through Fine Tuning of Steric, Electronic, and Physiochemical Features. Inorganic Chemistry, 2020, 59, 1006-1013.	1.9	55
95	Incorporation of Ru(II) Polypyridyl Complexes into Nanomaterials for Cancer Therapy and Diagnosis. Advanced Materials, 2020, 32, e2003294.	11.1	45
96	Curcumin as a photosensitizer: From molecular structure to recent advances in antimicrobial photodynamic therapy. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2020, 45, 100384.	5.6	106
97	Cyclometalated Iridium(III) Complexes as High-Sensitivity Two-Photon Excited Mitochondria Dyes and Near-Infrared Photodynamic Therapy Agents. Inorganic Chemistry, 2020, 59, 14920-14931.	1.9	32
98	DNAâ€Targeting Ru ^{II} â€Polypyridyl Complex with a Longâ€Lived Intraligand Excited State as a Potential Photodynamic Therapy Agent. Chemistry - A European Journal, 2020, 26, 17495-17503.	1.7	10
99	New Antimicrobial Strategies Based on Metal Complexes. Chemistry, 2020, 2, 849-899.	0.9	122
100	Bis[pyrrolyl Ru(<scp>ii</scp>)] triads: a new class of photosensitizers for metal–organic photodynamic therapy. Chemical Science, 2020, 11, 12047-12069.	3.7	23
101	Combining Inorganic Chemistry and Biology: The Underestimated Potential of Metal Complexes in Medicine. ChemBioChem, 2020, 21, 3044-3046.	1.3	29
102	Thionated organic compounds as emerging heavy-atom-free photodynamic therapy agents. Chemical Science, 2020, 11, 11113-11123.	3.7	49
103	Recent advances in cytotoxicity, cellular uptake and mechanism of action of ruthenium metallodrugs: A review. Polyhedron, 2020, 192, 114827.	1.0	26
104	Enhancing the ROS generation ability of a rhodamine-decorated iridium(<scp>iii</scp>) complex by ligand regulation for endoplasmic reticulum-targeted photodynamic therapy. Chemical Science, 2020, 11, 12212-12220.	3.7	46
105	Recent Emergence of Rhenium(I) Tricarbonyl Complexes as Photosensitisers for Cancer Therapy. Molecules, 2020, 25, 4176.	1.7	45
106	Recent advances in biomedical applications of organic fluorescence materials with reduced singlet–triplet energy gaps. Coordination Chemistry Reviews, 2020, 425, 213545.	9.5	68
107	New copper complexes inducing bimodal death through apoptosis and autophagy in A549 cancer cells. Journal of Inorganic Biochemistry, 2020, 213, 111260.	1.5	31
108	Cytotoxic (<i>cis</i> , <i>cis</i> -1,3,5-triaminocyclohexane)ruthenium(<scp>ii</scp>)-diphosphine complexes; evidence for covalent binding <i>and</i> intercalation with DNA. Dalton Transactions, 2020, 49, 15219-15230.	1.6	4

	CITATION RE	EPORT	
#	Article	IF	CITATIONS
109	Functionalisation of gold nanoparticles with ruthenium(ii) polypyridyl complexes for their application in cellular imaging. Dalton Transactions, 2020, 49, 14158-14168.	1.6	5
110	A redox-activatable biopolymer-based micelle for sequentially enhanced mitochondria-targeted photodynamic therapy and hypoxia-dependent chemotherapy. Chemical Communications, 2020, 56, 9978-9981.	2.2	13
111	Synthesis, Characterization, and Biological Profiling of Ruthenium(II)-Based 4-Nitro- and 4-Amino-1,8-naphthalimide Conjugates. Inorganic Chemistry, 2020, 59, 10874-10893.	1.9	16
112	Multifunctional Molecular Therapeutic Agent for Targeted and Controlled Dual Chemo- and Photodynamic Therapy. Journal of Medicinal Chemistry, 2020, 63, 8512-8523.	2.9	31
113	Ru(ii) photosensitizers competent for hypoxic cancers via green light activation. Chemical Communications, 2020, 56, 10301-10304.	2.2	15
114	Novel cyclometalated Ru(II) complexes containing isoquinoline ligands: Synthesis, characterization, cellular uptake and inÂvitro cytotoxicity. European Journal of Medicinal Chemistry, 2020, 203, 112562.	2.6	18
115	Synthesis and photodynamic properties of pyrazole-indole hybrids in the human skin melanoma cell line G361. Dyes and Pigments, 2020, 183, 108666.	2.0	9
116	Ni(II) curcumin complexes for cellular imaging and photo-triggered inÂvitro anticancer activity. European Journal of Medicinal Chemistry, 2020, 204, 112632.	2.6	25
117	Mitochondria-Targeting Click-Derived Pyridinyltriazolylmethylquinoxaline-Based Y-Shaped Binuclear Luminescent Ruthenium(II) and Iridium(III) Complexes as Cancer Theranostic Agents. Inorganic Chemistry, 2020, 59, 17689-17711.	1.9	21
118	Photodynamic Therapy for Basal Cell Carcinoma: The Clinical Context for Future Research Priorities. Molecules, 2020, 25, 5398.	1.7	28
119	Polymeric Encapsulation of a Ruthenium Polypyridine Complex for Tumor Targeted One- and Two-Photon Photodynamic Therapy. ACS Applied Materials & Interfaces, 2020, 12, 54433-54444.	4.0	42
120	Metallodrugs are unique: opportunities and challenges of discovery and development. Chemical Science, 2020, 11, 12888-12917.	3.7	354
121	<p>Ruthenium Complexes as Anticancer Agents: A Brief History and Perspectives</p> . Drug Design, Development and Therapy, 2020, Volume 14, 5375-5392.	2.0	176
122	Accessing a Long-Lived ³ LC State in a Ruthenium(II) Phenanthroline Complex with Appended Aromatic Groups. Inorganic Chemistry, 2020, 59, 16967-16975.	1.9	10
123	Biodegradable Fe-Doped Vanadium Disulfide Theranostic Nanosheets for Enhanced Sonodynamic/Chemodynamic Therapy. ACS Applied Materials & Interfaces, 2020, 12, 52370-52382.	4.0	73
124	Intracellular Photophysics of an Osmium Complex bearing an Oligothiophene Extended Ligand. Chemistry - A European Journal, 2020, 26, 14844-14851.	1.7	10
125	A pH-Activable Chemo–Photodynamic Therapy Based on Cube-Wrapped-Cube α-NaYbF ₄ :Tm@CaF ₂ /Nd@ZnO Nanoparticles Mediated by 808 nm Light. Chemistry of Materials, 2020, 32, 7492-7506.	3.2	27
126	Tumorâ€Microenvironmentâ€Activated In Situ Selfâ€Assembly of Sequentially Responsive Biopolymer for Targeted Photodynamic Therapy. Advanced Functional Materials, 2020, 30, 2000229.	7.8	31

#	Article	IF	CITATIONS
127	Enhanced Production and Anticancer Properties of Photoactivated Perylenequinones. Journal of Natural Products, 2020, 83, 2490-2500.	1.5	16
128	Triazole-based osmium(<scp>ii</scp>) complexes displaying red/near-IR luminescence: antimicrobial activity and super-resolution imaging. Chemical Science, 2020, 11, 8928-8935.	3.7	22
129	Synthesis of α-amino nitriles through one-pot selective Ru-photocatalyzed oxidative cyanation of amines. Inorganic Chemistry Frontiers, 2020, 7, 3092-3105.	3.0	11
130	Design of a Tris-Heteroleptic Ru(II) Complex with Red-Light Excitation and Remarkably Improved Photobiological Activity. Inorganic Chemistry, 2020, 59, 11193-11204.	1.9	26
131	Enhancing Singlet Oxygen Generation in Conjugates of Silicon Nanocrystals and Organic Photosensitizers. Frontiers in Chemistry, 2020, 8, 567.	1.8	7
132	TLD1433-Mediated Photodynamic Therapy with an Optical Surface Applicator in the Treatment of Lung Cancer Cells In Vitro. Pharmaceuticals, 2020, 13, 137.	1.7	23
133	A Mitochondrion‣ocalized Twoâ€Photon Photosensitizer Generating Carbon Radicals Against Hypoxic Tumors. Angewandte Chemie - International Edition, 2020, 59, 20697-20703.	7.2	99
134	A Mitochondrionâ€Localized Twoâ€Photon Photosensitizer Generating Carbon Radicals Against Hypoxic Tumors. Angewandte Chemie, 2020, 132, 20878-20884.	1.6	16
135	Nanostructured manganese dioxide for anticancer applications: preparation, diagnosis, and therapy. Nanoscale, 2020, 12, 17982-18003.	2.8	57
136	Recent advances in nanomaterials for sonodynamic therapy. Nano Research, 2020, 13, 2898-2908.	5.8	89
137	mHealth: A smartphone-controlled, wearable platform for tumour treatment. Materials Today, 2020, 40, 91-100.	8.3	12
138	NIRâ€Absorbing Ru II Complexes Containing αâ€Oligothiophenes for Applications in Photodynamic Therapy. ChemBioChem, 2020, 21, 3594-3607.	1.3	9
139	Breaking the barrier: an osmium photosensitizer with unprecedented hypoxic phototoxicity for real world photodynamic therapy. Chemical Science, 2020, 11, 9784-9806.	3.7	67
140	Synthesis, Characterization, and Biological Evaluation of the Polymeric Encapsulation of a Ruthenium(II) Polypyridine Complex with Pluronic Fâ€127/Poloxamerâ€407 for Photodynamic Therapy Applications. European Journal of Inorganic Chemistry, 2020, 2020, 3242-3248.	1.0	12
141	C60-Decorated Melanin Nanoparticles Conjugated with Hyaluronic Acid for Synergistic Theranostic and Immunotherapy of Tumors under near-Infrared Excitation. ACS Applied Nano Materials, 2020, 3, 8817-8828.	2.4	13
142	Evaluation of DNA-binding and DNA-photocleavage ability of tetra-cationic porphyrins containing peripheral [Ru(bpy)2Cl]+ complexes: Insights for photodynamic therapy agents. Journal of Photochemistry and Photobiology B: Biology, 2020, 211, 111991.	1.7	27
143	Os(II) Oligothienyl Complexes as a Hypoxia-Active Photosensitizer Class for Photodynamic Therapy. Inorganic Chemistry, 2020, 59, 16341-16360.	1.9	37
144	Synthesis, characterization, HSA/DNA interactions and antitumor activity of new [Ru(η6-p-cymene)Cl2(L)] complexes. Journal of Inorganic Biochemistry, 2020, 213, 111256.	1.5	18

#	Article	IF	CITATIONS
145	Ru(II) Complexes Bearing O, O-Chelated Ligands Induced Apoptosis in A549 Cells through the Mitochondrial Apoptotic Pathway. Bioinorganic Chemistry and Applications, 2020, 2020, 1-16.	1.8	15
146	A Singlet Oxygen Priming Mechanism: Disentangling of Photooxidative and Downstream Dark Effects. Journal of Organic Chemistry, 2020, 85, 12505-12513.	1.7	6
147	Effects of Ligand Substitution on the Optical and Electrochemical Properties of (Pyridinedipyrrolide)zirconium Photosensitizers. Inorganic Chemistry, 2020, 59, 14716-14730.	1.9	22
148	Induction of immunogenic cell death in cancer cells by a photoactivated platinum(<scp>iv</scp>) prodrug. Inorganic Chemistry Frontiers, 2020, 7, 4150-4159.	3.0	40
149	Half-Sandwich Cyclopentadienylruthenium(II) Complexes: A New Antimalarial Chemotype. Inorganic Chemistry, 2020, 59, 12722-12732.	1.9	7
150	Development of novel ruthenium(<scp>ii</scp>)–arene complexes displaying potent anticancer effects in glioblastoma cells. Dalton Transactions, 2020, 49, 13294-13310.	1.6	14
151	Activated Type I and Type II Process for Two-Photon Promoted ROS Generation: The Coordinated Zn Matters. Inorganic Chemistry, 2020, 59, 13671-13678.	1.9	22
152	In Vitro Photodynamic Therapy of Mononuclear and Dinuclear Iridium(III) Bis(terpyridine) Complexes. ACS Applied Bio Materials, 2020, 3, 6865-6875.	2.3	14
153	Photonic hyperthermal and sonodynamic nanotherapy targeting oral squamous cell carcinoma. Journal of Materials Chemistry B, 2020, 8, 9084-9093.	2.9	18
154	First-principles calculations of anharmonic and deuteration effects on the photophysical properties of polyacenes and porphyrinoids. Physical Chemistry Chemical Physics, 2020, 22, 22314-22323.	1.3	32
155	Two-photon photodynamic ablation of tumour cells using an RGD peptide-conjugated ruthenium(ii) photosensitiser. Chemical Communications, 2020, 56, 12542-12545.	2.2	21
156	Near-infrared absorbing Ru(<scp>ii</scp>) complexes act as immunoprotective photodynamic therapy (PDT) agents against aggressive melanoma. Chemical Science, 2020, 11, 11740-11762.	3.7	67
157	Theoretical exploration of the photophysical properties of two-component Ru ^{II} –porphyrin dyes as promising assemblies for a combined antitumor effect. Dalton Transactions, 2020, 49, 12653-12661.	1.6	10
158	Effect on the aromaticity of heterocyclic ligands by coordination with ruthenium electronâ€withdrawing metal centers. International Journal of Quantum Chemistry, 2020, 120, e26412.	1.0	0
159	Cellâ€Membrane Staining Properties and Photocytotoxicity of a Ruthenium(II) Photosensitizer. European Journal of Inorganic Chemistry, 2020, 2020, 3996-4001.	1.0	4
160	Lysosome Targeting Bis-terpyridine Ruthenium(II) Complexes: Photophysical Properties and <i>In Vitro</i> Photodynamic Therapy. ACS Applied Bio Materials, 2020, 3, 6025-6038.	2.3	29
161	Remodeling Tumor Microenvironment by Multifunctional Nanoassemblies for Enhanced Photodynamic Cancer Therapy. , 2020, 2, 1268-1286.		40
162	Stacking Effects on Anthraquinone/DNA Charge-Transfer Electronically Excited States. Molecules, 2020, 25, 5927.	1.7	5

#	Article	IF	CITATIONS
163	Conjugates Containing Two and Three Trithiolato-Bridged Dinuclear Ruthenium(II)-Arene Units as In Vitro Antiparasitic and Anticancer Agents. Pharmaceuticals, 2020, 13, 471.	1.7	18
164	Electrochemical, mechanistic, and DFT studies of amine derived diphosphines containing Ru(<scp>ii</scp>)–cymene complexes with potent <i>in vitro</i> cytotoxic activity against HeLa and triple-negative breast cancer cells MDA-MB-231. Dalton Transactions, 2020, 49, 16498-16514.	1.6	6
165	Critical discussion of the applications of metal complexes for 2-photon photodynamic therapy. Journal of Biological Inorganic Chemistry, 2020, 25, 1035-1050.	1.1	32
166	A nucleus-directed bombesin derivative for targeted delivery of metallodrugs to cancer cells. Journal of Inorganic Biochemistry, 2020, 212, 111214.	1.5	3
167	Modulation of Osmium(II) Tris(2,2′-bipyridine) Photophysics through Encapsulation within Zinc(II) Trimesic Acid Metal Organic Frameworks. Inorganic Chemistry, 2020, 59, 7761-7767.	1.9	8
168	The Self-Assembly of a Cyclometalated Palladium Photosensitizer into Protein-Stabilized Nanorods Triggers Drug Uptake In Vitro and In Vivo. Journal of the American Chemical Society, 2020, 142, 10383-10399.	6.6	43
169	Transition metal complexes as photosensitizers for integrated cancer theranostic applications. Coordination Chemistry Reviews, 2020, 418, 213355.	9.5	91
170	Oxygen Pathology and Oxygen-Functional Materials for Therapeutics. Matter, 2020, 2, 1115-1147.	5.0	8
171	Enhancing the Activity of Drugs by Conjugation to Organometallic Fragments. Chemistry - A European Journal, 2020, 26, 8676-8688.	1.7	74
172	Potent Photochemotherapeutic Activity of Iron(III) Complexes on Visible Light-induced Ligand to Metal Charge Transfer. Chemistry Letters, 2020, 49, 724-727.	0.7	4
173	Increased Lipophilicity of Halogenated Ruthenium(II) Polypyridyl Complexes Leads to Decreased Phototoxicity in vitro when Used as Photosensitizers for Photodynamic Therapy. ChemBioChem, 2020, 21, 2966-2973.	1.3	18
174	Bis-tridentate N-Heterocyclic Carbene Ru(II) Complexes are Promising New Agents for Photodynamic Therapy. Inorganic Chemistry, 2020, 59, 8882-8892.	1.9	34
175	Breast Cancer Chemotherapeutic Options: A General Overview on the Preclinical Validation of a Multi-Target Ruthenium(III) Complex Lodged in Nucleolipid Nanosystems. Cells, 2020, 9, 1412.	1.8	25
176	LMCT transition-based red-light photochemotherapy using a tumour-selective ferrocenyl iron(<scp>iii</scp>) coumarin conjugate. Chemical Communications, 2020, 56, 7981-7984.	2.2	23
177	Heteroâ€Tetranuclear Cu 2+ /Ca 2+ /Ca 2+ /Cu 2+ Architectures Based On Malten Ligand: Scaffold for Anion Binding. ChemPlusChem, 2020, 85, 1179-1189.	1.3	2
178	Emerging 2D pnictogens for catalytic applications: status and challenges. Journal of Materials Chemistry A, 2020, 8, 12887-12927.	5.2	32
179	Bifunctional ruthenium(<scp>ii</scp>) polypyridyl complexes of curcumin as potential anticancer agents. Dalton Transactions, 2020, 49, 9454-9463.	1.6	24
180	Pharmacophore conjugation strategy for multi-targeting metal-based anticancer complexes. Advances in Inorganic Chemistry, 2020, , 257-285.	0.4	3

#	Article	IF	CITATIONS
181	Electron Storage Capability and Singlet Oxygen Productivity of a Ru II Photosensitizer Containing a Fused Naphthaloylenebenzene Moiety at the 1,10â€Phenanthroline Ligand. Chemistry - A European Journal, 2020, 26, 17027-17034.	1.7	11
182	A lysosome-targeted ruthenium(II) polypyridyl complex as photodynamic anticancer agent. Journal of Inorganic Biochemistry, 2020, 210, 111132.	1.5	24
183	Iridium(III) Complex–Derived Polymeric Micelles with Low Dark Toxicity and Strong NIR Excitation for Phototherapy and Chemotherapy. Small, 2020, 16, e2000363.	5.2	47
184	Delayed fluorescence from a zirconium(iv) photosensitizer with ligand-to-metal charge-transfer excited states. Nature Chemistry, 2020, 12, 345-352.	6.6	144
185	TLD1433 Photosensitizer Inhibits Conjunctival Melanoma Cells in Zebrafish Ectopic and Orthotopic Tumour Models. Cancers, 2020, 12, 587.	1.7	28
186	Nanostructured polymer assemblies stabilize photoactivatable anticancer ruthenium complexes under physiological conditions. Journal of Inorganic Biochemistry, 2020, 207, 111052.	1.5	9
187	Synthesis, Characterization, Cytotoxic Activity, and Metabolic Studies of Ruthenium(II) Polypyridyl Complexes Containing Flavonoid Ligands. Inorganic Chemistry, 2020, 59, 4424-4434.	1.9	37
188	Molecular Design of Highly Efficient Heavyâ€Atomâ€Free Triplet BODIPY Derivatives for Photodynamic Therapy and Bioimaging. Angewandte Chemie, 2020, 132, 9042-9047.	1.6	23
189	Rationally Designed Long-Wavelength Absorbing Ru(II) Polypyridyl Complexes as Photosensitizers for Photodynamic Therapy. Journal of the American Chemical Society, 2020, 142, 6578-6587.	6.6	144
190	Two-dimensional highly oxidized ilmenite nanosheets equipped with Z-scheme heterojunction for regulating tumor microenvironment and enhancing reactive oxygen species generation. Chemical Engineering Journal, 2020, 390, 124524.	6.6	32
191	Photo-physical, theoretical and photo-cytotoxic evaluation of a new class of lanthanide(<scp>iii</scp>)–curcumin/diketone complexes for PDT application. Dalton Transactions, 2020, 49, 10786-10798.	1.6	23
192	Multifunctional zeolitic imidazolate framework-8 for real-time monitoring ATP fluctuation in mitochondria during photodynamic therapy. Nanoscale, 2020, 12, 15663-15669.	2.8	36
193	New Organometallic Ruthenium(II) Compounds Synergistically Show Cytotoxic, Antimetastatic and Antiangiogenic Activities for the Treatment of Metastatic Cancer. Chemistry - A European Journal, 2020, 26, 15170-15182.	1.7	49
194	Anticancer Photodynamic Therapy Using Ruthenium(II) and Os(II)-Based Complexes as Photosensitizers. , 0, , .		1
195	Differences in Stability, Cytotoxicity, and Mechanism of Action of Ru(II) and Pt(II) Complexes of a Bidentate N,O Donor Ligand. Inorganic Chemistry, 2020, 59, 10262-10274.	1.9	17
196	How promising is phototherapy for cancer?. British Journal of Cancer, 2020, 123, 871-873.	2.9	122
197	Cytotoxicity, cellular localization and photophysical properties of Re(I) tricarbonyl complexes bound to cysteine and its derivatives. Journal of Biological Inorganic Chemistry, 2020, 25, 759-776.	1.1	14
198	Rationally designed ruthenium complexes for 1- and 2-photon photodynamic therapy. Nature Communications, 2020, 11, 3262.	5.8	173

#	Article	IF	CITATIONS
199	Development, evaluation and effect of anionic co-ligand on the biological activity of benzothiazole derived copper(II) complexes. Journal of Inorganic Biochemistry, 2020, 210, 111174.	1.5	8
200	A Cu9S5 nanoparticle-based CpG delivery system for synergistic photothermal-, photodynamic- and immunotherapy. Communications Biology, 2020, 3, 343.	2.0	29
201	First Workshop on Metals in Medicine (2019): Translational Research in Medicinal Bioinorganic Chemistry. ChemBioChem, 2020, 21, 2706-2707.	1.3	0
202	Ruthenium and iridium based mononuclear and multinuclear complexes: A Breakthrough of Next-Generation anticancer metallopharmaceuticals. Inorganica Chimica Acta, 2020, 512, 119858.	1.2	19
203	Combination of Ruthenium Complex and Doxorubicin Synergistically Inhibits Cancer Cell Growth by Down-Regulating PI3K/AKT Signaling Pathway. Frontiers in Oncology, 2020, 10, 141.	1.3	18
204	Dual-Action Ru(II) Complexes with Bulky π-Expansive Ligands: Phototoxicity without DNA Intercalation. Inorganic Chemistry, 2020, 59, 3919-3933.	1.9	33
205	Evaluation of a Ruthenium coordination complex as photosensitizer for PDT of bladder cancer: Cellular response, tissue selectivity and in vivo response. Translational Biophotonics, 2020, 2, e201900032.	1.4	16
206	A Maltol ontaining Ruthenium Polypyridyl Complex as a Potential Anticancer Agent. Chemistry - A European Journal, 2020, 26, 4997-5009.	1.7	25
207	Metal Complexes, an Untapped Source of Antibiotic Potential?. Antibiotics, 2020, 9, 90.	1.5	115
208	Gold compounds for catalysis and metal-mediated transformations in biological systems. Current Opinion in Chemical Biology, 2020, 55, 103-110.	2.8	41
209	Fluorinated cryptophane-A and porphyrin-based theranostics for multimodal imaging-guided photodynamic therapy. Chemical Communications, 2020, 56, 3617-3620.	2.2	17
210	Increasing the Cytotoxicity of Ru(II) Polypyridyl Complexes by Tuning the Electronic Structure of Dioxo Ligands. Journal of the American Chemical Society, 2020, 142, 6066-6084.	6.6	44
211	Molecular Design of Highly Efficient Heavyâ€Atomâ€Free Triplet BODIPY Derivatives for Photodynamic Therapy and Bioimaging. Angewandte Chemie - International Edition, 2020, 59, 8957-8962.	7.2	185
212	Metal complexes as a promising source for new antibiotics. Chemical Science, 2020, 11, 2627-2639.	3.7	290
213	Tethering (Arene)Ru(II) Acylpyrazolones Decorated with Long Aliphatic Chains to Polystyrene Surfaces Provides Potent Antibacterial Plastics. Materials, 2020, 13, 526.	1.3	7
214	Highly Efficient Singlet Oxygen Generators Based on Ruthenium Phthalocyanines: Synthesis, Characterization and in vitro Evaluation for Photodynamic Therapy. Chemistry - A European Journal, 2020, 26, 1697-1697.	1.7	4
215	Lysosome-targetable carbon dots for highly efficient photothermal/photodynamic synergistic cancer therapy and photoacoustic/two-photon excited fluorescence imaging. Chemical Engineering Journal, 2020, 388, 124212.	6.6	92
216	150 years of the periodic table: New medicines and diagnostic agents. Advances in Inorganic Chemistry, 2020, 75, 3-56.	0.4	16

		CITATION REPORT		
#	Article		IF	Citations
217	Rationally Designed Ruthenium Complexes for Breast Cancer Therapy. Molecules, 2020), 25, 265.	1.7	54
218	Metal dipyrrin complexes as potential photosensitizers for photodynamic therapy. Inor Acta, 2020, 505, 119482.	ganica Chimica	1.2	17
219	Green Layer-by-Layer Assembly of Porphyrin/G-Quadruplex-Based Near-Infrared Nanoco Photosensitizer with High Biocompatibility and Bioavailability. ACS Applied Materials & 2020, 12, 7575-7585.	mposite .amp; Interfaces,	4.0	22
220	A Multiâ€action and Multiâ€ŧarget Ru ^{II} –Pt ^{IV} Conjugate C Cancerâ€Activated Chemotherapy and Photodynamic Therapy to Overcome Drug Resi Angewandte Chemie - International Edition, 2020, 59, 7069-7075.		7.2	172
221	Smart use of "ping-pong―energy transfer to improve the two-photon photodynar lr(<scp>iii</scp>) complex. Chemical Communications, 2020, 56, 2845-2848.	nic activity of an	2.2	16
222	Stereoselective Formation of Facial Trisâ€Cyclometalated Pt IV Complexes: Dual Phosp Heteroleptic Derivatives. Chemistry - A European Journal, 2020, 26, 11307-11315.	horescence from	1.7	12
223	High-resolution crystal structures of a "half sandwich―type Ru(II) coordination co hen egg-white lysozyme and proteinase K. Journal of Biological Inorganic Chemistry, 20		1.1	7
224	Auranofin-Based Analogues Are Effective Against Clear Cell Renal Carcinoma <i>In Vivo No Significant Systemic Toxicity. ACS Pharmacology and Translational Science, 2020, 3</i>) and Display 3, 644-654.	2.5	14
225	An anthracene-pendant ruthenium(<scp>ii</scp>) complex conjugated to a biotin and handle for photo-induced anti-cancer activity. New Journal of Chemistry, 2020, 44, 661	hor, an essential 10-6622.	1.4	9
226	Photocytotoxicity of Oligothienylâ€Functionalized Chelates That Sensitize LnIIILumine Generate1O2. Chemistry - A European Journal, 2020, 26, 12060-12066.	scence and	1.7	7
227	Fluorinated porphyrin-based theranostics for dual imaging and chemo-photodynamic t of Materials Chemistry B, 2020, 8, 4469-4474.	herapy. Journal	2.9	20
228	Experimental Sensing and DFT Mechanism of Zn(II) Complex for Highly Sensitive and S Detection of Acetone. Crystals, 2020, 10, 324.	elective	1.0	2
229	Light activation of cyclometalated ruthenium complexes drives towards caspase 3 dep apoptosis in gastric cancer cells. Journal of Inorganic Biochemistry, 2020, 208, 111080		1.5	11
230	Ruthenium(II) Complex Containing a Redox-Active Semiquinonate Ligand as a Potentia Chemotherapeutic Agent: From Synthesis to <i>In Vivo</i> Studies. Journal of Medicina 2020, 63, 5568-5584.	l I Chemistry,	2.9	24
231	Rigid π-Extended Boron Difluoride Complex with Mega-Stokes Shift for Bioimaging. Or 2020, 22, 3356-3360.	ganic Letters,	2.4	37
232	Polypyridylâ€Based Copper Phenanthrene Complexes: Combining Stability with Enhan Recognition. Chemistry - A European Journal, 2021, 27, 971-983.	ced DNA	1.7	17
233	One―and Twoâ€Photon Phototherapeutic Effects of Ru ^{II} Polypyridine C Hypoxic Centre of Large Multicellular Tumor Spheroids and Tumorâ€Bearing Mice**. C European Journal, 2021, 27, 362-370.		1.7	37
234	Design, Identification, and Evolution of a Surface Ruthenium(II/III) Single Site for CO Ad Angewandte Chemie, 2021, 133, 1232-1239.	ctivation.	1.6	0

#	Article	IF	CITATIONS
235	Design, Identification, and Evolution of a Surface Ruthenium(II/III) Single Site for CO Activation. Angewandte Chemie - International Edition, 2021, 60, 1212-1219.	7.2	8
236	Lapachol in the Design of a New Ruthenium(II)-Diphosphine Complex as a Promising Anticancer Metallodrug. Journal of Inorganic Biochemistry, 2021, 214, 111289.	1.5	22
237	A bis-indazolic ruthenium(II) complex: Reactivity and biological studies on cancer cells. Inorganica Chimica Acta, 2021, 516, 120125.	1.2	4
238	Advances in bladder cancer biology and therapy. Nature Reviews Cancer, 2021, 21, 104-121.	12.8	320
239	One Responsive Stone, Three Birds: Mn(III)â€Hemoporfin Frameworks with Glutathioneâ€Enhanced Degradation, MRI, and Sonodynamic Therapy. Advanced Healthcare Materials, 2021, 10, e2001463.	3.9	37
240	Oxygen self-sufficient photodynamic therapy. Coordination Chemistry Reviews, 2021, 432, 213714.	9.5	66
241	Multinuclear biologically active Ru, Rh, Os and Ir arene complexes. Coordination Chemistry Reviews, 2021, 431, 213690.	9.5	24
242	Transition metal complexes as potential tools against SARS-CoV-2: an <i>in silico</i> approach. New Journal of Chemistry, 2021, 45, 1924-1933.	1.4	32
243	Nontoxic Cobalt(III) Schiff Base Complexes with Broadâ€ S pectrum Antifungal Activity. Chemistry - A European Journal, 2021, 27, 2021-2029.	1.7	28
244	Emerging Metallopharmaceuticals for the Treatment of Cancer. Trends in Chemistry, 2021, 3, 47-58.	4.4	19
245	Dipyrrinatoâ€Iridium(III) Complexes for Application in Photodynamic Therapy and Antimicrobial Photodynamic Inactivation. Chemistry - A European Journal, 2021, 27, 6440-6459.	1.7	35
246	A red lightâ€activable Mn ^I (CO) ₃ â€functionalized gold nanocomposite as the anticancer prodrug with theranostic potential. Applied Organometallic Chemistry, 2021, 35, e6110.	1.7	10
247	Heavy-Atom-Free Photosensitizers: From Molecular Design to Applications in the Photodynamic Therapy of Cancer. Accounts of Chemical Research, 2021, 54, 207-220.	7.6	300
248	Fluorescent Imidazo[1,2―a]pyrimidine Compounds as Biocompatible Organic Photosensitizers that Generate Singlet Oxygen: A Potential Tool for Phototheranostics. Chemistry - A European Journal, 2021, 27, 6213-6222.	1.7	5
249	BODIPY-linked cis-dichlorido zinc(ii) conjugates: the strategic design of organelle-specific next-generation theranostic photosensitizers. Dalton Transactions, 2021, 50, 103-115.	1.6	9
250	Photodynamic Therapy Directed by Threeâ€Photon Active Rigid Plane Organic Photosensitizer. Advanced Healthcare Materials, 2021, 10, e2001489.	3.9	9
251	Nanomaterialâ€mediated platinum drugâ€based combinatorial cancer therapy. View, 2021, 2, 20200030.	2.7	28
252	What NIR photodynamic activation offers molecular targeted nanomedicines: Perspectives into the conundrum of tumor specificity and selectivity. Nano Today, 2021, 36, 101052.	6.2	21

#	Article	IF	CITATIONS
253	Novel organo-osmium(ii) proteosynthesis inhibitors active against human ovarian cancer cells reduce gonad tumor growth inCaenorhabditis elegans. Inorganic Chemistry Frontiers, 2021, 8, 141-155.	3.0	13
254	Self-assembled heterometallic complexes showing enhanced two-photon absorption and their distribution in living cells. New Journal of Chemistry, 2021, 45, 4994-5001.	1.4	1
255	Synthesis of Yellow-Fluorescent Carbon Nano-dots by Microplasma for Imaging and Photocatalytic Inactivation of Cancer Cells. Nanoscale Research Letters, 2021, 16, 14.	3.1	30
256	Photofunctional transition metal complexes as cellular probes, bioimaging reagents and phototherapeutics. Inorganic Chemistry Frontiers, 2021, 8, 4553-4579.	3.0	25
257	Physical, spectroscopic, and biological properties of ruthenium and osmium photosensitizers bearing diversely substituted 4,4′-di(styryl)-2,2′-bipyridine ligands. Dalton Transactions, 2021, 50, 14629-14639.	1.6	12
258	Supramolecular cancer nanotheranostics. Chemical Society Reviews, 2021, 50, 2839-2891.	18.7	257
259	New Cy5 photosensitizers for cancer phototherapy: a low singlet–triplet gap provides high quantum yield of singlet oxygen. Chemical Science, 2021, 12, 13809-13816.	3.7	19
260	Ruthenium(<scp>ii</scp>) complexes as bioorthogonal two-photon photosensitizers for tumour-specific photodynamic therapy against triple-negative breast cancer cells. Chemical Communications, 2021, 57, 4408-4411.	2.2	19
261	Photorelease of a metal-binding pharmacophore from a Ru(<scp>ii</scp>) polypyridine complex. Dalton Transactions, 2021, 50, 2757-2765.	1.6	10
262	Kinetically labile ruthenium(<scp>ii</scp>) complexes of terpyridines and saccharin: effect of substituents on photoactivity, solvation kinetics, and photocytotoxicity. Dalton Transactions, 2021, 50, 8196-8217.	1.6	7
263	Phosphorescent metal complexes as theranostic anticancer agents: combining imaging and therapy in a single molecule. Chemical Science, 2021, 12, 2357-2367.	3.7	79
264	Cytotoxicity evaluation and DNA interaction of Ru ^{II} -bipy complexes containing coumarin-based ligands. Dalton Transactions, 2021, 50, 14908-14919.	1.6	3
265	Photodynamic therapy: photosensitizers and nanostructures. Materials Chemistry Frontiers, 2021, 5, 3788-3812.	3.2	92
266	SPAAC iClick: progress towards a bioorthogonal reaction in-corporating metal ions. Dalton Transactions, 2021, 50, 12681-12691.	1.6	11
267	Ru(<scp>ii</scp>), lr(<scp>iii</scp>), Re(<scp>i</scp>) and Rh(<scp>iii</scp>) based complexes as next generation anticancer metallopharmaceuticals. Dalton Transactions, 2021, 50, 11259-11290.	1.6	23
268	Janus -faced oxidant and antioxidant profiles of organo diselenides. Dalton Transactions, 2021, 50, 14576-14594.	1.6	9
269	Critical factors affecting the albumin binding of half-sandwich Ru(<scp>ii</scp>) and Rh(<scp>iii</scp>) complexes of 8-hydroxyquinolines and oligopyridines. Dalton Transactions, 2021, 50, 11918-11930.	1.6	11
270	Nano-assembly of ruthenium(<scp>ii</scp>) photosensitizers for endogenous glutathione depletion and enhanced two-photon photodynamic therapy. Nanoscale, 2021, 13, 7590-7599.	2.8	16

#	Article	IF	CITATIONS
271	Pillar[5]arene-based supramolecular photosensitizer for enhanced hypoxic-tumor therapeutic effectiveness. Chemical Communications, 2021, 57, 7625-7628.	2.2	23
272	Exploring the dark: detecting long-lived Nile Red 3ILCT states in Ru(ii) polypyridyl photosensitisers. Journal of Materials Chemistry C, 0, , .	2.7	3
273	Monitoring excited-state relaxation in a molecular marker in live cells–a case study on astaxanthin. Chemical Communications, 2021, 57, 6392-6395.	2.2	6
274	Thermally activated delayed fluorescence materials as organic photosensitizers. Chemical Communications, 2021, 57, 10675-10688.	2.2	21
275	It Takes Three to Tango: The Length of the Oligothiophene Chain Determines the Nature of the Longâ€Lived Excited State and the Resulting Photocytotoxicity of a Ruthenium(II) Photodrug. ChemPhotoChem, 2021, 5, 421-425.	1.5	12
276	GSH-resistant and highly cytoselective ruthenium(<scp>ii</scp>)- <i>p</i> -cymene-(imidazo[4,5- <i>f</i>][1,10]phenanthrolin-2-yl)phenol complexes as potential anticancer agents. Dalton Transactions, 2021, 50, 10369-10373.	1.6	15
277	Manganese-Based Carbon Monoxide-Releasing Molecules: A Multitude of Organometallic Pharmaceutical Candidates Primed for Further Biological Analysis. , 2022, , 314-330.		2
278	Luminescent naphthalimide-tagged ruthenium(<scp>ii</scp>)–arene complexes: cellular imaging, photocytotoxicity and transferrin binding. Dalton Transactions, 2021, 50, 3629-3640.	1.6	12
279	Modification of amyloid-beta peptide aggregation <i>via</i> photoactivation of strained Ru(<scp>ii</scp>) polypyridyl complexes. Chemical Science, 2021, 12, 7510-7520.	3.7	15
280	NMR studies of group 8 metallodrugs: ¹⁸⁷ Os-enriched organo-osmium half-sandwich anticancer complex. Dalton Transactions, 2021, 50, 12970-12981.	1.6	3
281	Ruthenium and iron metallodrugs: new inorganic and organometallic complexes as prospective anticancer agents. , 2021, , 223-276.		4
282	Design, structural investigations and antimicrobial activity of pyrazole nucleating copper and zinc complexes. Polyhedron, 2021, 195, 114991.	1.0	32
283	Electronic Relaxation Pathways in Heavy-Atom-Free Photosensitizers Absorbing Near-Infrared Radiation and Exhibiting High Yields of Singlet Oxygen Generation. Journal of the American Chemical Society, 2021, 143, 2676-2681.	6.6	38
284	Half-Sandwich Ru(<i>p</i> -cymene) Compounds with Diphosphanes: <i>In Vitro</i> and <i>In Vivo</i> Evaluation As Potential Anticancer Metallodrugs. Inorganic Chemistry, 2021, 60, 2914-2930.	1.9	18
285	Disruption of the Microtubule Network and Inhibition of VEGFR2 Phosphorylation by Cytotoxic N,O-Coordinated Pt(II) and Ru(II) Complexes of Trimethoxy Aniline-Based Schiff Bases. Inorganic Chemistry, 2021, 60, 3418-3430.	1.9	17
286	Singlet Oxygen Formation vs Photodissociation for Light-Responsive Protic Ruthenium Anticancer Compounds: The Oxygenated Substituent Determines Which Pathway Dominates. Inorganic Chemistry, 2021, 60, 2138-2148.	1.9	20
287	Recent advances in cancer photo-theranostics: the synergistic combination of transition metal complexes and gold nanostructures. SN Applied Sciences, 2021, 3, 1.	1.5	6
288	Facile Synthesis of Cyclic Peptide–Phthalocyanine Conjugates for Epidermal Growth Factor Receptor-Targeted Photodynamic Therapy. Journal of Medicinal Chemistry, 2021, 64, 2064-2076.	2.9	21

#	Article	IF	CITATIONS
289	A photoactivatable Ru (II) complex bearing 2,9-diphenyl-1,10-phenanthroline: A potent chemotherapeutic drug inducing apoptosis in triple negative human breast adenocarcinoma cells. Chemico-Biological Interactions, 2021, 336, 109317.	1.7	7
290	Fineâ€Feature Modifications to Strained Ruthenium Complexes Radically Alter Their Hypoxic Anticancer Activity ^{â€} . Photochemistry and Photobiology, 2022, 98, 73-84.	1.3	20
291	Cyclometalated Iridium(III) Complexes as Mitochondriaâ€ŧargeting Photosensitizers against Cisplatinâ€resistant Cells ^{â€} . Photochemistry and Photobiology, 2022, 98, 85-91.	1.3	9
292	Inâ€vitro and Inâ€vivo Photocatalytic Cancer Therapy with Biocompatible Iridium(III) Photocatalysts. Angewandte Chemie - International Edition, 2021, 60, 9474-9479.	7.2	89
293	Inâ€vitro and Inâ€vivo Photocatalytic Cancer Therapy with Biocompatible Iridium(III) Photocatalysts. Angewandte Chemie, 2021, 133, 9560-9565.	1.6	24
294	Effect of an Imidazole-Containing Schiff Base of an Aromatic Sulfonamide on the Cytotoxic Efficacy of N,N-Coordinated Half-Sandwich Ruthenium(II) <i>p</i> Cymene Complexes. Inorganic Chemistry, 2021, 60, 4744-4754.	1.9	29
295	Ferroptosis Photoinduced by New Cyclometalated Iridium(III) Complexes and Its Synergism with Apoptosis in Tumor Cell Inhibition. Angewandte Chemie, 2021, 133, 8255-8262.	1.6	28
296	Unprecedented Coordination-Induced Bright Red Emission from Group 12 Metal-Bound Triarylazoimidazoles. Molecules, 2021, 26, 1739.	1.7	10
297	Boosting Wideâ€Range Tunable Longâ€Afterglow in 1D Metal–Organic Halide Micro/Nanocrystals for Space/Timeâ€Resolved Information Photonics. Advanced Materials, 2021, 33, e2007571.	11.1	138
298	Ferroptosis Photoinduced by New Cyclometalated Iridium(III) Complexes and Its Synergism with Apoptosis in Tumor Cell Inhibition. Angewandte Chemie - International Edition, 2021, 60, 8174-8181.	7.2	154
299	Applications of natural product-derived carbon dots in cancer biology. Nanomedicine, 2021, 16, 587-608.	1.7	21
300	Anticancer Half-Sandwich Rhodium(III) Complexes. Inorganics, 2021, 9, 26.	1.2	24
301	Iron(III) Complex-Functionalized Gold Nanocomposite as a Strategic Tool for Targeted Photochemotherapy in Red Light. Inorganic Chemistry, 2021, 60, 6283-6297.	1.9	6
302	Polymeric Encapsulation of a Ru(II)-Based Photosensitizer for Folate-Targeted Photodynamic Therapy of Drug Resistant Cancers. Journal of Medicinal Chemistry, 2021, 64, 4612-4622.	2.9	26
303	Mixed-Ligand Cobalt(III) Complexes of a Naturally Occurring Coumarin and Phenanthroline Bases as Mitochondria-Targeted Dual-Purpose Photochemotherapeutics. Inorganic Chemistry, 2021, 60, 6649-6662.	1.9	23
304	Phthalocyanine-Conjugated Glyconanoparticles for Chemo-photodynamic Combination Therapy. Biomacromolecules, 2021, 22, 1555-1567.	2.6	22
305	Polypyridyl Ruthenium(II) Complexes with Red‧hifted Absorption: New Promises in Photodynamic Therapy. ChemBioChem, 2021, 22, 2407-2409.	1.3	9
306	Core–Shell-Structured Covalent–Organic Framework as a Nanoagent for Single-Laser-Induced Phototherapy. ACS Applied Materials & Interfaces, 2021, 13, 17243-17254.	4.0	34

#	Article	IF	CITATIONS
307	DNAâ€Targeted Metallodrugs: An Untapped Source of Artificial Gene Editing Technology. ChemBioChem, 2021, 22, 2184-2205.	1.3	18
308	Ru(II) Polypyridine Complex-Functionalized Mesoporous Silica Nanoparticles as Photosensitizers for Cancer Targeted Photodynamic Therapy. ACS Applied Bio Materials, 2021, 4, 4394-4405.	2.3	26
309	Tailored assembly synthesis of newly functionalized ruthenium (II)-urea-linked-warfarin complex-leads to coordinated MOFs as anticancer. Inorganic Chemistry Communication, 2021, 126, 108488.	1.8	0
310	cis-Locked Ru(II)-DMSO Precursors for the Microwave-Assisted Synthesis of Bis-Heteroleptic Polypyridyl Compounds. Inorganic Chemistry, 2021, 60, 7180-7195.	1.9	3
311	Ligand field states dominate excited state decay in trans-[Ru(py)4Cl2] MLCT chromophores. Inorganica Chimica Acta, 2021, 518, 120246.	1.2	6
312	Photocytotoxicity of Thiophene- and Bithiophene-Dipicolinato Luminescent Lanthanide Complexes. Journal of Medicinal Chemistry, 2021, 64, 7724-7734.	2.9	11
313	Chasing unphysical TD-DFT excited states in transition metal complexes with a simple diagnostic tool. Journal of Chemical Physics, 2021, 154, 204102.	1.2	8
314	Rutheniumâ€based Photoactive Metalloantibiotics ^{â€} . Photochemistry and Photobiology, 2022, 98, 6-16.	1.3	23
315	Piano-Stool Ruthenium(II) Complexes with Delayed Cytotoxic Activity: Origin of the Lag Time. Inorganic Chemistry, 2021, 60, 7974-7990.	1.9	16
316	Template-Free Self-Assembly of Two-Dimensional Polymers into Nano/Microstructured Materials. Molecules, 2021, 26, 3310.	1.7	9
317	Synthesis and Structural Characterization of Half-Sandwich Arene–Ruthenium(II) Complexes with Bis(imidazol-1-yl)methane, Imidazole and Benzimidazole. Inorganics, 2021, 9, 34.	1.2	4
318	Strongly Luminescent Pt(IV) Complexes with a Mesoionic <i>N</i> -Heterocyclic Carbene Ligand: Tuning Their Photophysical Properties. Inorganic Chemistry, 2021, 60, 7900-7913.	1.9	20
319	Ruthenium polypyridyl complex-containing bioconjugates. Coordination Chemistry Reviews, 2021, 434, 213736.	9.5	38
320	Design, synthesis and molecular docking studies of novel piperazine metal complexes as potential antibacterial candidate against MRSA. Journal of Molecular Structure, 2021, 1232, 130047.	1.8	11
321	Strategies for the Improvement of Metal-Based Chemotherapeutic Treatments. Biomedicines, 2021, 9, 504.	1.4	35
322	Type I Photosensitizers Revitalizing Photodynamic Oncotherapy. Small, 2021, 17, e2006742.	5.2	171
323	Photoactive Platinum(II) Azopyridine Complexes $\hat{a} \in$. Photochemistry and Photobiology, 2021, , .	1.3	2
324	Emerging Molecular Receptors for the Specific-Target Delivery of Ruthenium and Gold Complexes into Cancer Cells. Molecules, 2021, 26, 3153.	1.7	13

#	Article	IF	CITATIONS
325	Photothermal Responsive Singlet Oxygen Nanocarriers for Hypoxic Cancer Cell Ablation. ChemBioChem, 2021, 22, 2546-2552.	1.3	4
326	Tridentate 3-Substituted Naphthoquinone Ruthenium Arene Complexes: Synthesis, Characterization, Aqueous Behavior, and Theoretical and Biological Studies. Inorganic Chemistry, 2021, 60, 9805-9819.	1.9	9
327	Acidity-responsive phosphorescent metal complexes for cancer imaging and theranostic applications. Journal of Organometallic Chemistry, 2021, 943, 121821.	0.8	2
328	New AllIIZnII and AlIIICuII dinuclear complexes: Phosphatase-like activity and cytotoxicity. Journal of Inorganic Biochemistry, 2021, 219, 111392.	1.5	2
329	Biomineralization of Aggregation-Induced Emission-Active Photosensitizers for pH-Mediated Tumor Imaging and Photodynamic Therapy. ACS Applied Bio Materials, 2021, 4, 5566-5574.	2.3	12
330	Features of third generation photosensitizers used in anticancer photodynamic therapy: Review. Photodiagnosis and Photodynamic Therapy, 2021, 34, 102091.	1.3	112
331	A platform for on-the-complex annulation reactions with transient aryne intermediates. Nature Communications, 2021, 12, 3706.	5.8	5
332	Bioactive half-sandwich Rh and Ir bipyridyl complexes containing artemisinin. Journal of Inorganic Biochemistry, 2021, 219, 111408.	1.5	7
333	White Light Luminescence from a Homoâ€conjugated Molecule with Thermally Activated Delayed Fluorescence. Chemistry - an Asian Journal, 2021, 16, 1893-1896.	1.7	1
334	Nanoarchitectonics for fullerene biology. Applied Materials Today, 2021, 23, 100989.	2.3	20
335	Ruthenium Complexes in the Fight against Pathogenic Microorganisms. An Extensive Review. Pharmaceutics, 2021, 13, 874.	2.0	48
336	Photodynamic Therapy of Inorganic Complexes for the Treatment of Cancer ^{â€} . Photochemistry and Photobiology, 2022, 98, 17-41.	1.3	21
337	An Approach to Developing Cyanines with Simultaneous Intersystem Crossing Enhancement and Excited-State Lifetime Elongation for Photodynamic Antitumor Metastasis. Journal of the American Chemical Society, 2021, 143, 12345-12354.	6.6	80
338	Luminescent lanthanide(III) complexes of DTPA-bis(amido-phenyl-terpyridine) for bioimaging and phototherapeutic applications. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 256, 119709.	2.0	16
339	Induction and Monitoring of DNA Phase Separation in Living Cells by a Light-Switching Ruthenium Complex. Journal of the American Chemical Society, 2021, 143, 11370-11381.	6.6	19
340	Antimicrobial Photodynamic Inactivation Using Topical and Superhydrophobic Sensitizer Techniques: A Perspective from Diffusion in Biofilms ^{â€} . Photochemistry and Photobiology, 2021, 97, 1266-1277.	1.3	12
341	Utilization of Rhenium(I) Polypyridine Complexes Featuring a Dinitrophenylsulfonamide Moiety as Biothiol‣elective Phosphorogenic Bioimaging Reagents and Photocytotoxic Agents. European Journal of Inorganic Chemistry, 2021, 2021, 3432-3442.	1.0	8
342	Synthesis, Spectroscopic, and ¹ O ₂ Sensitization Characteristics of Extended Pd(II) 10,10-Dimethylbiladiene Complexes Bearing Alkynyl–Aryl Appendages. Inorganic Chemistry, 2021, 60, 11154-11163.	1.9	7

#	Article	IF	CITATIONS
343	Synthesis of iridium-based nanocomposite with catalase activity for cancer phototherapy. Journal of Nanobiotechnology, 2021, 19, 203.	4.2	20
344	Ruthenium(II) and Platinum(II) Complexes with Biologically Active Aminoflavone Ligands Exhibit In Vitro Anticancer Activity. International Journal of Molecular Sciences, 2021, 22, 7568.	1.8	8
345	Drug delivery systems for the photodynamic application of two photosensitizers belonging to the porphyrin family. Photochemical and Photobiological Sciences, 2021, 20, 1011-1025.	1.6	9
346	Photodynamic therapy for hypoxic tumors: Advances and perspectives. Coordination Chemistry Reviews, 2021, 438, 213888.	9.5	151
347	Exploring the potential of highly charged Ru(II)- and heteronuclear Ru(II)/Cu(II)-polypyridyl complexes as antimicrobial agents. Journal of Inorganic Biochemistry, 2021, 220, 111467.	1.5	20
348	Coordination Complexes as a New Generation Photosensitizer for Photodynamic Anticancer Therapy. International Journal of Molecular Sciences, 2021, 22, 8052.	1.8	19
349	Overcoming Tumor Hypoxia through Multiple Pathways Using an All-in-One Polymeric Therapeutic Agent to Enhance Synergistic Cancer Photo/Chemotherapy Effects. Bioconjugate Chemistry, 2021, 32, 1864-1874.	1.8	8
350	Singlet Oxygen Photosensitization Using Graphene-Based Structures and Immobilized Dyes: A Review. ACS Applied Nano Materials, 2021, 4, 7563-7586.	2.4	25
351	Lightâ€Activated Biomedical Applications of Chlorophyll Derivatives. Macromolecular Bioscience, 2021, 21, e2100181.	2.1	22
352	Highly Efficient Farâ€Red/NIRâ€Absorbing Neutral Ir(III) Complex Micelles for Potent Photodynamic/Photothermal Therapy. Advanced Materials, 2021, 33, e2100795.	11.1	58
353	The cell-impermeable Ru(II) polypyridyl complex as a potent intracellular photosensitizer under visible light irradiation via ion-pairing with suitable lipophilic counter-anions. Free Radical Biology and Medicine, 2021, 171, 69-79.	1.3	9
354	Probing Amyloid Nanostructures Using Photoluminescent Metal Complexes. European Journal of Inorganic Chemistry, 2021, 2021, 4408-4424.	1.0	4
355	Adenine Radical Cation Formation by a Ligand-Centered Excited State of an Intercalated Chromium Polypyridyl Complex Leads to Enhanced DNA Photo-oxidation. Journal of the American Chemical Society, 2021, 143, 14766-14779.	6.6	18
356	Investigation on Optical and Biological Properties of 2â€(4â€Dimethylaminophenyl)benzothiazole Based Cycloplatinated Complexes. Chemistry - A European Journal, 2021, 27, 15757-15772.	1.7	9
357	Anticancer and antibacterial potential of robust Ruthenium(II) arene complexes regulated by choice of α-diimine and halide ligands. Chemico-Biological Interactions, 2021, 344, 109522.	1.7	13
358	String-Attached Oligothiophene Substituents Determine the Fate of Excited States in Ruthenium Complexes for Photodynamic Therapy. Journal of Physical Chemistry A, 2021, 125, 6985-6994.	1.1	9
359	Synthesis, Characterization, and Cytotoxicity of Morpholine-Containing Ruthenium(II) <i>p</i> -Cymene Complexes. Inorganic Chemistry, 2021, 60, 12172-12185.	1.9	6
360	Investigation of the Effects and Mechanisms of Anticancer Action of a Ru(II)â€Arene Iminophosphorane Compound in Triple Negative Breast Cancer Cells. ChemMedChem, 2021, 16, 3280-3292.	1.6	3

#	Article	IF	CITATIONS
361	Vacancy Engineering to Regulate Photocatalytic Activity of Polymer Photosensitizers for Amplifying Photodynamic Therapy against Hypoxic Tumors. ACS Applied Materials & Interfaces, 2021, 13, 39055-39065.	4.0	7
362	Effect of Alkyl Chain Length on the Photophysical, Photochemical, and Photobiological Properties of Ruthenium(II) Polypyridyl Complexes for Their Application as DNA-Targeting, Cellular-Imaging, and Light-Activated Therapeutic Agents. ACS Applied Bio Materials, 2021, 4, 6664-6681.	2.3	14
363	Metal-organic nanostructure based on TixOy/Ruthenium reaction Units: For CT/MR Imaging-Guided X-ray induced dynamic therapy. Chemical Engineering Journal, 2021, 417, 129262.	6.6	12
364	Evaluation of the In Vitro and In Vivo Efficacy of Ruthenium Polypyridyl Compounds against Breast Cancer. International Journal of Molecular Sciences, 2021, 22, 8916.	1.8	3
365	Ruthenium Complexes: An Alternative to Platinum Drugs in Colorectal Cancer Treatment. Pharmaceutics, 2021, 13, 1295.	2.0	34
366	Synthesis of Nitrile-Functionalized Polydentate N-Heterocycles as Building Blocks for Covalent Triazine Frameworks. Synthesis, 0, , .	1.2	1
367	Cyclometalated Ru(II) β-carboline complexes induce cell cycle arrest and apoptosis in human HeLa cervical cancer cells via suppressing ERK and Akt signaling. Journal of Biological Inorganic Chemistry, 2021, 26, 793-808.	1.1	6
368	Lightâ€responsive and Protic Ruthenium Compounds Bearing Bathophenanthroline and Dihydroxybipyridine Ligands Achieve Nanomolar Toxicity towards Breast Cancer Cells. Photochemistry and Photobiology, 2021, , .	1.3	6
369	Dual Emissive Ir(III) Complexes for Photodynamic Therapy and Bioimaging. Pharmaceutics, 2021, 13, 1382.	2.0	9
370	Anticancer Activity of Half-Sandwich Ru, Rh and Ir Complexes with Chrysin Derived Ligands: Strong Effect of the Side Chain in the Ligand and Influence of the Metal. Pharmaceutics, 2021, 13, 1540.	2.0	6
371	A valproic acid-modified platinum diimine complex as potential photosensitizer for photodynamic therapy. Journal of Inorganic Biochemistry, 2021, 222, 111508.	1.5	4
372	Chiral resolution and absolute configuration determination of new metal-based photodynamic therapy antitumor agents. Journal of Pharmaceutical and Biomedical Analysis, 2021, 204, 114233.	1.4	6
373	Recent Strategies to Develop Innovative Photosensitizers for Enhanced Photodynamic Therapy. Chemical Reviews, 2021, 121, 13454-13619.	23.0	657
374	Recent advances in ruthenium(II) and iridium(III) complexes containing nanosystems for cancer treatment and bioimaging. Coordination Chemistry Reviews, 2021, 443, 214016.	9.5	68
375	Ruthenium(II) complexes coordinated to graphitic carbon nitride: Oxygen self-sufficient photosensitizers which produce multiple ROS for photodynamic therapy in hypoxia. Biomaterials, 2021, 276, 121064.	5.7	56
376	Photodynamic Therapy: A Compendium of Latest Reviews. Cancers, 2021, 13, 4447.	1.7	134
377	Machine Learning-Assisted Selection of Active Spaces for Strongly Correlated Transition Metal Systems. Journal of Chemical Theory and Computation, 2021, 17, 6053-6072.	2.3	17
378	Targeted Antibacterial Strategy Based on Reactive Oxygen Species Generated from Dioxygen Reduction Using an Organoruthenium Complex. Jacs Au, 2021, 1, 1348-1354.	3.6	14

#	Article	IF	CITATIONS
379	Insight into Recent Drug Discoveries against Trypanosomatids and Plasmodium spp Parasites: New Metal-based Compounds. Current Medicinal Chemistry, 2021, 28, .	1.2	1
380	The Development of Ru(II)-Based Photoactivated Chemotherapy Agents. Molecules, 2021, 26, 5679.	1.7	20
381	Co(II) complexes of curcumin and a ferrocene-based curcuminoid: a study on photo-induced antitumor activity. Journal of Biological Inorganic Chemistry, 2021, 26, 881-893.	1.1	3
382	Synthesis, structure and cytotoxicity of N,N and N,O coordinated Rull complexes of 3â€aminobenzoate Schiff bases against tripleâ€negative breast cancer. Chemistry - an Asian Journal, 2021, 16, 3729-3742.	1.7	0
383	Mitoâ€Bomb: Targeting Mitochondria for Cancer Therapy. Advanced Materials, 2021, 33, e2007778.	11.1	168
384	A 2-(benzothiazol-2-yl)-phenolato platinum(II) complex as potential photosensitizer for combating bacterial infections in lung cancer chemotherapyâ€. European Journal of Medicinal Chemistry, 2021, 222, 113600.	2.6	14
385	Photodiagnosis and photodynamic effects of bacteriochlorin-naphthalimide conjugates on tumor cells and mouse model. Journal of Photochemistry and Photobiology B: Biology, 2021, 223, 112294.	1.7	8
386	Advancement of metal compounds as therapeutic and diagnostic metallodrugs: Current frontiers and future perspectives. Coordination Chemistry Reviews, 2021, 445, 214104.	9.5	59
387	Oxoplatin-B, a cisplatin-based platinum(IV) complex with photoactive BODIPY for mitochondria specific "chemo-PDT―activity. Journal of Inorganic Biochemistry, 2021, 223, 111526.	1.5	21
388	Bioinorganic systems responsive to the diatomic gases O2, NO, and CO: From biological sensors to therapy. Coordination Chemistry Reviews, 2021, 445, 214096.	9.5	14
389	Targeting translation: a promising strategy for anticancer metallodrugs. Coordination Chemistry Reviews, 2021, 446, 214129.	9.5	31
390	Ruthenium Photosensitizers for NIR PDT Require Lowest-Lying Triplet Intraligand (3IL) Excited States. Journal of Photochemistry and Photobiology, 2021, 8, 100067.	1.1	8
391	Evaluating the mechanisms of action and subcellular localization of ruthenium(II)-based photosensitizers. European Journal of Medicinal Chemistry, 2021, 225, 113770.	2.6	12
392	Biotin-tagged cis-dichlorido-oxidovanadium(IV) complex for DNA crosslinking and photo-induced apoptotic cytotoxicity. Inorganica Chimica Acta, 2021, 528, 120629.	1.2	3
393	Water-soluble trithiolato-bridged dinuclear ruthenium(II) and osmium(II) arene complexes with bisphosphonate functionalized ligands as anticancer organometallics. Journal of Inorganic Biochemistry, 2021, 225, 111618.	1.5	1
394	Synergistic Ice Inhibition Effect Enhances Rapid Freezing Cryopreservation with Low Concentration of Cryoprotectants. Advanced Science, 2021, 8, 2003387.	5.6	26
395	Recent progress in photosensitizers for overcoming the challenges of photodynamic therapy: from molecular design to application. Chemical Society Reviews, 2021, 50, 4185-4219.	18.7	576
396	Coordination <i>versus</i> hydrogen bonds in the structures of different tris(pyridin-2-yl)phosphoric triamide derivatives. RSC Advances, 2021, 11, 8178-8197.	1.7	4

#	Article	IF	CITATIONS
397	Ru(<scp>ii</scp>) and Ir(<scp>iii</scp>) phenanthroline-based photosensitisers bearing <i>o</i> -carborane: PDT agents with boron carriers for potential BNCT. Biomaterials Science, 2021, 9, 5691-5702.	2.6	11
398	Rational design of a lysosome-targeting and near-infrared absorbing Ru(<scp>ii</scp>)–BODIPY conjugate for photodynamic therapy. Chemical Communications, 2021, 57, 1790-1793.	2.2	33
399	Metal complexes against breast cancer stem cells. Dalton Transactions, 2021, 50, 14498-14512.	1.6	36
400	A Multiâ€action and Multiâ€target Ru ^{II} –Pt ^{IV} Conjugate Combining Cancerâ€Activated Chemotherapy and Photodynamic Therapy to Overcome Drug Resistant Cancers. Angewandte Chemie, 2020, 132, 7135-7141.	1.6	25
401	SEC hyphenated to a multielement-specific detector unravels the degradation pathway of a bimetallic anticancer complex in human plasma. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2020, 1145, 122093.	1.2	5
402	Evaluation of photochemotherapeutic potential of a few oxo-bridged dimeric Fe(III) compounds having Salen-type ligands. Polyhedron, 2020, 186, 114614.	1.0	9
403	Ruthenium-initiated polymerization of lactide: a route to remarkable cellular uptake for photodynamic therapy of cancer. Chemical Science, 2020, 11, 2657-2663.	3.7	37
404	Water-soluble amphiphilic ruthenium(<scp>ii</scp>) polypyridyl complexes as potential light-activated therapeutic agents. Chemical Communications, 2020, 56, 9332-9335.	2.2	17
405	The metal centre in salen-acridine dyad N ₂ O ₂ ligand–metal complexes modulates DNA binding and photocleavage efficiency. New Journal of Chemistry, 2020, 44, 9888-9895.	1.4	8
406	Minimal required PDT light dosimetry for nonmuscle invasive bladder cancer. Journal of Biomedical Optics, 2020, 25, 1.	1.4	10
407	Zinc-Containing Metalloenzymes: Inhibition by Metal-Based Anticancer Agents. Frontiers in Chemistry, 2020, 8, 402.	1.8	29
408	Photodynamic therapy with mitochondria-targeted biscyclometallated Ir(<scp>iii</scp>) complexes. Multi-action mechanism and strong influence of the cyclometallating ligand. Dalton Transactions, 2021, 51, 111-128.	1.6	13
409	Chemical catalyst-promoted photooxygenation of amyloid proteins. Organic and Biomolecular Chemistry, 2021, 19, 10017-10029.	1.5	8
410	Tuning the organelle specificity and cytotoxicity of iridium(<scp>iii</scp>) photosensitisers for enhanced phototheranostic applications. Chemical Communications, 2021, 57, 12008-12011.	2.2	10
411	One-pot peptide cyclisation and surface modification of photosensitiser-loaded red blood cells for targeted photodynamic therapy. Biomaterials Science, 2021, 9, 7832-7837.	2.6	8
412	Cycloruthenated Selfâ€Assembly with Metabolic Inhibition to Efficiently Overcome Multidrug Resistance in Cancers. Advanced Materials, 2022, 34, e2100245.	11.1	23
413	Group 4 metallocene derivatives as a new class of singlet oxygen photosensitizers. Journal of Photochemistry and Photobiology A: Chemistry, 2022, 424, 113619.	2.0	4
414	Synthesis, characterisation and biological activity of the ruthenium(II) complexes of the N4-tetradentate (N4-TL), 1,6-di(2′-pyridyl)-2,5-dibenzyl-2,5-diazahexane (picenBz2). Journal of Inorganic Biochemistry, 2022, 226, 111629.	1.5	1

#	Article	IF	CITATIONS
415	Thermosensitive hydrogel-functionalized gold nanorod/mesoporous MnO2 nanoparticles for tumor cell-triggered drug delivery. Materials Science and Engineering C, 2021, 131, 112504.	3.8	12
416	BODIPY-Ruthenium(II) Bis-Terpyridine Complexes for Cellular Imaging and Type-I/-II Photodynamic Therapy. Inorganic Chemistry, 2021, 60, 16178-16193.	1.9	33
417	Safety and Efficacy Evaluation In Vivo of a Cationic Nucleolipid Nanosystem for the Nanodelivery of a Ruthenium(III) Complex with Superior Anticancer Bioactivity. Cancers, 2021, 13, 5164.	1.7	14
418	Photochemistry of Heteroleptic 1,4,5,8-Tetraazaphenanthrene- and Bi-1,2,3-triazolyl-Containing Ruthenium(II) Complexes. Inorganic Chemistry, 2021, 60, 15768-15781.	1.9	9
419	Metal–organic frameworks for the generation of reactive oxygen species. Chemical Physics Reviews, 2021, 2, .	2.6	7
420	Novel photosensitizing nanoparticles for PDT and biosensing applications. Journal of Photochemistry and Photobiology, 2021, 8, 100075.	1.1	2
421	Moving Ru polypyridyl complexes beyond cytotoxic activity towards metastasis inhibition. Journal of Inorganic Biochemistry, 2022, 226, 111652.	1.5	19
422	Antitumor Immune Response Triggered by Metal-Based Photosensitizers for Photodynamic Therapy: Where Are We?. Pharmaceutics, 2021, 13, 1788.	2.0	11
423	Discovery of immunogenic cell death-inducing ruthenium-based photosensitizers for anticancer photodynamic therapy. Oncolmmunology, 2021, 10, 1863626.	2.1	22
424	Bis(2,2′-bipyridil)Copper(II) Chloride Complex: Tyrosinase Biomimetic Catalyst or Redox Mediator?. Materials, 2021, 14, 113.	1.3	5
425	Photoactive metallodrugs. , 2021, , .		0
426	pH-Responsive luminescence sensing, photoredox catalysis and photodynamic applications of ruthenium(II) photosensitizers bearing imidazo[4,5-f][1,10]phenanthroline scaffolds. Coordination Chemistry Reviews, 2022, 452, 214272.	9.5	14
427	A ruthenium–oligonucleotide bioconjugated photosensitizing aptamer for cancer cell specific photodynamic therapy. RSC Chemical Biology, 2022, 3, 85-95.	2.0	14
428	Clinical Development of Metal Complexes as Photosensitizers for Photodynamic Therapy of Cancer. Angewandte Chemie - International Edition, 2022, 61, .	7.2	170
429	Clinical Development of Metal Complexes as Photosensitizers for Photodynamic Therapy of Cancer. Angewandte Chemie, 0, , .	1.6	15
430	Revealing the Photophysical Dynamics of Selected Rigid Donor–Acceptor Systems: From Ligands to Ruthenium(II) Complexes. Journal of Physical Chemistry Letters, 2021, 12, 10927-10935.	2.1	3
431	Prussian blue-conjugated ZnO nanoparticles for near-infrared light-responsive photocatalysis. Materials Today Energy, 2022, 23, 100895.	2.5	14
432	Three new cadmium(II) coordination compounds based on 2-(pyridin-3-yl)-1 <i>H</i> -imidazo[4,5- <i>f</i>][1,10]phenanthroline: syntheses, structures and luminescence. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2020, 75, 843-849	0.3	0

#	Article	IF	CITATIONS
433	Position isomers of Ru(II) polypyridine complexes with tunable photophysical properties, aggregation-induced phosphorescence enhancement and application in triplet-triplet annihilated upconversion. Dyes and Pigments, 2020, 180, 108489.	2.0	4
434	Building C(sp 3) Molecular Complexity on 2,2′â€Bipyridine and 1,10â€Phenanthroline in Rhenium Tricarbonyl Complexes. Chemistry - A European Journal, 2021, 27, 379-389.	1.7	6
435	Click ferrocenyl-erlotinib conjugates active against erlotinib-resistant non-small cell lung cancer cells in vitro. Bioorganic Chemistry, 2022, 119, 105514.	2.0	10
436	Latest developments in metal complexes as anticancer agents. Coordination Chemistry Reviews, 2022, 452, 214307.	9.5	98
437	Ruthenium Complexes Bearing Axially Chiral Bipyridyls: The Mismatched Diastereomer Showed Red Circularly Polarized Phosphorescence. Chemistry - A European Journal, 2022, 28, .	1.7	10
438	Nitroimidazole-Based Ruthenium(II) Complexes: Playing with Structural Parameters to Design Photostable and Light-Responsive Antibacterial Agents. Inorganic Chemistry, 2022, 61, 6689-6694.	1.9	20
439	Single-Cell Chemistry of Photoactivatable Platinum Anticancer Complexes. Journal of the American Chemical Society, 2021, 143, 20224-20240.	6.6	49
440	Sonodynamic cancer therapy by novel iridium-gold nanoassemblies. Chinese Chemical Letters, 2022, 33, 1907-1912.	4.8	16
441	Intracellular Localization Studies of the Luminescent Analogue of an Anticancer Ruthenium Iminophosphorane with High Efficacy in a Triple-Negative Breast Cancer Mouse Model. Inorganic Chemistry, 2021, 60, 19152-19164.	1.9	10
442	A Carbonic Anhydrase IX (CAIX)â€Anchored Rhenium(I) Photosensitizer Evokes Pyroptosis for Enhanced Antiâ€ī umor Immunity. Angewandte Chemie, 0, , .	1.6	10
443	Ru(II)-Based Acetylacetonate Complexes Induce Apoptosis Selectively in Cancer Cells. Inorganic Chemistry, 2021, 60, 18964-18974.	1.9	10
444	A Carbonic Anhydrase IX (CAIX)â€Anchored Rhenium(I) Photosensitizer Evokes Pyroptosis for Enhanced Antiâ€Tumor Immunity. Angewandte Chemie - International Edition, 2022, 61, e202115800.	7.2	98
445	Chemistry on the Complex: Derivatization of TiO 4 N 2 â€Based Complexes and Application to Multiâ€Step Synthesis. Chemistry - A European Journal, 2021, 27, 17910.	1.7	2
446	Highly Efficient Ir(III)â€Coumarin Photoâ€Redox Catalyst for Synergetic Multiâ€Mode Cancer Photoâ€Therapy. Chemistry - A European Journal, 2022, 28, .	1.7	11
447	Polymer-metal-organic framework hybrids for bioimaging and cancer therapy. Coordination Chemistry Reviews, 2022, 456, 214393.	9.5	25
448	Should You Become a Chemist Entrepreneur?. Inorganic Chemistry, 2021, 60, 17415-17418.	1.9	Ο
449	Hybrid Nanoparticles as Theranostics Platforms for Glioblastoma Treatment: Phototherapeutic and X-ray Phase Contrast Tomography Investigations. Journal of Nanotheranostics, 2022, 3, 1-17.	1.7	1
450	Targeted isolation of photoactive pigments from mushrooms yielded a highly potent new photosensitizer: 7,7′-biphyscion. Scientific Reports, 2022, 12, 1108.	1.6	7

ARTICLE IF CITATIONS # Metal-based anticancer agents as immunogenic cell death inducers: the past, present, and future. 451 18.7 107 Chemical Society Reviews, 2022, 51, 1212-1233. Phosphorescent NIR emitters for biomedicine: applications, advances and challenges. Dalton 1.6 29 Transactions, 2022, 51, 1257-1280. Ferritin nanocomposites for the selective delivery of photosensitizing ruthenium-polypyridyl 453 3.0 14 compounds to cancer cells. Inorganic Chemistry Frontiers, 2022, 9, 1070-1081. Development of Novel Aptamer-Based Targeted Chemotherapy for Bladder Cancer. Cancer Research, 454 2022, 82, 1128-1139. Phototherapeutic anticancer strategies with first-row transition metal complexes: a critical review. 455 18.7 96 Chemical Society Reviews, 2022, 51, 1167-1195. Photocytotoxicity and photoinduced phosphine ligand exchange in a Ru(<scp>ii</scp>) polypyridyl complex. Chemical Science, 2022, 13, 1933-1945. 3.7 ER-Targeting Cyanine Dye as an NIR Photoinducer to Efficiently Trigger Photoimmunogenic Cancer Cell 457 6.6 73 Death. Journal of the American Chemical Society, 2022, 144, 3477-3486. Half-Sandwich Cyclometalated Rh^{III} Complexes Bearing Thiolate Ligands: Biomolecular Interactions and <i>In Vitro</i> and <i>In Vivo</i> Evaluations. Inorganic Chemistry, 2022, 61, 1.9 14 2039-2056. Advances in Management of Bladder Cancerâ€"The Role of Photodynamic Therapy. Molecules, 2022, 27, 459 1.7 31 731. Recent advances of cancer chemodynamic therapy based on Fenton/Fenton-like chemistry. Chemical Science, 2022, 13, 863-889. BODIPY–dipicolylamine complexes of platinum(<scp>ii</scp>): X-ray structure, cellular imaging and 461 1.6 8 organelle-specific near-IR light type-II PDT. Dalton Transactions, 2022, 51, 3925-3936. Relevance of the electron transfer pathway in photodynamic activity of Ru(<scp>ii</scp>) polypyridyl complexes containing 4,7-diphenyl-1,10-phenanthroline ligands under normoxic and hypoxic conditions. Dalton Transactions, 2022, 51, 1888-1900. 1.6 Oxidative Stress in Cancer Therapy: Friend or Enemy?. ChemBioChem, 2022, 23, . 463 1.3 49 Ruthenium(ii) complex containing cinnamic acid derivative inhibits cell cycle progression at GO/G1 and 464 1.4 induces apoptosis in melanoma cells. New Journal of Chemistry, 0, , . Benzothiazole-decorated iridium-based nanophotosensitizers for photodynamic therapy of cancer 465 7 1.6 cells. Dalton Transactions, 2022, 51, 3666-3675. Tripletâ€Triplet Annihilation Upconversion from Ru(II) Phenanthroline Complexes and 2â€&ubstituted Anthracene Derivatives. ChemistrySelect, 2022, 7, . Osmium Complexâ€"Chromophore Conjugates with Both Singlet-to-Triplet Absorption and Long Triplet 467 1.9 23 Lifetime through Tuning of the Heavy-Atom Effect. Inorganic Chemistry, 2022, 61, 5982-5990. Are smart delivery systems the solution to overcome the lack of selectivity of current metallodrugs 1.6 in cancer therapy?. Dalton Transactions, 2022, 51, 2593-2609.

#	Article	IF	CITATIONS
469	Copper(II) Complexes of 10,20-Diaryl-5,15-diazaporphyrin: Alternative Synthesis, Excited State Dynamics, and Substituent Effect on the 102-Generation Efficiency. Bulletin of the Chemical Society of Japan, 2022, 95, 427-432.	2.0	4
470	Reshaping the Tumor Immune Microenvironment Based on a Lightâ€Activated Nanoplatform for Efficient Cancer Therapy. Advanced Materials, 2022, 34, e2108908.	11.1	41
471	Crystal structure of tris(4,7-diphenyl-1,10-phenanthroline-κ ² <i>N</i> , <i>N</i> â€2)cobalt(III) tris(hexafluorophosphate) monohydrate. Acta Crystallographica Section E: Crystallographic Communications, 2022, 78, 313-316.	0.2	0
472	Rhenium–guanidine complex as photosensitizer: trigger HeLa cell apoptosis through death receptor-mediated, mitochondria-mediated, and cell cycle arrest pathways. Metallomics, 2022, 14, .	1.0	5
473	Nuclease-like metalloscissors: Biomimetic candidates for cancer and bacterial and viral infections therapy. Coordination Chemistry Reviews, 2022, 458, 214417.	9.5	12
474	Recent Advancements in the Anticancer Potentials of First Row Transition Metal Complexes. SSRN Electronic Journal, 0, , .	0.4	0
475	Platinum-containing heterometallic complexes in cancer therapy: advances and perspectives. Inorganic Chemistry Frontiers, 2022, 9, 2424-2453.	3.0	33
476	Luminescent iridium(<scp>iii</scp>) dipyrrinato complexes: synthesis, X-ray structures, and DFT and photocytotoxicity studies of glycosylated derivatives. Dalton Transactions, 2022, 51, 3849-3863.	1.6	10
477	Green-light-responsive metal–organic frameworks for colorectal cancer treatment. Chemical Communications, 2022, 58, 5225-5228.	2.2	8
478	A bioorthogonal assembly based on metallophilic interactions for selective imaging and PDT treatment of cancer cells. Inorganic Chemistry Frontiers, 2022, 9, 2290-2297.	3.0	5
479	Recent advances in noble metal complex based photodynamic therapy. Chemical Science, 2022, 13, 5085-5106.	3.7	62
480	Metallodrugs in cancer nanomedicine. Chemical Society Reviews, 2022, 51, 2544-2582.	18.7	70
481	<i>In situ</i> synthesis of a functional ZIF-8 nanocomposite for synergistic photodynamic–chemotherapy and pH and NIR-stimulated drug release. New Journal of Chemistry, 2022, 46, 6966-6970.	1.4	2
482	Os(<scp>ii</scp>) complexes for catalytic anticancer therapy: recent update. Chemical Communications, 2022, 58, 4825-4836.	2.2	8
483	Herbal medicines and bladder cancer. , 2022, , 627-636.		0
484	The literature of heterocyclic chemistry, Part XIX, 2019. Advances in Heterocyclic Chemistry, 2022, , 225-295.	0.9	6
485	Relevance of Fluorinated Ligands to the Design of Metallodrugs for Their Potential Use in Cancer Treatment. Pharmaceutics, 2022, 14, 402.	2.0	8
486	Interaction with a Biomolecule Facilitates the Formation of the Function-Determining Long-Lived Triplet State in a Ruthenium Complex for Photodynamic Therapy. Journal of Physical Chemistry A, 2022, 126. 1336-1344.	1.1	6

#	Article	IF	CITATIONS
487	Radiation-induced prodrug activation: extending combined modality therapy for some solid tumours. British Journal of Cancer, 2022, 126, 1241-1243.	2.9	2
488	Antibody-conjugated liposomes loaded with indocyanine green for oral targeted photoacoustic imaging-guided sonodynamic therapy of Helicobacter pylori infection. Acta Biomaterialia, 2022, 143, 418-427.	4.1	35
489	Multifunctional MnCuInSe/ZnS quantum dots for bioimaging and photodynamic therapy. Journal of Biomaterials Applications, 2022, 36, 1617-1628.	1.2	4
490	Experimental and theoretical study of novel aminoâ€functionalized P(V) coordination compounds suggested as inhibitor of M ^{Pro} of SARSâ€COVâ€2 by molecular docking study. Applied Organometallic Chemistry, 2022, 36, e6636.	1.7	4
491	Metalloimmunotherapy with Rhodium and Ruthenium Complexes: Targeting Tumorâ€Associated Macrophages. Chemistry - A European Journal, 2022, 28, .	1.7	13
492	Anticancer activity of ruthenium(II) plumbagin complexes with polypyridyl as ancillary ligands via inhibiting energy metabolism and GADD45A-mediated cell cycle arrest. European Journal of Medicinal Chemistry, 2022, 236, 114312.	2.6	12
493	Singlet Oxygen Generation from Polyaminoglycerol by Spin-Flip-Based Electron Transfer. Jacs Au, 2022, 2, 933-942.	3.6	8
494	Nanomaterials for photothermal and photodynamic cancer therapy. Applied Physics Reviews, 2022, 9, .	5.5	50
495	Multifunctional Self-Assembly with NIR Light-Activated Cascade Effect for Improving Local Treatment on Solid Tumors. ACS Applied Materials & amp; Interfaces, 2022, 14, 14087-14096.	4.0	3
496	Photoactive and Luminescent Transition Metal Complexes as Anticancer Agents: A Guiding Light in the Search for New and Improved Cancer Treatments. Biomedicines, 2022, 10, 578.	1.4	14
497	Excited states of transition metal complexes for medical applications and solar energy conversion. , 2022, , .		0
498	Derivatized phenylbenzothiazole cyclometalating ligands for reverse saturable absorption materials development. , 2022, , .		0
499	Smart nanocomposite assemblies for multimodal cancer theranostics. International Journal of Pharmaceutics, 2022, 618, 121697.	2.6	11
500	A novel heptamethine cyanine photosensitizer for FRET-amplified photodynamic therapy and two-photon imaging in A-549 cells. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 274, 121083.	2.0	7
501	Rational design of mitochondria targeted thiabendazole-based Ir(III) biscyclometalated complexes for a multimodal photodynamic therapy of cancer. Journal of Inorganic Biochemistry, 2022, 231, 111790.	1.5	8
502	Piano-stool type (η6-p-cymene)ruthenium(II) thiazole-derived motifs complexes: Synthesis, crystal structures, DFT studies, molecular docking and in-vitro binding studies with HSA and cytotoxicity. Inorganica Chimica Acta, 2022, 537, 120925.	1.2	2
503	Revisiting metallodrugs for the treatment of skin cancers. Coordination Chemistry Reviews, 2022, 462, 214506.	9.5	11
504	Theoretical probe of absorption and fluorescence emission characteristics of highly luminescent ReL(CO) ₃ X (L = 12H-indazolo[5,6-f][1,10]phenanthroline and X = F, Cl, Br, I): a D Molecular Physics, 2022, 120, .	FTØ.DFT	stoudy.

#	Article	IF	CITATIONS
505	An Alkynylâ€Ðangling Ru(II) Polypyridine Complex for Targeted Antimicrobial Photodynamic Therapy. Chemistry - A European Journal, 2022, 28, .	1.7	7
506	Alkylverdazyls as a Source of Alkyl Radicals for Light-Triggered Cancer Cell Death. Molecular Pharmaceutics, 2022, 19, 354-357.	2.3	1
507	Anticancer Agent with Inexplicable Potency in Extreme Hypoxia: Characterizing a Light-Triggered Ruthenium Ubertoxin. Journal of the American Chemical Society, 2022, 144, 9543-9547.	6.6	48
509	Unlocking the Potential of Ru(II) Dualâ€action Compounds with the Power of the Heavyâ€atom Effect ^{â€} . Photochemistry and Photobiology, 2022, 98, 378-388.	1.3	7
510	Computational Design of Rhenium(I) Carbonyl Complexes for Anticancer Photodynamic Therapy. Inorganic Chemistry, 2022, 61, 439-455.	1.9	6
511	Merging of a Perylene Moiety Enables a Ru ^{II} Photosensitizer with Longâ€Lived Excited States and the Efficient Production of Singlet Oxygen. Chemistry - A European Journal, 2022, 28, .	1.7	13
512	Terpyridines as promising antitumor agents: an overview of their discovery and development. Expert Opinion on Drug Discovery, 2022, 17, 259-271.	2.5	14
513	Challenges and opportunities in the development of metal-based anticancer theranostic agents. Bioscience Reports, 2022, 42, .	1.1	13
514	Dipyridophenazine iridium(III) complex as a phototoxic cancer stem cell selective, mitochondria targeting agent. Chemico-Biological Interactions, 2022, 360, 109955.	1.7	13
517	Left versus right: Exploring the effects of chiral threading intercalators using optical tweezers. Biophysical Journal, 2022, 121, 3745-3752.	0.2	2
518	Photodynamic therapy of melanoma with new, structurally similar, NIR-absorbing ruthenium (II) complexes promotes tumor growth control via distinct hallmarks of immunogenic cell death American Journal of Cancer Research, 2022, 12, 210-228.	1.4	0
519	[Ru(η ⁶ - <i>p</i> ,ci>p-cymene)(N^O 8-hydroxyquinoline)(PTA)] complexes as rising stars in medicinal chemistry: synthesis, properties, biomolecular interactions, <i>in vitro</i> anti-tumor activity toward human brain carcinomas, and <i>in vivo</i> biodistribution and toxicity in a zebrafish model. Dalton Transactions, 2022, 51, 8497-8509.	1.6	6
520	The effect of halogenation of salicylaldehyde on the antiproliferative activities of {Δ/Λ-[Ru(bpy) ₂ (X,Y-sal)]BF ₄ } complexes. Dalton Transactions, 2022, 51, 7658-7672.	1.6	4
521	Intraligand Excited States Turn a Ruthenium Oligothiophene Complex into a Light-Triggered Ubertoxin with Anticancer Effects in Extreme Hypoxia. Journal of the American Chemical Society, 2022, 144, 8317-8336.	6.6	32
522	Bioactivity and Development of Small Non-Platinum Metal-Based Chemotherapeutics. Pharmaceutics, 2022, 14, 954.	2.0	37
523	Spectroscopy, Structure, Biomacromolecular Interactions, and Antiproliferation Activity of a Fe(II) Complex With DPA-Bpy as Pentadentate Ligand. Frontiers in Chemistry, 2022, 10, 888693.	1.8	4
524	An osmium-peroxo complex for photoactive therapy of hypoxic tumors. Nature Communications, 2022, 13, 2245.	5.8	53
525	Evaluation of DNA/BSA interaction and in vitro cell cytotoxicity of μ2-oxido bridged divanadium(V) complexes containing ONO donor ligands. Journal of Inorganic Biochemistry, 2022, 233, 111852.	1.5	16

C	ΤΔΤΙ	REPORT	
		KLI OKI	

#	Article	IF	CITATIONS
526	A Biodegradable Iridium(III) Coordination Polymer for Enhanced Twoâ€Photon Photodynamic Therapy Using an Apoptosis–Ferroptosis Hybrid Pathway. Angewandte Chemie, 2022, 134, .	1.6	9
527	A Biodegradable Iridium(III) Coordination Polymer for Enhanced Twoâ€Photon Photodynamic Therapy Using an Apoptosis–Ferroptosis Hybrid Pathway. Angewandte Chemie - International Edition, 2022, 61, .	7.2	64
528	Long-Lived Photoluminescence of Molecular Group 14 Compounds through Thermally Activated Delayed Fluorescence. Inorganic Chemistry, 2022, 61, 7338-7348.	1.9	14
529	Boosting phototherapy efficacy of NIR-absorbing ruthenium (II) complex via supramolecular engineering. Materials Today Nano, 2022, 18, 100220.	2.3	5
530	Factors that influence singlet oxygen formation vs. ligand substitution for light-activated ruthenium anticancer compounds. Current Opinion in Chemical Biology, 2022, 68, 102143.	2.8	12
531	Engineering of a multifunctional small molecule enables dual-channel fluorescence visualizing of environmental unamiable heavy metal ions as well as photoinactivation-based and ultra-efficient eliminating of human pathogens. Chemical Engineering Journal, 2022, 444, 136601.	6.6	8
532	Photosubstitution in a trisheteroleptic ruthenium complex inhibits conjunctival melanoma growth in a zebrafish orthotopic xenograft model. Chemical Science, 2022, 13, 6899-6919.	3.7	13
533	Platinum-Based Two-Photon Photosensitizer Responsive to NIR Light in Tumor Hypoxia Microenvironment. Journal of Medicinal Chemistry, 2022, 65, 7786-7798.	2.9	14
534	Photoactivated metal complexes for drug delivery. , 2022, , .		0
535	Highly Facile Strategy for Detecting D ₂ 0 in H ₂ 0 by Porphyrin-Based Luminescent Probes. Analytical Chemistry, 2022, 94, 8426-8432.	3.2	15
536	A supramolecular photosensitizer derived from an Arene-Ru(II) complex self-assembly for NIR activated photodynamic and photothermal therapy. Nature Communications, 2022, 13, .	5.8	58
537	A Phase 1b Clinical Study of Intravesical Photodynamic Therapy in Patients with Bacillus Calmette-Guérin–unresponsive Non–muscle-invasive Bladder Cancer. European Urology Open Science, 2022, 41, 105-111.	0.2	21
540	Bichromophoric ruthenium(<scp>ii</scp>) bis-terpyridine-BODIPY based photosensitizers for cellular imaging and photodynamic therapy. Dalton Transactions, 2022, 51, 10392-10405.	1.6	9
541	Balancing the interplay between ligand ejection and therapeutic window light absorption in ruthenium polypyridyl complexes. Dalton Transactions, 0, , .	1.6	1
542	Ruthenium complexes for photoactivated dual activity: Drug delivery and singlet oxygen generation. Advances in Inorganic Chemistry, 2022, , .	0.4	1
543	A pH-responsive iridium(<scp>iii</scp>) two-photon photosensitizer loaded CaCO ₃ nanoplatform for combined Ca ²⁺ overload and photodynamic therapy. Inorganic Chemistry Frontiers, 2022, 9, 4171-4183.	3.0	9
545	Photocatalytic glucose-appended bio-compatible Ir(<scp>iii</scp>) anticancer complexes. Dalton Transactions, 2022, 51, 10875-10879.	1.6	2
546	Bibliometric Analysis of Global Research on Cancer Photodynamic Therapy: Focus on Nano-Related Research. Frontiers in Pharmacology, 0, 13, .	1.6	51

#	Article	IF	CITATIONS
547	Recent advancements in the anticancer potentials of first row transition metal complexes. Journal of the Indian Chemical Society, 2022, 99, 100556.	1.3	16
548	Dihydropyrrolo[3,2- <i>b</i>]pyrrole-3,6-dicarbaldehyde-Based Two-Photon-Responsive Nanoparticles for Effective Photodynamic Therapy. ACS Applied Nano Materials, 2022, 5, 9594-9603.	2.4	5
549	Ruthenium(II)–Cyclopentadienyl-Derived Complexes as New Emerging Anti-Colorectal Cancer Drugs. Pharmaceutics, 2022, 14, 1293.	2.0	9
550	Metal-Tyrosine Kinase Inhibitors: Targeted metal-drug conjugates. Coordination Chemistry Reviews, 2022, 469, 214655.	9.5	4
551	Hyaluronic Acid-Poly(Lactic-Co-Glycolic Acid) Nanoparticles with a Ruthenium Photosensitizer Cargo for Photokilling of Oral Cancer Cells. SSRN Electronic Journal, 0, , .	0.4	0
552	Dinuclear Ruthenium(II)â€Pyrrolide Complexes Linked by Different Organic Units as PDT Photosensitizers: Computational Study of the Linker Influence on the Photophysical Properties*. ChemPhotoChem, 2022, 6, .	1.5	4
553	Advances in Diagnosis and Therapy for Bladder Cancer. Cancers, 2022, 14, 3181.	1.7	16
554	Triplet–Triplet Energy Transfer inside the Single Organic Nanocrystal Revealed by Microscopic Time Resolved Spectroscopy. Journal of Physical Chemistry C, 2022, 126, 11033-11041.	1.5	1
555	Microneedle Patches with O ₂ Propellant for Deeply and Fast Delivering Photosensitizers: Towards Improved Photodynamic Therapy. Advanced Science, 2022, 9, .	5.6	23
556	Iridium photosensitizer constructed liposomes with hypoxia-activated prodrug to destrust hepatocellular carcinoma. Chinese Chemical Letters, 2023, 34, 107666.	4.8	3
557	Insights into enantioselective separations of ionic metal complexes by sub/supercritical fluid chromatography. Analytica Chimica Acta, 2022, 1228, 340156.	2.6	3
558	Combination of light and Ru(II) polypyridyl complexes: Recent advances in the development of new anticancer drugs. Coordination Chemistry Reviews, 2022, 469, 214656.	9.5	43
559	A NTR and O2 programmed responsive photogenic radicals for efficient hypoxia cancer therapy. Sensors and Actuators B: Chemical, 2022, 369, 132311.	4.0	4
560	Hook, Line, and Sinker! Spectroscopic Studies of Bi-Modular Mono- and Bis-1,8-naphthalimide-Ru(bpy) ₃ -conjugates as DNA "Light Switches― Inorganic Chemistry, 2022, 61, 12073-12086.	1.9	4
561	Metal complex-based liposomes: Applications and prospects in cancer diagnostics and therapeutics. Journal of Controlled Release, 2022, 348, 1066-1088.	4.8	19
562	Microwave-assisted synthesis and photodynamic activity of tris-heteroleptic Ru(II) complexes with asymmetric polypyridyl ligands. Polyhedron, 2022, 225, 116049.	1.0	1
563	Ru(II) containing photosensitizers for photodynamic therapy: A critique on reporting and an attempt to compare efficacy. Coordination Chemistry Reviews, 2022, 470, 214712.	9.5	15
564	Medicinal inorganic chemistry – challenges, opportunities and guidelines to develop the next generation of radioactive, photoactivated and active site inhibiting metal-based medicines. Chemical Society Reviews, 2022, 51, 7715-7731.	18.7	11

#	Article	IF	CITATIONS
565	Comparative Analysis of New Cyanoarylporphyrazine and its Iron Complex as Photosensitizers for Anticancer Photodynamic Therapy. SSRN Electronic Journal, 0, , .	0.4	0
566	Polymeric Nanosystems Applied for Metal-Based Drugs and Photosensitizers Delivery: The State of the Art and Recent Advancements. Pharmaceutics, 2022, 14, 1506.	2.0	6
567	Engineered metal and their complexes for nanomedicine-elicited cancer immunotherapy. Materials Today Advances, 2022, 15, 100276.	2.5	4
568	Targeting of the intracellular redox balance by metal complexes towards anticancer therapy. Frontiers in Chemistry, 0, 10, .	1.8	13
569	Red-Absorbing Ru(II) Polypyridyl Complexes with Biotin Targeting Spontaneously Assemble into Nanoparticles in Biological Media. Inorganic Chemistry, 2022, 61, 13576-13585.	1.9	14
570	Thiolumazines as Heavy-Atom-Free Photosensitizers for Applications in Daylight Photodynamic Therapy: Insights from Ultrafast Excited-State Dynamics. Journal of Physical Chemistry B, 2022, 126, 6083-6094.	1.2	5
571	In vivo Realization of Dual Photodynamic and Photothermal Therapy for Melanoma by Mitochondria Targeting Dinuclear Ruthenium Complexes under Civil Infrared Lowâ€power Laser. Angewandte Chemie, 2022, 134, .	1.6	3
572	Ruthenium Complexes as Potential Cancer Cell Growth Inhibitors for Targeted Chemotherapy. ChemistrySelect, 2022, 7, .	0.7	9
573	Luminescent and Photofunctional Transition Metal Complexes: From Molecular Design to Diagnostic and Therapeutic Applications. Journal of the American Chemical Society, 2022, 144, 14420-14440.	6.6	79
574	Ru(II)-modified TiO2 nanoparticles for hypoxia-adaptive photo-immunotherapy of oral squamous cell carcinoma. Biomaterials, 2022, 289, 121757.	5.7	32
575	Ruthenium(II) Polypyridyl Complexes Containing Simple Dioxo Ligands: a Structureâ€Activity Relationship Study Shows the Importance of the Charge. ChemBioChem, 2022, 23, .	1.3	7
576	In vivo Realization of Dual Photodynamic and Photothermal Therapy for Melanoma by Mitochondria Targeting Dinuclear Ruthenium Complexes under Civil Infrared Lowâ€power Laser. Angewandte Chemie - International Edition, 2022, 61, .	7.2	18
577	Long wavelength–emissive Ru(II) metallacycle–based photosensitizer assisting inÂvivo bacterial diagnosis and antibacterial treatment. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	64
578	Synthesis, photophysical properties and photo-induced cytotoxicity of novel tris(diazatriphenylene)ruthenium (II) complex. Bioorganic Chemistry, 2022, 128, 106044.	2.0	1
579	Organogold(III) Complexes Display Conditional Photoactivities: Evolving From Photodynamic into Photoactivated Chemotherapy in Response to O ₂ Consumption for Robust Cancer Therapy. Angewandte Chemie - International Edition, 2022, 61, .	7.2	11
580	Synthesis and biological evaluation of 4-dimethylaminobenzaldehyde derivatives of Schiff bases metal complexes: A review. Inorganic Chemistry Communication, 2022, 145, 109903.	1.8	7
581	Various coordination behavior of coumarin appended Schiff bases towards Ruthenium(II) ion: Synthesis, spectral characterization and biological evaluation. Inorganic Chemistry Communication, 2022, 145, 109986.	1.8	0
582	Phosphorescent metal complexes for biomedical applications. , 2022, , .		Ο

#	Article	IF	CITATIONS
583	Advances in the design of photoactivated platinum anticancer complexes. Advances in Inorganic Chemistry, 2022, , 95-127.	0.4	1
584	Leveraging the photophysical properties of rhenium(I) tricarbonyl complexes for biomedical applications. Advances in Inorganic Chemistry, 2022, , 1-33.	0.4	2
585	Three's a crowd – stabilisation, structure, and applications of DNA triplexes. Chemical Science, 2022, 13, 10193-10215.	3.7	17
586	Metallomics and metalloproteomics. , 2022, , .		0
587	8-Hydroxyquinoline-modified ruthenium(<scp>ii</scp>) polypyridyl complexes for JMJD inhibition and photodynamic antitumor therapy. Dalton Transactions, 2022, 51, 13902-13909.	1.6	8
588	Synthesis and Photobiology Evaluation of Ru(Ii) Complexes with Expanded Chelate Polypyridyl Ligands. SSRN Electronic Journal, 0, , .	0.4	0
589	Increasing the cytotoxicity of Ru(II) polypyridyl complexes by tuning the electron donating ability of 1,10-phenanthroline ligands. Dalton Transactions, 0, , .	1.6	1
590	A multiscale free energy method reveals an unprecedented photoactivation of a bimetallic Os(<scp>ii</scp>)–Pt(<scp>ii</scp>) dual anticancer agent. Physical Chemistry Chemical Physics, 2022, 24, 19584-19594.	1.3	5
591	Synthesis and anti-microbial activity of a new series of bis(diphosphine) rhenium(<scp>v</scp>) dioxo complexes. Dalton Transactions, 2022, 51, 12791-12795.	1.6	14
592	Gold(<scp>i</scp>) metallocyclophosphazenes with antibacterial potency and antitumor efficacy. Synergistic antibacterial action of a heterometallic gold and silver-cyclophosphazene. Dalton Transactions, 2022, 51, 13657-13674.	1.6	9
593	A photoactive lysosome targeting Ru ^{II} complex downregulates stemness genes in oral squamous cell carcinoma. Inorganic Chemistry Frontiers, 2022, 9, 5840-5852.	3.0	2
594	Recent advances on organelle specific Ru(II)/Ir(III)/Re(I) based complexes for photodynamic therapy. Coordination Chemistry Reviews, 2023, 474, 214860.	9.5	20
595	Photodynamic Therapy for Bladder Cancers, A Focused Review ^{â€} . Photochemistry and Photobiology, 2023, 99, 420-436.	1.3	9
596	Electronic Characterization of Visâ€NIR Absorbing Nonâ€Innocent Ruthenium Oxyquinolateâ€Merocyanine Complexes and their Photoacoustic Emission in Aqueous Micellar Solution. Photochemistry and Photobiology, 0, , .	1.3	0
597	Hemin-incorporating DNA nanozyme enabling catalytic oxygenation and GSH depletion for enhanced photodynamic therapy and synergistic tumor ferroptosis. Journal of Nanobiotechnology, 2022, 20, .	4.2	15
598	Constructing Hypoxiaâ€Tolerant and Host Tumorâ€Enriched Aggregationâ€Induced Emission Photosensitizer for Suppressing Malignant Tumors Relapse and Metastasis. Small, 2022, 18, .	5.2	8
599	A Photoactivated Sorafenib-Ruthenium(II) Prodrug for Resistant Hepatocellular Carcinoma Therapy through Ferroptosis and Purine Metabolism Disruption. Journal of Medicinal Chemistry, 2022, 65, 13041-13051.	2.9	27
600	How Computations Can Assist the Rational Design of Drugs for Photodynamic Therapy: Photosensitizing Activity Assessment of a Ru(II)-BODIPY Assembly. Molecules, 2022, 27, 5635.	1.7	4

			_
#	Article	IF	CITATIONS
601	Bichromophoric BODIPY and Biotin Tagged Terpyridyl Ruthenium(II) Complexes for Cellular Imaging and Photodynamic Therapy. European Journal of Inorganic Chemistry, 2022, 2022, .	1.0	4
602	Organogold(III) Complexes Display Conditional Photoactivities: Evolving From Photodynamic into Photoactivated Chemotherapy in Response to O ₂ Consumption for Robust Cancer Therapy. Angewandte Chemie, 2022, 134, .	1.6	0
603	Chargeâ€Transfer and Spinâ€Flip States: Thriving as Complements. Angewandte Chemie - International Edition, 2023, 62, .	7.2	28
604	Chargeâ€Transfer und Spinâ€Flipâ€Zustäde als sich ergäzende GegensÃæze. Angewandte Chemie, 2023, 135, .	1.6	2
605	Emerging photodynamic/sonodynamic therapies for urological cancers: progress and challenges. Journal of Nanobiotechnology, 2022, 20, .	4.2	9
606	Mechanistic insight into photoactivation of small inorganic molecules from the biomedical applications perspectives. Advances in Inorganic Chemistry, 2022, , .	0.4	0
607	Quaternary Ru(<scp>ii</scp>) complexes of terpyridines, saccharin and 1,2-azoles: effect of substituents on molecular structure, speciation, photoactivity, and photocytotoxicity. Dalton Transactions, 2022, 51, 18416-18437.	1.6	5
608	DNA binding, antitubercular, antibacterial and anticancer studies of newly designed piano-stool ruthenium(<scp>ii</scp>) complexes. Dalton Transactions, 2022, 51, 16371-16382.	1.6	10
609	Multicomponent supramolecular photochemistry. , 2022, , .		0
610	Ruthenium-based antitumor drugs and delivery systems from monotherapy to combination therapy. Nanoscale, 2022, 14, 16339-16375.	2.8	14
611	Selfâ€Amplifying Iridium(III) Photosensitizer for Ferroptosisâ€Mediated Immunotherapy Against Transferrin Receptorâ€Overexpressing Cancer. Small, 2022, 18, .	5.2	18
612	A Carbon Nanodot Based Near-Infrared Photosensitizer with a Protein-Ruthenium Shell for Low-Power Photodynamic Applications. ACS Applied Materials & Interfaces, 2022, 14, 48327-48340.	4.0	2
613	Metal Coordination Effects on the Photophysics of Dipyrrinato Photosensitizers. Molecules, 2022, 27, 6967.	1.7	4
614	Oxygen-supplied electrotherapy for enhanced photodynamic synergistic therapy overcomes hypoxia tumor microenvironment. Nanophotonics, 2022, .	2.9	2
615	Stimuli-responsive platinum and ruthenium complexes for lung cancer therapy. Frontiers in Pharmacology, 0, 13, .	1.6	3
616	A <scp>Lockâ€andâ€Kill</scp> Anticancer Photoactivated Chemotherapy Agent ^{â€} . Photochemistry and Photobiology, 2023, 99, 777-786.	1.3	5
617	Hyaluronic acid-poly(lactic-co-glycolic acid) nanoparticles with a ruthenium photosensitizer cargo for photokilling of oral cancer cells. Journal of Photochemistry and Photobiology A: Chemistry, 2023, 436, 114349.	2.0	2
618	Crystal Structures of Half-Sandwich Ru(II) Complexes, [(Î-6-p-Cymene)(3-chloro-6-(1H-pyrazol-1-yl)pyridazine)Ru(X)]BF4, (X = Cl, Br, I). MolBank, 2022, 2022, M1477.	0.2	1

#	Article	IF	CITATIONS
619	Ruthenium(II) polypyridyl complexes with benzothiophene and benzimidazole derivatives: Synthesis, antitumor activity, solution studies and biospeciation. Journal of Inorganic Biochemistry, 2022, , 112058.	1.5	2
620	Highly Charged Ru(II) Polypyridyl Complexes as Photosensitizer Agents in Photodynamic Therapy of Epithelial Ovarian Cancer Cells. International Journal of Molecular Sciences, 2022, 23, 13302.	1.8	2
621	Multifunctional porphyrin-ionic liquid aggregate for highly sensitive electrochemical detection of protein. Talanta, 2023, 253, 124058.	2.9	2
622	Half-sandwich ruthenium(II), rhodium(III) and iridium(III) fluorescent metal complexes containing pyrazoline based ligands: DNA binding, cytotoxicity and antibacterial activities. Journal of Inorganic Biochemistry, 2023, 238, 112059.	1.5	9
623	BSA-assisted synthesis of nanoreactors with dual pH and glutathione responses for ferroptosis and photodynamic synergistic therapy of colorectal cancer. Materials Today Advances, 2022, 16, 100308.	2.5	7
624	Synthesis and photobiological evaluation of Ru(II) complexes with expanded chelate polypyridyl ligands. Journal of Inorganic Biochemistry, 2023, 238, 112031.	1.5	2
625	Synthesis, characterization and biological evaluation of two cyclometalated iridium(III) complexes containing a glutathione S-transferase inhibitor. Journal of Inorganic Biochemistry, 2023, 238, 112050.	1.5	5
626	Self-assembled nano-photosensitizer for targeted, activatable, and biosafe cancer phototheranostics. Biomaterials, 2022, 291, 121916.	5.7	12
627	αâ€&ynuclein as a Target for Metalloâ€Antiâ€Neurodegenerative Agents. Angewandte Chemie, 2023, 135, .	1.6	1
628	αâ€&ynuclein as a Target for Metalloâ€Antiâ€Neurodegenerative Agents. Angewandte Chemie - International Edition, 2023, 62, .	7.2	4
629	Enabling In Vivo Optical Imaging of an Osmium Photosensitizer by Micellar Formulation. Pharmaceutics, 2022, 14, 2426.	2.0	2
630	Mitochondrial dysfunction-targeted nanosystems for precise tumor therapeutics. Biomaterials, 2023, 293, 121947.	5.7	24
631	Comparative Analysis of Tetra(2-naphthyl)tetracyano-porphyrazine and Its Iron Complex as Photosensitizers for Anticancer Photodynamic Therapy. Pharmaceutics, 2022, 14, 2655.	2.0	2
632	Not All ³ MC States Are the Same: The Role of ³ MC _{cis} States in the Photochemical N ^{â^\$} N Ligand Release from [Ru(bpy) ₂ (N ^{â^\$} N)] ²⁺ Complexes. Inorganic Chemistry, 2022, 61, 19907-19924.	1.9	8
633	Chemistry towards Biology—Instruct: Snapshot. International Journal of Molecular Sciences, 2022, 23, 14815.	1.8	2
634	Establishing a Robust and Reliable Response from a Potent Osmiumâ€Based Photosensitizer <i>Via</i> Lipid Nanoformulation ^{â€} . Photochemistry and Photobiology, 0, , .	1.3	1
635	Towards Selective Delivery of a Ruthenium(II) Polypyridyl Complexâ€Containing Bombesin Conjugate into Cancer Cells. ChemBioChem, 2023, 24, .	1.3	10
636	Recent Progress in Photodynamic Immunotherapy with Metalâ€Based Photosensitizers. Small Methods, 2023, 7, .	4.6	13

#	Article	IF	CITATIONS
637	Encapsulation of Gold-Based Anticancer Agents in Protease-Degradable Peptide Nanofilaments Enhances Their Potency. Journal of the American Chemical Society, 2023, 145, 234-246.	6.6	15
638	Study on the Electrochemiluminescence of Pentaphenylpyrrole in the Aqueous Phase Based on Structure-Regulated Strategy. Analytical Chemistry, 2022, 94, 17709-17715.	3.2	4
639	RGD peptide modified platinum nanozyme Co-loaded glutathione-responsive prodrug nanoparticles for enhanced chemo-photodynamic bladder cancer therapy. Biomaterials, 2023, 293, 121975.	5.7	25
640	Highly Efficient Singlet Oxygen Generation by BODIPY–Ruthenium(II) Complexes for Promoting Neurite Outgrowth and Suppressing Tau Protein Aggregation. Inorganic Chemistry, 2023, 62, 1102-1112.	1.9	4
641	Nanoformulation of Lipophilic Osmium Photosensitizers in Liposomes and Micelles as a General Strategy for Improving Reproducibility and Reducing Quenching. Photochemistry and Photobiology, 0,	1.3	0
642	Cyclometalated Ru(<scp>ii</scp>)–NHC complexes with phenanthroline ligands induce apoptosis mediated by mitochondria and endoplasmic reticulum stress in cancer cells. Dalton Transactions, 0, , .	1.6	2
643	Assessing the role of membrane lipids in the action of ruthenium(III) anticancer compounds. Frontiers in Molecular Biosciences, 0, 9, .	1.6	3
644	Antioxidant conjugated metal complexes and their medicinal applications. Vitamins and Hormones, 2023, , 319-353.	0.7	0
645	A mitochondria-localized iridium(<scp>iii</scp>) photosensitizer for two-photon photodynamic immunotherapy against melanoma. Chemical Science, 2023, 14, 1461-1471.	3.7	26
646	Intelligent manganese dioxide nanocomposites induce tumor immunogenic cell death and remould tumor microenvironment. Chemical Engineering Journal, 2023, 461, 141369.	6.6	6
647	N-Heterocyclic Carbene-Iridium Complexes as Photosensitizers for In Vitro Photodynamic Therapy to Trigger Non-Apoptotic Cell Death in Cancer Cells. Molecules, 2023, 28, 691.	1.7	2
648	A tricarbonyl rhenium(I) complex decorated with boron dipyrromethene for endoplasmic reticulum-targeted photodynamic therapy. Dyes and Pigments, 2023, 211, 111077.	2.0	4
649	On the need for standardized reporting of photophysical parameters of in vitro photodynamic therapy studies. Photodiagnosis and Photodynamic Therapy, 2023, 41, 103263.	1.3	1
650	Ag-Doped Metal–Organic Frameworks' Heterostructure for Sonodynamic Therapy of Deep-Seated Cancer and Bacterial Infection. ACS Nano, 2023, 17, 1174-1186.	7.3	20
651	Porphyrin Macrocycles: General Properties and Theranostic Potential. Molecules, 2023, 28, 1149.	1.7	7
652	Bromo- and glycosyl-substituted BODIPYs for application in photodynamic therapy and imaging. Organic and Biomolecular Chemistry, 2023, 21, 3105-3120.	1.5	4
653	Photoactive finite supramolecular coordination cages for photodynamic therapy. , 2023, , 191-214.		0
654	Enhanced tripletâ€triplet annihilation upconversion luminescence through conformational restriction based on donorâ€acceptorâ€heavy atom molecules. ChemPhotoChem, 0, , .	1.5	2

ARTICLE IF CITATIONS # Substituents make a difference: 6,6â€³-modified terpyridine complexes with helix configuration and 655 1.6 6 enhanced emission. Dalton Transactions, 2023, 52, 3033-3039. Ruthenium(II) Polypyridyl Complexes with π‑Expansive Ligands: Synthesis and Cubosome Encapsulation for Photodynamic Therapy of Non-Melanoma Skin Cancer. Inorganic Chemistry Frontiers, 0, , . Imidazole–carbazole conjugate for two-photon-excited photodynamic therapy and fluorescence 657 2.2 3 bioimaging. Chemical Communications, 2023, 59, 4503-4506. Role of nanotechnology in cancer therapies: recent advances, current issues, and approaches. , 2023, , 73-95. Transition Metal Complexes of Thiosemicarbazides, Thiocarbohydrazides, and Their Corresponding 659 1.7 13 Carbazones with Cu(I), Cu(II), Co(II), Ni(II), Pd(II), and Ag(I)â€"Á Review. Molecules, 2023, 28, 1808. A Concerted Redox―and Lightâ€Activated Agent for Controlled Multimodal Therapy against Hypoxic 11.1 Cancer Cells. Advanced Materials, 2023, 35, . Structurally Simple Osmium(II) Polypyridyl Complexes as Photosensitizers for Photodynamic Therapy 661 7.2 12 in the Near Infrared**. Angewandte Chemie - International Edition, 2023, 62, . Structurally Simple Osmium(II) Polypyridyl Complexes as Photosensitizers for Photodynamic Therapy in the Near Infrared**. Angewandte Chemie, 2023, 135, . 1.6 Red light-activable biotinylated copper(II) complex-functionalized gold nanocomposite 663 (Biotin-Cu@AuNP) towards targeted photodynamic therapy. Journal of Inorganic Biochemistry, 2023, 7 1.5 243, 112183. Acetylacetone and imidazole coordinated Re(I) tricarbonyl complexes: Experimental, DFT studies, and 664 1.7 molecular docking approach. Chemical Physics Impact, 2023, 6, 100165. Unusual enantioselective cytoplasm-to-nucleus translocation and photosensitization of the chiral Ru(II) cationic complex via simple ion-pairing with lipophilic weak acid counter-anions. Nucleic Acids 665 4 6.5 Research, 2023, 51, 3041-3054. A tumor-specific ROS self-supply enhanced cascade-responsive prodrug activation nanosystem for 666 4.1 amplified chemotherapy against multidrug-resistant tumors. Acta Biomaterialia, 2023, 164, 522-537. An overview of advancement of organoruthenium(II) complexes as prospective anticancer agents. 667 9.5 11 Coordination Chemistry Reviews, 2023, 487, 215169. Recent Advances in Supramolecular-Macrocycle-Based Nanomaterials in Cancer Treatment. Molecules, 1.7 2023, 28, 1241. Biomimetic gold nanomaterials for biosensing, bioimaging and biotherapy: a mini-review. Sensors & 669 1.9 4 Diagnostics, 2023, 2, 320-336. <i>In vitro</i> Analytical Techniques as Screening Tools to investigate the Metal chelateâ€DNA 670 interactions. ChemistrySelect, 2023, 8, . Quantum Yield of DNA Strand Breaks under Photoexcitation of a Molecular Ruby. Chemistry - A 671 1.7 3 European Journal, 2023, 29, . Metals to combat antimicrobial resistance. Nature Reviews Chemistry, 2023, 7, 202-224. 13.8

#	Article	IF	CITATIONS
673	Polypyridyl Co ^{II} urcumin Complexes as Photoactivated Anticancer and Antibacterial Agents. ChemBioChem, 2023, 24, .	1.3	5
674	Bilateral metalloheterocyclic systems based on palladacycle and piperidine-2,4-dione pharmacophores. Organic and Biomolecular Chemistry, 2023, 21, 2337-2354.	1.5	0
675	Red Light Absorption of [Rel(CO)3(α-diimine)Cl] Complexes through Extension of the 4,4′-Bipyrimidine Ligand's π-System. Molecules, 2023, 28, 1905.	1.7	2
676	Half-Sandwich Ruthenium Arene Complexes Bearing Clinically Approved Drugs as Ligands: The Importance of Metal–Drug Synergism in Metallodrug Design. Molecular Pharmaceutics, 2023, 20, 1453-1479.	2.3	16
677	Synthesis of a half-sandwich complex of ruthenium(<scp>ii</scp>) with a nonsymmetric bis-nitrogen donor ligand: biological investigations. New Journal of Chemistry, 2023, 47, 6266-6274.	1.4	1
678	Global Trends and Research Progress of Photodynamic Therapy in Skin Cancer: A Bibliometric Analysis and Literature Review. Clinical, Cosmetic and Investigational Dermatology, 0, Volume 16, 479-498.	0.8	9
679	Lysosomes Targeting pH Activable Imagingâ€Guided Photodynamic Agents. ChemBioChem, 2023, 24, .	1.3	4
680	Using Biological Photophysics to Map the Excitedâ€State Topology of Molecular Photosensitizers for Photodynamic Therapy. Angewandte Chemie - International Edition, 2023, 62, .	7.2	2
681	Using Biological Photophysics to Map the Excitedâ€State Topology of Molecular Photosensitizers for Photodynamic Therapy. Angewandte Chemie, 2023, 135, .	1.6	1
682	Red-Shifting Blue Light Photoredox Catalysis for Organic Synthesis: A Graphical Review. SynOpen, 2023, 07, 76-87.	0.8	5
683	Theoretical Investigation of Ru(II) Complexes with Long Lifetime and a Large Two-Photon Absorption Cross-Section in Photodynamic Therapy. Journal of Medicinal Chemistry, 2023, 66, 4167-4178.	2.9	10
684	Emergence of Multidrug Resistance Microbes: Bacteria, Fungi, and Viruses. , 2023, , 28-67.		0
685	Organometallic Intermediates in the Synthesis of Photoluminescent Zirconium and Hafnium Complexes with Pyridine Dipyrrolide Ligands. Organometallics, 2023, 42, 1220-1231.	1.1	2
686	Anticancer Screening of Ru(II) Photoredox Catalysts at Single Cancer Cell Level. Chemistry - an Asian Journal, 2023, 18, .	1.7	3
687	A Metalâ€Free Mesoporous Carbon Dots/Silica Hybrid Type I Photosensitizer with Enzymeâ€Activity for Synergistic Treatment of Hypoxic Tumor. Advanced Functional Materials, 2023, 33, .	7.8	25
688	Recent Advances in Metal Complexes for Antimicrobial Photodynamic Therapy. ChemBioChem, 2023, 24,	1.3	10
689	Ruthenium Complexes with Protic Ligands: Influence of the Position of OH Groups and π Expansion on Luminescence and Photocytotoxicity. International Journal of Molecular Sciences, 2023, 24, 5980.	1.8	3
690	Selfâ€Assembled Carrierâ€Free Nanodrugs for Starvation Therapyâ€Amplified Photodynamic Therapy of Cancer. Advanced Healthcare Materials, 2023, 12, .	3.9	6

#	Article	IF	CITATIONS
691	Therapeutic and Diagnostic Agents Based on Bioactive Endogenous and Exogenous Coordination Compounds. Current Medicinal Chemistry, 2023, 30, .	1.2	0
693	Synthesis and evaluation of four novel nitrogen-heterocyclic ruthenium polypyridyl complexes as photosensitizers for one and two-photon photodynamic therapy. Dalton Transactions, 0, , .	1.6	0
695	Sulphur- and Selenium-for-Oxygen Replacement as a Strategy to Obtain Dual Type I/Type II Photosensitizers for Photodynamic Therapy. Molecules, 2023, 28, 3153.	1.7	5
696	A Novel Nearâ€IR Absorbing Ruthenium(II) Complex as Photosensitizer for Photodynamic Therapy and its Cetuximab Bioconjugates. ChemBioChem, 0, , .	1.3	5
697	Steric hindrance, ligand ejection and associated photocytotoxic properties of ruthenium(II) polypyridyl complexes. Journal of Biological Inorganic Chemistry, 2023, 28, 403-420.	1.1	1
698	Thioglycerol-porphyrin, -chlorin, and -phthalocyanine derivatives for photodynamic therapy of UM-UC-3 bladder cancer cells. Journal of Photochemistry and Photobiology A: Chemistry, 2023, 442, 114768.	2.0	2
699	Single Component Organic Photosensitizer with NIR″ Emission Realizing Type″ Photodynamic and GSHâ€Đepletion Caused Ferroptosis Synergistic Theranostics. Advanced Healthcare Materials, 2023, 12, .	3.9	2
700	Lysosome directed red light photodynamic therapy using glycosylated iron-(III) conjugates of boron-dipyrromethene. Journal of Inorganic Biochemistry, 2023, 244, 112226.	1.5	1
701	Hypoxic tumor therapy based on free radicals. Materials Chemistry Frontiers, 0, , .	3.2	0
727	Near-infrared metal agents assisting precision medicine: from strategic design to bioimaging and therapeutic applications. Chemical Society Reviews, 2023, 52, 4392-4442.	18.7	26
731	Singlet Oxygen Generation via an Electrochemical Reduction Method Assisted by a Ruthenium(II) Complex. Inorganic Chemistry, 2023, 62, 7155-7159.	1.9	2
744	Coordination compounds of iron, ruthenium and osmium. , 2023, , 135-203.		0
756	Aggregation-Induced Emission (AIE), Life and Health. ACS Nano, 2023, 17, 14347-14405.	7.3	48
769	Nano Titania Applications in Cancer Theranostics. , 0, , .		0
804	Utilizing machine learning to expedite the fabrication and biological application of carbon dots. Materials Advances, 2023, 4, 5974-5997.	2.6	2
809	Nanomaterials in Photodynamic Therapy Combinations. , 2023, , 1-25.		0
831	Illuminating the future: a review of ruthenium-based agents for dual action photochemotherapy and photodynamic therapy. , 2023, , 535-561.		0
842	Important Advances in Antibacterial Nanoparticle-Mediated Photodynamic Therapy. , 0, , .		0

#	Article	IF	CITATIONS
857	Mononuclear indium(<scp>iii</scp>) photosensitizers for photo-dehalogenation and olefin reduction. Chemical Communications, 2024, 60, 1595-1598.	2.2	0
861	Emergence of metal-based anticancer therapeutics: A promising perspective. , 2024, , 411-450.		0
862	Lipid-based nanomaterials as phototheranostic agents. , 2024, , 195-232.		0
897	Derivatized phenylbenzothiazole cyclometalating ligands for reverse saturable absorption materials development. , 2024, , .		Ο