Alkyl Carbon–Carbon Bond Formation by Nickel/Pho

Angewandte Chemie - International Edition 58, 6152-6163

DOI: 10.1002/anie.201809431

Citation Report

#	Article	IF	CITATIONS
1	A metal-free desulfurizing radical reductive C–C coupling of thiols and alkenes. Chemical Communications, 2019, 55, 10583-10586.	2.2	25
2	Visible-Light Reductive Cyclization of Nonactivated Alkyl Chlorides. Synlett, 2019, 30, 1496-1507.	1.0	2
3	Photoredoxâ€Catalyzed Cyclopropanation of 1,1â€Disubstituted Alkenes via Radicalâ€Polar Crossover Process. Advanced Synthesis and Catalysis, 2019, 361, 4215-4221.	2.1	36
4	Photochemical Asymmetric Nickelâ€Catalyzed Acyl Crossâ€Coupling. Angewandte Chemie - International Edition, 2019, 58, 16854-16858.	7.2	86
5	Photochemical Asymmetric Nickelâ€Catalyzed Acyl Crossâ€Coupling. Angewandte Chemie, 2019, 131, 17010-17014.	1.6	28
6	Visibleâ€Lightâ€Driven Intermolecular Reductive Ene–Yne Coupling by Iridium/Cobalt Dual Catalysis for C(sp ^{)â^C(sp²) Bond Formation. Chemistry - A European Journal, 2019, 25, 15746-15750.}	1.7	19
7	Visible-Light-Induced Oxidation/[3 + 2] Cycloaddition/Oxidative Aromatization to Construct Benzo[$\langle i \rangle$ a $\langle i \rangle$] carbazoles from 1,2,3,4-Tetrahydronaphthalene and Arylhydrazine Hydrochlorides. Organic Letters, 2019, 21, 7179-7183.	2.4	15
8	Visible-light-induced radical cascade cyclization of oxime esters and aryl isonitriles: synthesis of cyclopenta[<i>b</i>]quinoxalines. Chemical Communications, 2019, 55, 11900-11903.	2.2	32
9	Mechanisms of Nickel-Catalyzed Cross-Coupling Reactions. Trends in Chemistry, 2019, 1, 830-844.	4.4	329
10	Metal-supported and -assisted stereoselective cooperative photoredox catalysis. Dalton Transactions, 2019, 48, 15338-15357.	1.6	13
11	Site-Selective Catalytic Deaminative Alkylation of Unactivated Olefins. Journal of the American Chemical Society, 2019, 141, 16197-16201.	6.6	169
12	Photoredox catalyzed C(sp3) C(sp) coupling of dihydropyridines and alkynylbenziodoxolones. Tetrahedron Letters, 2019, 60, 151230.	0.7	12
13	Nickel-catalyzed alkyl–alkyl cross-coupling reactions of non-activated secondary alkyl bromides with aldehydes as alkyl carbanion equivalents. Chemical Communications, 2019, 55, 2793-2796.	2,2	21
14	Ni/Photoredox-Dual-Catalyzed Functionalization of 1-Thiosugars. Organic Letters, 2019, 21, 5132-5137.	2.4	32
15	On-DNA Decarboxylative Arylation: Merging Photoredox with Nickel Catalysis in Water. ACS Combinatorial Science, 2019, 21, 588-597.	3.8	72
16	Semiheterogeneous Dual Nickel/Photocatalytic (Thio)etherification Using Carbon Nitrides. Organic Letters, 2019, 21, 5331-5334.	2.4	92
17	Dual Photoredox/Nickelâ€Catalyzed Threeâ€Component Carbofunctionalization of Alkenes. Angewandte Chemie - International Edition, 2019, 58, 12286-12290.	7.2	131
18	Dual Photoredox/Nickelâ€Catalyzed Threeâ€Component Carbofunctionalization of Alkenes. Angewandte Chemie, 2019, 131, 12414-12418.	1.6	34

#	Article	IF	CITATIONS
19	Hantzsch esters: an emerging versatile class of reagents in photoredox catalyzed organic synthesis. Organic and Biomolecular Chemistry, 2019, 17, 6936-6951.	1.5	236
20	<i>meta</i> â€Selective Câ^'H Activation of Arenes at Room Temperature Using Visible Light: Dualâ€Function Ruthenium Catalysis. Angewandte Chemie, 2019, 131, 9931-9935.	1.6	35
21	Selective, Intermolecular Alkylarylation of Alkenes via Photoredox/Nickel Dual Catalysis. Organic Letters, 2019, 21, 4771-4776.	2.4	103
22	Radical coupling from alkyl amines. Nature Catalysis, 2019, 2, 473-476.	16.1	58
23	Siteâ€Selective, Remote sp ³ Câ^'H Carboxylation Enabled by the Merger of Photoredox and Nickel Catalysis. Chemistry - A European Journal, 2019, 25, 9001-9005.	1.7	78
24	Dual nickel- and photoredox-catalyzed reductive cross-coupling of aryl vinyl halides and unactivated tertiary alkyl bromides. Chemical Communications, 2019, 55, 5918-5921.	2.2	40
25	Nickel-Catalyzed Cross-Coupling of Umpolung Carbonyls and Alkyl Halides. Journal of Organic Chemistry, 2019, 84, 6312-6322.	1.7	21
26	Semiâ€heterogene duale Nickelâ€/Photokatalyse mit Kohlenstoffnitriden: Veresterung von CarbonsÃ u ren mit Arylhalogeniden. Angewandte Chemie, 2019, 131, 9676-9681.	1.6	20
27	Semiâ€heterogeneous Dual Nickel/Photocatalysis using Carbon Nitrides: Esterification of Carboxylic Acids with Aryl Halides. Angewandte Chemie - International Edition, 2019, 58, 9575-9580.	7.2	108
28	Allylation of aldehydes by dual photoredox and nickel catalysis. Chemical Communications, 2019, 55, 6838-6841.	2.2	40
29	<i>meta</i> à°Eselective Câ°'H Activation of Arenes at Room Temperature Using Visible Light: Dualâ€Function Ruthenium Catalysis. Angewandte Chemie - International Edition, 2019, 58, 9826-9830.	7.2	135
30	Photoredox Catalysis Enables Access to N-Functionalized 2,1-Borazaronaphthalenes. Organic Letters, 2019, 21, 2880-2884.	2.4	14
31	Deaminative Reductive Cross-Electrophile Couplings of Alkylpyridinium Salts and Aryl Bromides. Organic Letters, 2019, 21, 2941-2946.	2.4	118
32	Merging Catalysis in Single Electron Steps with Photoredox Catalysis—Efficient and Sustainable Radical Chemistry. ACS Catalysis, 2019, 9, 3208-3212.	5.5	65
33	A Redoxâ€Active Nickel Complex that Acts as an Electron Mediator in Photochemical Giese Reactions. Angewandte Chemie - International Edition, 2019, 58, 4953-4957.	7.2	101
34	Ni(I)–X Complexes Bearing a Bulky α-Diimine Ligand: Synthesis, Structure, and Superior Catalytic Performance in the Hydrogen Isotope Exchange in Pharmaceuticals. Journal of the American Chemical Society, 2019, 141, 5034-5044.	6.6	92
36	Three-Component Olefin Dicarbofunctionalization Enabled by Nickel/Photoredox Dual Catalysis. Journal of the American Chemical Society, 2019, 141, 20069-20078.	6.6	162
37	Synergistic visible light photoredox catalysis. Physical Sciences Reviews, 2019, 5, .	0.8	3

#	Article	IF	CITATIONS
38	Forging C(sp ³)–C(sp ³) Bonds with Carbon-Centered Radicals in the Synthesis of Complex Molecules. Journal of the American Chemical Society, 2019, 141, 2800-2813.	6.6	111
39	The Persistent Radical Effect in Organic Synthesis. Angewandte Chemie - International Edition, 2020, 59, 74-108.	7.2	466
40	Der "Persistent Radical Effect―in der organischen Chemie. Angewandte Chemie, 2020, 132, 74-110.	1.6	92
41	Visibleâ€Lightâ€Mediated Regioselective Allylation, Benzylation, and Silylation of Methyleneâ€Malononitriles via Photoredoxâ€Induced Radical Cation Fragmentation. European Journal of Organic Chemistry, 2020, 2020, 1459-1465.	1.2	28
42	Dual Photoredox/Nickel-Catalyzed Conversion of Aryl Halides to Aryl Aminooxetanes: Computational Evidence for a Substrate-Dependent Switch in Mechanism. ACS Catalysis, 2020, 10, 405-411.	5 . 5	38
43	Pyridinium Salts as Redoxâ€Active Functional Group Transfer Reagents. Angewandte Chemie - International Edition, 2020, 59, 9264-9280.	7.2	192
44	Photochemical Strategies for Carbon–Heteroatom Bond Formation. European Journal of Organic Chemistry, 2020, 2020, 1379-1392.	1.2	44
45	Pyridiniumsalze als redoxaktive Reagenzien zur Übertragung funktioneller Gruppen. Angewandte Chemie, 2020, 132, 9350-9366.	1.6	27
46	Vitamin B ₁₂ Enables Consecutive Generation of Acyl and Alkyl Radicals from One Reagent. European Journal of Organic Chemistry, 2020, 2020, 1567-1571.	1.2	14
47	Siteâ€Selective 1,2â€Dicarbofunctionalization of Vinyl Boronates through Dual Catalysis. Angewandte Chemie, 2020, 132, 4400-4404.	1.6	25
48	1,2-Amino Alcohols via Cr/Photoredox Dual-Catalyzed Addition of \hat{l}_{\pm} -Amino Carbanion Equivalents to Carbonyls. Journal of the American Chemical Society, 2020, 142, 2168-2174.	6.6	87
49	Direct photochemical cross-coupling between aliphatic acids and BF ₃ K salts. Chemical Communications, 2020, 56, 1294-1297.	2.2	10
50	Continuous Flow Enables Metallaphotoredox Catalysis in a Medicinal Chemistry Setting: Accelerated Optimization and Library Execution of a Reductive Coupling between Benzylic Chlorides and Aryl Bromides. Organic Letters, 2020, 22, 410-416.	2.4	33
51	Photoredox Ni-Catalyzed Branch-Selective Reductive Coupling of Aldehydes with 1,3-Dienes. ACS Catalysis, 2020, 10, 1528-1534.	5.5	55
52	Reactor Technology Concepts for Flow Photochemistry. ChemPhotoChem, 2020, 4, 235-254.	1.5	62
53	Visible-Light-Induced Nickel-Catalyzed Cross-Coupling with Alkylzirconocenes from Unactivated Alkenes. CheM, 2020, 6, 675-688.	5.8	57
54	Siteâ€Selective 1,2â€Dicarbofunctionalization of Vinyl Boronates through Dual Catalysis. Angewandte Chemie - International Edition, 2020, 59, 4370-4374.	7.2	115
55	Decarboxylative Conjunctive Crossâ€coupling of Vinyl Boronic Esters using Metallaphotoredox Catalysis. Angewandte Chemie - International Edition, 2020, 59, 4375-4379.	7.2	101

#	Article	IF	CITATIONS
56	Dialkylation of 1,3-Dienes by Dual Photoredox and Chromium Catalysis. ACS Catalysis, 2020, 10, 1621-1627.	5 . 5	116
57	Modulation of Acridinium Organophotoredox Catalysts Guided by Photophysical Studies. ACS Catalysis, 2020, 10, 210-215.	5 . 5	51
58	Bromide-Promoted Visible-Light-Induced Reductive Minisci Reaction with Aldehydes. ACS Catalysis, 2020, 10, 154-159.	5 . 5	102
59	Regioselective Hydroalkylation and Arylalkylation of Alkynes by Photoredox/Nickel Dual Catalysis: Application and Mechanism. Angewandte Chemie, 2020, 132, 5787-5795.	1.6	14
60	Regioselective Hydroalkylation and Arylalkylation of Alkynes by Photoredox/Nickel Dual Catalysis: Application and Mechanism. Angewandte Chemie - International Edition, 2020, 59, 5738-5746.	7.2	81
61	General Access to <i>C</i> -Centered Radicals: Combining a Bioinspired Photocatalyst with Boronic Acids in Aqueous Media. ACS Catalysis, 2020, 10, 12727-12737.	5 . 5	47
62	Visible-Light Photocatalysis as an Enabling Technology for Drug Discovery: A Paradigm Shift for Chemical Reactivity. ACS Medicinal Chemistry Letters, 2020, 11, 2120-2130.	1.3	63
63	Shining Light on Câ^'S Bonds: Recent Advances in Câ^'C Bond Formation Reactions via Câ^'S Bond Cleavage under Photoredox Catalysis. Chemistry - an Asian Journal, 2020, 15, 3637-3659.	1.7	30
64	Copper-catalyzed oxidative decarboxylative alkylation of cinnamic acids with 4-alkyl-1,4-dihydropyridines. Chemical Communications, 2020, 56, 14055-14058.	2.2	20
65	Oneâ€Shot Radical Cross Coupling Between Benzyl Alcohols and Alkenyl Halides Using Ni/Ti/Mn System. Advanced Synthesis and Catalysis, 2020, 362, 5622-5626.	2.1	11
66	Transition Metal-Catalyzed Organic Reactions under Visible Light: Recent Developments and Future Perspectives. ACS Catalysis, 2020, 10, 9170-9196.	5 . 5	226
67	New Redox Strategies in Organic Synthesis by Means of Electrochemistry and Photochemistry. ACS Central Science, 2020, 6, 1317-1340.	5. 3	270
68	Selective 1,2â€Arylâ€Aminoalkylation of Alkenes Enabled by Metallaphotoredox Catalysis. Angewandte Chemie, 2020, 132, 18066-18072.	1.6	12
69	General Method for Enantioselective Three-Component Carboarylation of Alkenes Enabled by Visible-Light Dual Photoredox/Nickel Catalysis. Journal of the American Chemical Society, 2020, 142, 20390-20399.	6.6	136
70	Multireference Description of Nickel–Aryl Homolytic Bond Dissociation Processes in Photoredox Catalysis. Journal of Physical Chemistry A, 2020, 124, 9915-9922.	1.1	23
71	Dual Catalytic Strategy for Forging sp ² <i>$\hat{a}\in (\cdot)$sp³and sp³<i>$\hat{a}\in (\cdot)$sp³Architectures via \hat{a}0\hat{a}0\hat{a}1\hat{a}2\hat{a}3\hat{a}4\hat{a}4\hat{a}5\hat{a}6\hat{a}6\hat{a}7\hat{a}8\hat{a}8\hat{a}9<td>6.6</td><td>81</td></i></i>	6.6	81
72	Generation of Alkyl Radicals: From the Tyranny of Tin to the Photon Democracy. Chemical Reviews, 2020, 120, 9790-9833.	23.0	241
73	Light Up the Transition Metal-Catalyzed Single-Electron Allylation. Trends in Chemistry, 2020, 2, 764-775.	4.4	27

#	ARTICLE	IF	Citations
74	BI-OAc-Accelerated C3–H Alkylation of Quinoxalin-2(1 <i>H</i>)-ones under Visible-Light Irradiation. Organic Letters, 2020, 22, 5984-5989.	2.4	101
75	Metal catalyst-free photo-induced alkyl C–O bond borylation. Chemical Communications, 2020, 56, 10219-10222.	2.2	17
76	Redoxâ€Neutral Nickel(II) Catalysis: Hydroarylation of Unactivated Alkenes with Arylboronic Acids. Angewandte Chemie, 2020, 132, 20579-20584.	1.6	7
77	Redoxâ€Neutral Nickel(II) Catalysis: Hydroarylation of Unactivated Alkenes with Arylboronic Acids. Angewandte Chemie - International Edition, 2020, 59, 20399-20404.	7.2	40
78	Boracene-based alkylborate enabled Ni/Ir hybrid catalysis. Organic and Biomolecular Chemistry, 2020, 18, 6598-6601.	1.5	11
79	Room-Temperature Synthesis of Isoindolone Spirosuccinimides: Merger of Visible-Light Photocatalysis and Cobalt-Catalyzed C–H Activation. Journal of Organic Chemistry, 2020, 85, 15287-15304.	1.7	34
80	Direct Enantioselective C(sp ³)–H Acylation for the Synthesis of α-Amino Ketones. Journal of the American Chemical Society, 2020, 142, 19058-19064.	6.6	110
81	Mechanistic Insight into the Photoredox-Nickel-HAT Triple Catalyzed Arylation and Alkylation of α-Amino C _{sp3} –H Bonds. Journal of the American Chemical Society, 2020, 142, 16942-16952.	6.6	69
82	Late stage C–H functionalization <i>via</i> chalcogen and pnictogen salts. Chemical Science, 2020, 11, 10047-10060.	3.7	45
83	Visible-Light-Accelerated Pd-Catalyzed Cascade Addition/Cyclization of Arylboronic Acids to \hat{l}^3 - and \hat{l}^2 -Ketodinitriles for the Construction of 3-Cyanopyridines and 3-Cyanopyrrole Analogues. Journal of Organic Chemistry, 2020, 85, 12482-12504.	1.7	22
84	Harnessing Radical Chemistry via Electrochemical Transition Metal Catalysis. IScience, 2020, 23, 101796.	1.9	29
85	Carbon-Carbon Cross-Coupling Reactions. , 2020, , 143-162.		1
86	Emerging Concepts in Carbon Nitride Organic Photocatalysis. ChemPlusChem, 2020, 85, 2499-2517.	1.3	47
87	Flow Photochemistry as a Tool in Organic Synthesis. Chemistry - A European Journal, 2020, 26, 16952-16974.	1.7	77
88	Generation of Alkyl Radical through Direct Excitation of Boracene-Based Alkylborate. Journal of the American Chemical Society, 2020, 142, 9938-9943.	6.6	69
89	Catalytic and Photochemical Strategies to Stabilized Radicals Based on Anomeric Nucleophiles. Journal of the American Chemical Society, 2020, 142, 11102-11113.	6.6	39
90	Evidence for Photocatalyst Involvement in Oxidative Additions of Nickel-Catalyzed Carboxylate <i>O</i> -Arylations. Journal of the American Chemical Society, 2020, 142, 11042-11049.	6.6	46
91	Nickel-Catalyzed Sonogashira C(sp)–C(sp ²) Coupling through Visible-Light Sensitization. Journal of Organic Chemistry, 2020, 85, 9201-9212.	1.7	46

#	Article	IF	CITATIONS
92	Advances in the Synthesis of Imineâ€Containing Azaarene Derivatives via Photoredox Catalysis. ChemCatChem, 2020, 12, 4471-4489.	1.8	41
93	Dual aminoquinolate diarylboron and nickel catalysed metallaphotoredox platform for carbon–oxygen bond construction. Chemical Communications, 2020, 56, 8273-8276.	2.2	40
94	Nickel-Catalyzed Enantioselective Reductive Cross-Coupling Reactions. ACS Catalysis, 2020, 10, 8237-8246.	5.5	362
95	The Synthesis of Chiral Allyl Carbamates via Merger of Photoredox and Nickel Catalysis. Advanced Synthesis and Catalysis, 2020, 362, 3213-3222.	2.1	13
96	Developments in Photoredox/Nickel Dual-Catalyzed 1,2-Difunctionalizations. CheM, 2020, 6, 1327-1339.	5.8	173
97	Automated radial synthesis of organic molecules. Nature, 2020, 579, 379-384.	13.7	140
98	Visible Light Induced Cyclization to Spirobi[indene] Skeletons from Functionalized Alkylidienecyclopropanes. Organic Letters, 2020, 22, 2494-2499.	2.4	13
99	³ d-d Excited States of Ni(II) Complexes Relevant to Photoredox Catalysis: Spectroscopic Identification and Mechanistic Implications. Journal of the American Chemical Society, 2020, 142, 5800-5810.	6.6	168
100	Competing H ₂ versus Intramolecular Câ€"H Activation at a Dinuclear Nickel Complex via Metalâ€"Metal Cooperative Oxidative Addition. Journal of the American Chemical Society, 2020, 142, 6717-6728.	6.6	17
101	Silyl Radical Mediated Cross-Electrophile Coupling of <i>N</i> -Acyl-imides with Alkyl Bromides under Photoredox/Nickel Dual Catalysis. Organic Letters, 2020, 22, 2240-2245.	2.4	36
102	Visible-light-induced photocatalyst-free C-3 functionalization of indoles with diethyl bromomalonate. Green Chemistry, 2020, 22, 2543-2548.	4.6	24
103	Titanocenes as Photoredox Catalysts Using Green‣ight Irradiation. Angewandte Chemie - International Edition, 2020, 59, 9355-9359.	7.2	62
104	Dual Catalytic Platform for Enabling sp ³ α C–H Arylation and Alkylation of Benzamides. ACS Catalysis, 2020, 10, 4671-4676.	5.5	94
105	Expanding the Medicinal Chemist Toolbox: Comparing Seven C(sp ²)–C(sp ³) Cross-Coupling Methods by Library Synthesis. ACS Medicinal Chemistry Letters, 2020, 11, 597-604.	1.3	117
106	Recent advances in photoredox and nickel dual-catalyzed cascade reactions: pushing the boundaries of complexity. Chemical Science, 2020, 11, 4051-4064.	3.7	241
107	Titanocenes as Photoredox Catalysts Using Greenâ€Light Irradiation. Angewandte Chemie, 2020, 132, 9441-9445.	1.6	21
108	Mechanisms of Nickel-Catalyzed Coupling Reactions and Applications in Alkene Functionalization. Accounts of Chemical Research, 2020, 53, 906-919.	7.6	261
109	Ni-Catalyzed Allylic Dearomatization Reaction of \hat{l}^2 -Naphthols with Allylic Alcohols. Organic Letters, 2020, 22, 3297-3301.	2.4	22

#	Article	IF	CITATIONS
110	<i>Ortho</i> C–H arylation of arenes at room temperature using visible light ruthenium C–H activation. Chemical Science, 2020, 11, 4439-4443.	3.7	49
111	The Dark Side of Photocatalysis: One Thousand Ways to Close the Cycle. European Journal of Organic Chemistry, 2020, 2020, 2783-2806.	1.2	35
112	Upgrading ketone synthesis direct from carboxylic acids and organohalides. Nature Communications, 2020, 11, 3312.	5.8	65
113	11. Synergistic visible light photoredox catalysis. , 2020, , 245-284.		4
114	Photoredox Generation of Sulfonyl Radicals and Coupling with Electron Deficient Olefins. Organic Letters, 2020, 22, 5746-5748.	2.4	25
115	Selective 1,2â€Arylâ€Aminoalkylation of Alkenes Enabled by Metallaphotoredox Catalysis. Angewandte Chemie - International Edition, 2020, 59, 17910-17916.	7.2	52
116	Visible-Light-Mediated Intermolecular Radical Conjugate Addition for the Construction of Vicinal Quaternary Carbon Centers. Organic Letters, 2020, 22, 5401-5406.	2.4	29
117	Chemistry glows green with photoredox catalysis. Nature Communications, 2020, 11, 803.	5.8	231
118	Amide Synthesis by Nickel/Photoredoxâ€Catalyzed Direct Carbamoylation of (Hetero)Aryl Bromides. Angewandte Chemie - International Edition, 2020, 59, 5248-5253.	7.2	81
119	Decarboxylative Conjunctive Crossâ€coupling of Vinyl Boronic Esters using Metallaphotoredox Catalysis. Angewandte Chemie, 2020, 132, 4405-4409.	1.6	24
120	Nickelâ€Catalyzed Arylative Additions on 2â€Alkynylâ€ <i>N</i> à€Arylsulfonylanilides to Construct Functionalized Indoles. European Journal of Organic Chemistry, 2020, 2020, 744-748.	1.2	7
121	Bromomethyl Silicate: A Robust Methylene Transfer Reagent for Radicalâ€Polar Crossover Cyclopropanation of Alkenes. European Journal of Organic Chemistry, 2020, 2020, 1778-1781.	1.2	23
122	Photoredoxâ€Mediated Netâ€Neutral Radical/Polar Crossover Reactions. Israel Journal of Chemistry, 2020, 60, 281-293.	1.0	108
123	The Merger of Photoredox and Cobalt Catalysis. Trends in Chemistry, 2020, 2, 410-426.	4.4	114
124	Amide Synthesis by Nickel/Photoredox atalyzed Direct Carbamoylation of (Hetero)Aryl Bromides. Angewandte Chemie, 2020, 132, 5286-5291.	1.6	29
125	Photo-Ni-Dual-Catalytic C(sp ²)–C(sp ³) Cross-Coupling Reactions with Mesoporous Graphitic Carbon Nitride as a Heterogeneous Organic Semiconductor Photocatalyst. ACS Catalysis, 2020, 10, 3526-3532.	5.5	63
126	Multifunctional Building Blocks Compatible with Photoredox-Mediated Alkylation for DNA-Encoded Library Synthesis. Organic Letters, 2020, 22, 1046-1051.	2.4	57
127	Synthesis of Monofluoroalkenes through Visible-Light-Promoted Defluorinative Alkylation of <i>gem</i> -Difluoroalkenes with 4-Alkyl-1,4-dihydropyridines. Organic Letters, 2020, 22, 1542-1546.	2.4	53

#	Article	IF	CITATIONS
128	A Metallaphotoredox Method for the Expansion of Benzyl SAR on Electron-Deficient Amines. Organic Letters, 2020, 22, 1052-1055.	2.4	17
129	Catalyst-Free <i>N</i> -Deoxygenation by Photoexcitation of Hantzsch Ester. Organic Letters, 2020, 22, 1316-1320.	2.4	35
130	Nickel-catalyzed Suzuki Coupling of Cycloalkyl Silyl Peroxides with Boronic Acids. Journal of Organic Chemistry, 2020, 85, 7515-7525.	1.7	27
131	Upscaling Photoredox Cross-Coupling Reactions in Batch Using Immersion-Well Reactors. Organic Process Research and Development, 2020, 24, 1185-1193.	1.3	21
132	Late-stage oxidative C(sp3)â€"H methylation. Nature, 2020, 580, 621-627.	13.7	125
133	Sequential C–O decarboxylative vinylation/C–H arylation of cyclic oxalates <i>via</i> anickel-catalyzed multicomponent radical cascade. Chemical Science, 2020, 11, 4904-4910.	3.7	53
134	Visible Light-Driven Radical-Mediated C–C Bond Cleavage/Functionalization in Organic Synthesis. Chemical Reviews, 2021, 121, 506-561.	23.0	638
135	Dumbbellâ€Shaped 2,2'â€Bipyridines: Controlled Metal Monochelation and Application to Niâ€Catalyzed Crossâ€Couplings. Chemistry - A European Journal, 2021, 27, 2289-2293.	1.7	5
136	Stereoinduction in Metallaphotoredox Catalysis. Angewandte Chemie - International Edition, 2021, 60, 1714-1726.	7.2	161
137	Stereoinduktion in der Metallaphotoredoxkatalyse. Angewandte Chemie, 2021, 133, 1738-1750.	1.6	24
138	N-heterocyclic carbene-catalyzed radical reactions. Science China Chemistry, 2021, 64, 7-16.	4.2	87
139	Visibleâ€Lightâ€Promoted Metalâ€Free Synthesis of (Hetero)Aromatic Nitriles from C(sp ³)â^'H Bonds**. Angewandte Chemie - International Edition, 2021, 60, 2439-2445.	7.2	39
140	Catalytic Photoredox Allylation of Aldehydes Promoted by a Cobalt Complex. Advanced Synthesis and Catalysis, 2021, 363, 1105-1111.	2.1	27
141	Solar and visible-light active nano Ni/g-C3N4 photocatalyst for carbon monoxide (CO) and ligand-free carbonylation reactions. Catalysis Science and Technology, 2021, 11, 956-969.	2.1	12
142	Reagent and Catalyst Capsules: A Chemical Delivery System for Reaction Screening and Parallel Synthesis. Journal of Organic Chemistry, 2021, 86, 1357-1370.	1.7	18
143	A General Approach to Intermolecular Olefin Hydroacylation through Lightâ€Induced HAT Initiation: An Efficient Synthesis of Longâ€Chain Aliphatic Ketones and Functionalized Fatty Acids. Chemistry - A European Journal, 2021, 27, 4412-4419.	1.7	7
144	Cooperative photoredox and palladium catalysis: recent advances in various functionalization reactions. Catalysis Science and Technology, 2021, 11, 742-767.	2.1	30
145	Visibleâ€Lightâ€Promoted Metalâ€Free Synthesis of (Hetero)Aromatic Nitriles from C(sp 3)â^'H Bonds**. Angewandte Chemie, 2021, 133, 2469-2475.	1.6	3

#	Article	IF	CITATIONS
146	Emerging Organometallic Methods for the Synthesis of Câ€Branched (Hetero)aryl, Alkenyl, and Alkyl Glycosides: Câ°'H Functionalization and Dual Photoredox Approaches. Chemistry - A European Journal, 2021, 27, 491-511.	1.7	52
147	Mechanistic Studies on Propargyl <scp>Alcoholâ€Tethered</scp> Alkylidenecyclopropane with Aryldiazonium Salt Initiated by Visible Light. Chinese Journal of Chemistry, 2021, 39, 295-300.	2.6	7
148	Photoredox-mediated hydroalkylation and hydroarylation of functionalized olefins for DNA-encoded library synthesis. Chemical Science, 2021, 12, 12036-12045.	3.7	40
149	Metallaphotoredox catalysis for multicomponent coupling reactions. Green Chemistry, 2021, 23, 5379-5393.	4.6	64
150	Photochemistry in Flow for Drug Discovery. Topics in Medicinal Chemistry, 2021, , 71-119.	0.4	1
151	Catalytic three-component dicarbofunctionalization reactions involving radical capture by nickel. Chemical Society Reviews, 2021, 50, 10836-10856.	18.7	154
152	Merging radical-polar crossover/cycloisomerization processes: access to polyfunctional furans enabled by metallaphotoredox catalysis. Organic Chemistry Frontiers, 2021, 8, 1732-1738.	2.3	13
153	Decarboxylative 1,4-carbocyanation of 1,3-enynes to access tetra-substituted allenes <i>via</i> copper/photoredox dual catalysis. Chemical Science, 2021, 12, 11316-11321.	3.7	51
154	Visible-Light-Induced Direct Csp ² -H Radical Trifluoroethylation of Coumarins with 1,1,1-Trifluoro-2-iodoethane (CF ₃ CH ₂ I). Journal of Organic Chemistry, 2021, 86, 2772-2783.	1.7	25
155	Organic reactions in aqueous media catalyzed by nickel. Green Chemistry, 2021, 23, 6273-6300.	4.6	24
156	A highly stable all-in-one photocatalyst for aryl etherification: the Ni ^{II} embedded covalent organic framework. Green Chemistry, 2021, 23, 5797-5805.	4.6	47
157	Photoredox/nickel dual-catalyzed regioselective alkylation of propargylic carbonates for trisubstituted allenes. Chemical Communications, 2021, 57, 9390-9393.	2.2	9
158	Quantitative Thermodynamic and Kinetic Parameters of Radical. Chinese Journal of Organic Chemistry, 2021, 41, 3892.	0.6	2
159	Regiodivergent sulfonylarylation of 1,3-enynes <i>via</i> nickel/photoredox dual catalysis. Chemical Science, 2021, 12, 13564-13571.	3.7	54
160	Synthetic and Mechanistic Implications of Chlorine Photoelimination in Nickel/Photoredox C(sp ³)–H Cross-Coupling. Accounts of Chemical Research, 2021, 54, 988-1000.	7.6	144
161	Photoactive electron donor–acceptor complex platform for Ni-mediated C(sp ³)–C(sp ²) bond formation. Chemical Science, 2021, 12, 5450-5457.	3.7	91
162	New Bidentate N-Sulfonyl-Substituted Aromatic Amines as Chelate Ligand Backbones: Pd Catalyst Generation in C–C Coupling via In Situ and Precatalyst Modes. Australian Journal of Chemistry, 2021, 74, 101.	0.5	0
163	Organic-photoredox-catalyzed three-component sulfonylative pyridylation of styrenes. RSC Advances, 2021, 11, 142-146.	1.7	16

#	Article	IF	CITATIONS
164	Photocatalytic (Het)arylation of C(sp ³)â€"H Bonds with Carbon Nitride. ACS Catalysis, 2021, 11, 1593-1603.	5.5	74
165	Photoinduced 1,2-dicarbofunctionalization of alkenes with organotrifluoroborate nucleophiles <i>via</i> radical/polar crossover. Chemical Science, 2021, 12, 9189-9195.	3.7	36
166	Reductive hydrobenzylation of terminal alkynes <i>via</i> photoredox and nickel dual catalysis. Chemical Communications, 2021, 57, 9414-9417.	2.2	16
167	Synthesis of chiral branched allylamines through dual photoredox/nickel catalysis. Organic and Biomolecular Chemistry, 2021, 19, 8578-8585.	1.5	5
168	Application of the stabilization effect of a silyl group in radical-polar crossover reactions enabled by photoredox-neutral catalysis. Organic Chemistry Frontiers, 2021, 8, 5303-5309.	2.3	10
169	Photoredox/nickel-catalyzed hydroacylation of ethylene with aromatic acids. Chemical Communications, 2021, 57, 9064-9067.	2.2	15
170	Visible-Light-Induced Tertiary C(sp ³)â€"H Sulfonylation: An Approach to Tertiary Sulfones. Organic Letters, 2021, 23, 1163-1168.	2.4	14
171	Photoredox Allylation Reactions Mediated by Bismuth in Aqueous Conditions. European Journal of Organic Chemistry, 2021, 2021, 1624-1627.	1.2	15
172	Visibleâ€Light Promoted C–O Bond Formation with an Integrated Carbon Nitride–Nickel Heterogeneous Photocatalyst. Angewandte Chemie - International Edition, 2021, 60, 8494-8499.	7.2	61
173	Visibleâ€Light Promoted C–O Bond Formation with an Integrated Carbon Nitride–Nickel Heterogeneous Photocatalyst. Angewandte Chemie, 2021, 133, 8575-8580.	1.6	2
174	Metal-Free α-C(sp ³)–H Aroylation of Amines via a Photoredox Catalytic Radical–Radical Cross-Coupling Process. Organic Letters, 2021, 23, 2846-2852.	2.4	26
175	Challenges and Opportunities in Multicatalysis. ACS Catalysis, 2021, 11, 3891-3915.	5.5	149
176	Developments in Photoredox-Mediated Alkylation for DNA-Encoded Libraries. Trends in Chemistry, 2021, 3, 161-175.	4.4	34
177	Dual Palladium/Photoredox-Catalyzed Enantioselective and Regioselective Decarboxylative Hydroaminoalkylation of Allenes. ACS Catalysis, 2021, 11, 3343-3350.	5.5	27
178	Photocatalytic Dehydroxymethylative Arylation by Synergistic Cerium and Nickel Catalysis. Journal of the American Chemical Society, 2021, 143, 4896-4902.	6.6	71
179	Emerging concepts in photocatalytic organic synthesis. IScience, 2021, 24, 102209.	1.9	109
180	Stereo- and Regioselective <i>cis</i> -Hydrophosphorylation of 1,3-Enynes Enabled by the Visible-Light Irradiation of NiCl ₂ (PPh ₃) ₂ . Organic Letters, 2021, 23, 2981-2987.	2.4	24
181	Dual Ni/photoredox-catalyzed asymmetric cross-coupling to access chiral benzylic boronic esters. Nature Communications, 2021, 12, 1646.	5.8	64

#	Article	IF	CITATIONS
182	Photoredox/Nickel Dual Catalytic Cross-Coupling of Potassium Thiomethyltrifluoroborates with Aryl and Heteroaryl Bromides. Journal of Organic Chemistry, 2021, 86, 6937-6942.	1.7	0
183	Broadly versus Barely Variable Complex Chromophores of Planar Nickel(II) from κ3-N,N′,C and κ3-N,N′,O Donor Platforms. Organometallics, 2021, 40, 1163-1177.	1.1	8
184	Highly Regio- and Enantioselective Reductive Coupling of Alkynes and Aldehydes via Photoredox Cobalt Dual Catalysis. Journal of the American Chemical Society, 2021, 143, 7306-7313.	6.6	74
185	Threeâ€Component Aminoarylation of Electronâ€Rich Alkenes by Merging Photoredox with Nickel Catalysis. Angewandte Chemie - International Edition, 2021, 60, 14399-14404.	7.2	43
186	Recyclable, Bifunctional Metallaphotocatalysts for Câ^'S Crossâ€Coupling Reactions. ChemPhotoChem, 2021, 5, 716-720.	1.5	6
187	Threeâ€Component Aminoarylation of Electronâ€Rich Alkenes by Merging Photoredox with Nickel Catalysis. Angewandte Chemie, 2021, 133, 14520-14525.	1.6	10
188	Accessing Aliphatic Amines in C–C Cross-Couplings by Visible Light/Nickel Dual Catalysis. Organic Letters, 2021, 23, 4250-4255.	2.4	12
189	Manganese-Mediated Direct Functionalization of Hantzsch Esters with Alkyl Iodides via an Aromatization–Dearomatization Strategy. Organic Letters, 2021, 23, 4002-4007.	2.4	10
191	Recent Advances in Organic Synthesis Using Lightâ€Mediated Nâ€Heterocyclic Carbene Catalysis. European Journal of Organic Chemistry, 2021, 2021, 4603-4610.	1.2	17
192	Nickel-Catalyzed Radical Migratory Coupling Enables C-2 Arylation of Carbohydrates. Journal of the American Chemical Society, 2021, 143, 8590-8596.	6.6	36
193	Ti(O <i>i</i> Pr) ₄ -Enabled Dual Photoredox and Nickel-Catalyzed Arylation and Alkenylation of Cyclopropanols. Organic Letters, 2021, 23, 5452-5456.	2.4	12
194	Photoinduced Transition-Metal-Free Alkynylation of Alkyl Pinacol Boronates. CCS Chemistry, 2021, 3, 1718-1728.	4.6	28
195	Asymmetric benzylic C(sp3)â^'H acylation via dual nickel and photoredox catalysis. Nature Communications, 2021, 12, 3536.	5.8	63
196	Visibleâ€Lightâ€Induced Homolysis of Earthâ€Abundant Metalâ€Substrate Complexes: A Complementary Activation Strategy in Photoredox Catalysis. Angewandte Chemie - International Edition, 2021, 60, 21100-21115.	7.2	190
197	The Application of Pulse Radiolysis to the Study of Ni(I) Intermediates in Ni-Catalyzed Cross-Coupling Reactions. Journal of the American Chemical Society, 2021, 143, 9332-9337.	6.6	65
198	Dual Nickel- and Photoredox-Catalyzed Reductive Cross-Coupling to Access Chiral Trifluoromethylated Alkanes. Organic Letters, 2021, 23, 4683-4687.	2.4	35
199	Catalystâ∈Free Decarbonylative Trifluoromethylthiolation Enabled by Electron Donorâ∈Acceptor Complex Photoactivation. Advanced Synthesis and Catalysis, 2021, 363, 3507-3520.	2.1	38
200	Durch sichtbares Licht induzierte Homolyse unedler, gut verfügbarer Metallsubstratkomplexe: Eine komplementÃÆ Aktivierungsstrategie in der Photoredoxkatalyse. Angewandte Chemie, 2021, 133, 21268-21284.	1.6	9

#	Article	IF	CITATIONS
201	Cobalt Catalyst Determines Regioselectivity in Ring Opening of Epoxides with Aryl Halides. Journal of the American Chemical Society, 2021, 143, 9368-9376.	6.6	44
202	Photo-Induced (i>ortho (i) -C–H Borylation of Arenes through In Situ Generation of Rhodium(II) Ate Complexes. Journal of the American Chemical Society, 2021, 143, 11325-11331.	6.6	30
203	Strategic Use of Visible-Light Photoredox Catalysis in Natural Product Synthesis. Chemical Reviews, 2022, 122, 1717-1751.	23.0	199
204	Generation of Functionalized Alkyl Radicals via the Direct Photoexcitation of 2,2′-(Pyridine-2,6-diyl)diphenol-Based Borates. Organic Letters, 2021, 23, 5865-5870.	2.4	21
205	Cooperative Photoredox- and Nickel-Catalyzed Alkylative Cyclization Reactions of Alkynes with 4-Alkyl-1,4-dihydropyridines. Journal of Organic Chemistry, 2021, 86, 12577-12590.	1.7	15
206	Late-stage Câ€"H functionalization offers new opportunities in drug discovery. Nature Reviews Chemistry, 2021, 5, 522-545.	13.8	341
207	Recent advances in radical chemistry proceeding through pro-aromatic radicals. CheM, 2021, 7, 2060-2100.	5.8	69
208	Unlocking the Accessibility of Alkyl Radicals from Boronic Acids through Solvent-Assisted Organophotoredox Activation. ACS Catalysis, 2021, 11, 10862-10870.	5. 5	35
209	Photoredox catalysis in nickel-catalyzed C–H functionalization. Beilstein Journal of Organic Chemistry, 2021, 17, 2209-2259.	1.3	23
210	Enantioselective Reductive Homocoupling of Allylic Acetates Enabled by Dual Photoredox/Palladium Catalysis: Access to <i>C</i> ₂ -Symmetrical 1,5-Dienes. Journal of the American Chemical Society, 2021, 143, 12836-12846.	6.6	27
211	Visible-Light-Induced Palladium-Catalyzed Selective Defluoroarylation of Trifluoromethylarenes with Arylboronic Acids. Journal of the American Chemical Society, 2021, 143, 13971-13979.	6.6	99
212	Mechanistic study on the photo carboxylation of benzylic C-H bonds by xanthone and Ni(0) catalysts. Molecular Catalysis, 2021, 514, 111785.	1.0	3
213	Pyrene-Decoration of a Chromium(0) Tris(diisocyanide) Enhances Excited State Delocalization: A Strategy to Improve the Photoluminescence of 3d ⁶ Metal Complexes. Journal of the American Chemical Society, 2021, 143, 15800-15811.	6.6	44
214	Photoredox Heterobimetallic Dual Catalysis Using Engineered Covalent Organic Frameworks. ACS Catalysis, 2021, 11, 12344-12354.	5.5	59
215	Saturated Boronic Acids, Boronates, and Trifluoroborates: An Update on Their Synthetic and Medicinal Chemistry. Chemistry - A European Journal, 2021, 27, 15277-15326.	1.7	45
216	Photocatalysis in the Life Science Industry. Chemical Reviews, 2022, 122, 2907-2980.	23.0	183
217	Quantitative Estimation of the Hydrogen-Atom-Donating Ability of 4-Substituted Hantzsch Ester Radical Cations. ACS Omega, 2021, 6, 23621-23629.	1.6	11
218	Emerging Building Blocks for Medicinal Chemistry: Recent Synthetic Advances. European Journal of Organic Chemistry, 2021, 2021, 6478-6510.	1.2	57

#	ARTICLE	IF	Citations
219	Mechanisms, challenges, and opportunities of dual Ni/ <scp>photoredox atalyzed</scp> C(sp ²)–C(sp ³) <scp>cross ouplings</scp> . Wiley Interdisciplinary Reviews: Computational Molecular Science, 2022, 12, e1573.	6.2	20
220	Visible-light-induced 3d transition metal-catalysis: A focus on C–H bond functionalization. Current Opinion in Green and Sustainable Chemistry, 2021, 32, 100539.	3.2	7
221	Highly chemoselective deoxygenation of N-heterocyclic <i>N</i> -oxides under transition metal-free conditions. Organic and Biomolecular Chemistry, 2021, 19, 3735-3742.	1.5	6
222	TMSOTf-mediated synthesis of skipped dienes through the addition of olefins to imines and semicyclic <i>N</i> , <i>O</i> -acetals. Organic and Biomolecular Chemistry, 2021, 19, 7883-7893.	1.5	4
223	Modular access to 1,2-allenyl ketones based on a photoredox-catalysed radical-polar crossover process. Organic and Biomolecular Chemistry, 2021, 19, 8502-8506.	1.5	11
224	Radical 1,2-addition of bromoarenes to alkynes <i>via</i> dual photoredox and nickel catalysis. Organic Chemistry Frontiers, 2021, 8, 2924-2931.	2.3	15
225	Photocatalytic Dearomative Intermolecular [2 + 2] Cycloaddition of Heterocycles for Building Molecular Complexity. Journal of Organic Chemistry, 2021, 86, 1730-1747.	1.7	45
226	Modular, Self-Assembling Metallaphotocatalyst for Cross-Couplings Using the Full Visible-Light Spectrum. ACS Catalysis, 2020, 10, 13269-13274.	5.5	21
227	Remote Nickel-Catalyzed Cross-Coupling Arylation via Proton-Coupled Electron Transfer-Enabled C–C Bond Cleavage. Journal of the American Chemical Society, 2020, 142, 3532-3539.	6.6	125
228	Remote C–C bond formation <i>via</i> visible light photoredox-catalyzed intramolecular hydrogen atom transfer. Organic and Biomolecular Chemistry, 2020, 18, 4519-4532.	1.5	87
229	Radical addition-polar termination cascade: efficient strategy for photoredox-neutral-catalysed cyclopropanation and Giese-type reactions of alkenyl <i>N</i> -methyliminodiacetyl boronates. Organic Chemistry Frontiers, 2020, 7, 1588-1592.	2.3	18
230	Photoinduced strategies towards strained molecules. Organic Chemistry Frontiers, 2020, 7, 2531-2537.	2.3	44
231	General and selective synthesis of primary amines using Ni-based homogeneous catalysts. Chemical Science, 2020, 11, 4332-4339.	3.7	29
232	Defluoroborylation Reactions of Fluoroarenes. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2019, 77, 883-894.	0.0	5
233	Modular Enantioselective Synthesis of <i>cis</i> -Cyclopropanes through Self-Sensitized Stereoselective Photodecarboxylation with Benzothiazolines. ACS Catalysis, 2021, 11, 13312-13319.	5.5	17
234	Divergent Aminocarbonylations of Alkynes Enabled by Photoredox/Nickel Dual Catalysis**. Angewandte Chemie, 0, , .	1.6	4
235	Stereodivergent Synthesis of Both <i>Z</i> - and <i>E</i> -Alkenes by Photoinduced, Ni-Catalyzed Enantioselective C(sp ³)â€"H Alkenylation. ACS Catalysis, 2021, 11, 13567-13574.	5.5	43
236	Additive-Free, Visible-Light-Enabled Decarboxylative Alkylation of Enamides. Organic Letters, 2021, 23, 8262-8266.	2.4	21

#	Article	IF	CITATIONS
237	Nickel-Catalyzed Etherification of Phenols and Aryl Halides through Visible-Light-Induced Energy Transfer. Organic Letters, 2021, 23, 8327-8332.	2.4	25
238	Dual Photoredox/Nickel-Catalyzed 1,4-Sulfonylarylation of 1,3-Enynes with Sulfinate Salts and Aryl Halides: Entry into Tetrasubstituted Allenes. Organic Letters, 2021, 23, 8455-8459.	2.4	33
239	Na2S2O8â \in Mediated Tandem Oneâ \in Pot Construction of 3,3â \in Disubsituted 3,4â \in Dihydroquinoxalinâ \in 2(1H)â \in 0 with 4â \in Alkylâ \in 1,4â \in dihydropyridines as Alkyl Radical Sources. Asian Journal of Organic Chemistry, 0, , .	nes 1.3	4
240	Divergent Aminocarbonylations of Alkynes Enabled by Photoredox/Nickel Dual Catalysis. Angewandte Chemie - International Edition, 2021, 60, 26511-26517.	7.2	37
241	Nickelâ€Mediated Photoreductive Cross Coupling of Carboxylic Acid Derivatives for Ketone Synthesis**. Chemistry - A European Journal, 2021, 27, 18168-18174.	1.7	12
242	Visible-Light-Promoted Cross-Coupling of <i>N</i> -Alkylpyridinium Salts and Nitrostyrenes. Organic Letters, 2021, 23, 8705-8710.	2.4	12
243	Enantioselective β-C(sp ³)â€"H arylation of amides <i>via</i> synergistic nickel and photoredox catalysis. Organic and Biomolecular Chemistry, 2021, 19, 9407-9409.	1.5	7
244	Pyridines and Their Benzo Derivatives: Reactivity of Reduced Compounds. , 2020, , 92-92.		0
245	Mechanistic Understanding of Arylation vs Alkylation of Aliphatic C _{sp3} â€"H Bonds by Decatungstateâ€"Nickel Catalysis. ACS Catalysis, 2021, 11, 13973-13982.	5.5	15
246	Acetylation of alcohols and amines under visible light irradiation: diacetyl as an acylation reagent and photosensitizer. Organic Chemistry Frontiers, 2022, 9, 311-319.	2.3	5
247	Decarbonylative cascade cyclization of ortho-cyanoarylacrylamides with pivaldehyde: Access to tert-butyl containing quinolone-2,4(1H,3H)-diones. Tetrahedron, 2022, 103, 132547.	1.0	2
248	Enabling Metallophotoredox Catalysis in Parallel Solution-Phase Synthesis Using Disintegrating Reagent Tablets. Journal of Organic Chemistry, 2021, 86, 16535-16547.	1.7	5
249	Metalâ€Free Tandem Oneâ€Pot Construction of 3,3â€Disubsituted 3,4â€Dihydroquinoxalinâ€2(1 <i>H</i>)â€One under Visibleâ€Light Photoredox Catalysis. Advanced Synthesis and Catalysis, 2022, 364, 658-664.	^{2S} 2.1	6
250	Tunable and Practical Homogeneous Organic Reductants for Cross-Electrophile Coupling. Journal of the American Chemical Society, 2021, 143, 21024-21036.	6.6	23
251	Photons or Electrons? A Critical Comparison of Electrochemistry and Photoredox Catalysis for Organic Synthesis. Chemical Reviews, 2022, 122, 2487-2649.	23.0	210
252	Photochemistry at Scale: Wireless Light Emitters Drive Sustainability in Process Research & Development. European Journal of Organic Chemistry, 2022, 2022, .	1.2	5
253	Progress in Visible-Light Catalyzed Câ€"F Bond Functionalization of <i>gem </i> Journal of Organic Chemistry, 2021, 41, 4192.	0.6	8
254	Selective 1,4-arylsulfonation of 1,3-enynes <i>via</i> photoredox/nickel dual catalysis. Organic Chemistry Frontiers, 2022, 9, 788-794.	2.3	14

#	Article	IF	CITATIONS
255	Using Data Science To Guide Aryl Bromide Substrate Scope Analysis in a Ni/Photoredox-Catalyzed Cross-Coupling with Acetals as Alcohol-Derived Radical Sources. Journal of the American Chemical Society, 2022, 144, 1045-1055.	6.6	74
256	C–C Bond Formation Through Cross-Electrophile Coupling Reactions. , 2022, , 89-119.		1
257	Nickel-catalysed cross-electrophile coupling of aryl bromides and primary alkyl bromides. RSC Advances, 2022, 12, 3569-3572.	1.7	1
258	Switchable Divergent Synthesis Using Photocatalysis. ACS Catalysis, 2022, 12, 1857-1878.	5 . 5	62
259	Radical Carbonyl Umpolung Arylation via Dual Nickel Catalysis. Journal of the American Chemical Society, 2022, 144, 1899-1909.	6.6	47
260	Nickel and Palladium Catalysis: Stronger Demand than Ever. ACS Catalysis, 2022, 12, 1180-1200.	5 . 5	77
261	Microenvironment modulation of cuprous cluster enables inert aryl chlorides activation in single-molecule metallaphotoredox amination. Journal of Catalysis, 2022, 405, 313-321.	3.1	3
262	Allylic C(sp3)–H arylation of olefins via ternary catalysis. , 2022, 1, 59-68.		22
263	Light-Promoted Dearomative Cross-Coupling of Heteroarenium Salts and Aryl Iodides via Nickel Catalysis. ACS Catalysis, 2022, 12, 1818-1829.	5 . 5	7
264	Recent Advances in Photoredox/Nickel Dual-Catalyzed Difunctionalization of Alkenes and Alkynes. Chinese Journal of Organic Chemistry, 2022, 42, 1.	0.6	24
265	Nickelâ€Catalyzed Arylative Cyclizations of Alkyne―and Alleneâ€Tethered Electrophiles using Arylboron Reagents. Chemistry - A European Journal, 2022, 28, .	1.7	22
266	A nickel/organoboron catalyzed metallaphotoredox platform for C(sp ²)–P and C(sp ²)–S bond construction. Organic Chemistry Frontiers, 2022, 9, 1070-1076.	2.3	11
267	Transition-metal-free alkylation strategy: facile access to alkylated oxindoles <i>via</i> alkyl transfer. Organic and Biomolecular Chemistry, 2022, 20, 1958-1968.	1.5	9
268	Irradiation with UV Light Accelerates the Migita–Kosugi–Stille Coupling Reaction in Air. Chemistry Letters, 2022, 51, 124-126.	0.7	1
269	Photocatalytic Synthesis of Diarylmethyl Silanes via 1,6-Conjugate Addition of Silyl Radicals to <i>p</i> -Quinone Methides. Journal of Organic Chemistry, 2022, 87, 3567-3576.	1.7	16
270	Highly selective synthesis of all-carbon tetrasubstituted alkenes by deoxygenative alkenylation of carboxylic acids. Nature Communications, 2022, 13, 10.	5.8	58
271	Visible-Light-Initiated Hydrooxygenation of Unactivated Alkenes─A Strategy for Anti-Markovnikov Hydrofunctionalization. ACS Catalysis, 2022, 12, 2499-2504.	5.5	11
272	Asymmetric \hat{l}^2 -arylation of cyclopropanols enabled by photoredox and nickel dual catalysis. Chemical Science, 2022, 13, 3020-3026.	3.7	4

#	Article	IF	CITATIONS
273	Enantioselective synthesis of cyclic α-aminoboronates <i>via</i> copper-catalyzed dearomative borylation of 4-quinolinols. Chemical Communications, 2022, 58, 3677-3680.	2.2	2
274	Visible-light-induced, autopromoted nickel-catalyzed three-component arylsulfonation of 1,3-enynes and mechanistic insights. Science China Chemistry, 2022, 65, 753-761.	4.2	15
275	Catalytic cleavage and functionalization of bulky and inert Csp3–Csp3 bonds via a relayed proton-coupled electron transfer strategy. Cell Reports Physical Science, 2022, 3, 100763.	2.8	10
276	d ⁰ Metal-Catalyzed Alkyl–Alkyl Cross-Coupling Enabled by a Redox-Active Ligand. ACS Catalysis, 2022, 12, 3094-3099.	5.5	16
277	Organophotoredox/Ni-Cocatalyzed Allylation of Allenes: Regio- and Diastereoselective Access to Homoallylic Alcohols. ACS Catalysis, 2022, 12, 3249-3255.	5 . 5	19
278	Visible light-driven efficient palladium catalyst turnover in oxidative transformations within confined frameworks. Nature Communications, 2022, 13, 928.	5.8	23
279	Oxidative Addition of Aryl Halides to a Ni(I)-Bipyridine Complex. Journal of the American Chemical Society, 2022, 144, 5575-5582.	6.6	60
280	Regioâ€, Diastereoâ€, and Enantioselective Decarboxylative Hydroâ€aminoalkylation of Dienol Ethers Enabled by Dual Palladium/Phoâ€toredox Catalysis. Angewandte Chemie, 0, , .	1.6	1
281	Sustainable Thioetherification via Electron Donor–Acceptor Photoactivation Using Thianthrenium Salts. Angewandte Chemie, 2022, 134, .	1.6	9
282	Dual Cobalt/Organophotoredox Catalysis for Diastereo- and Regioselective 1,2-Difunctionalization of 1,3-Diene Surrogates Creating Quaternary Carbon Centers. ACS Catalysis, 2022, 12, 3651-3659.	5.5	21
283	Photoinduced Merging with Copper―or <scp>Nickelâ€Catalyzed</scp> 1, <scp>4â€Cyanoalkylarylation</scp> of 1, <scp>3â€Enynes</scp> to Access Multiple Functionalizatized Allenes in Batch and Continuous Flow. Chinese Journal of Chemistry, 2022, 40, 1537-1545.	2.6	17
284	Sustainable Thioetherification via Electron Donor–Acceptor Photoactivation Using Thianthrenium Salts. Angewandte Chemie - International Edition, 2022, 61, .	7.2	65
285	Regioâ€, Diastereoâ€, and Enantioselective Decarboxylative Hydroaminoalkylation of Dienol Ethers Enabled by Dual Palladium/Photoredox Catalysis. Angewandte Chemie - International Edition, 2022, 61, .	7.2	10
286	Mesoporous Graphitic Carbon Nitride as a Heterogeneous Organic Photocatalyst in the Dual Catalytic Arylation of Alkyl Bis(catecholato)silicates. Organic Letters, 2022, 24, 2483-2487.	2.4	11
287	Concise syntheses of GB22, GB13, and himgaline by cross-coupling and complete reduction. Science, 2022, 375, 1270-1274.	6.0	20
288	Diverse synthesis of C2-linked functionalized molecules via molecular glue strategy with acetylene. Nature Communications, 2022, 13, 1858.	5.8	17
289	Photo-induced trifunctionalization of bromostyrenes via remote radical migration reactions of tetracoordinate boron species. Nature Communications, 2022, 13, 1784.	5.8	11
290	Photoinduced nickel-catalyzed enantioselective coupling reactions. Coordination Chemistry Reviews, 2022, 460, 214479.	9.5	20

#	Article	IF	CITATIONS
291	Aromatization as an Impetus to Harness Ketones for Metallaphotoredox-Catalyzed Benzoylation/Benzylation of (Hetero)arenes. Organic Letters, 2022, 24, 85-89.	2.4	23
292	DABCO-promoted photocatalytic C–H functionalization of aldehydes. Beilstein Journal of Organic Chemistry, 2021, 17, 2959-2967.	1.3	4
293	Ligand-regulated metal–organic frameworks for synergistic photoredox and nickel catalysis. Inorganic Chemistry Frontiers, 2022, 9, 3116-3129.	3.0	3
294	Dual Photocatalysis for the Straightforward Coupling of Thiosugars and Arylsulfoximines: Towards Unprecedented Cyclic Heteroatomic Structures. European Journal of Organic Chemistry, 2022, 2022, .	1.2	2
295	Visible-Light-Promoted Nickel-Catalyzed Cross-Coupling of Iodocarboranes with (Hetero)Arenes via Boron-Centered Carboranyl Radicals. Journal of the American Chemical Society, 2022, 144, 7960-7965.	6.6	24
296	A Compact, Practical Photoreactor for Multi-Reaction Arrays. Reaction Chemistry and Engineering, 0, ,	1.9	6
297	C2-ketonylation of carbohydrates <i>via</i> excited-state palladium-catalyzed 1,2-spin-center shift. Chemical Science, 2022, 13, 6276-6282.	3.7	20
298	Photoredox―and Nickelâ€Catalyzed Hydroalkylation of Alkynes with 4â€Alkylâ€1,4â€dihydropyridines: Ligandâ€Controlled Regioselectivity. Chemistry - A European Journal, 2022, 28, .	1.7	7
299	The quest for magic: recent advances in C(sp ³)â€"H methylation. Pure and Applied Chemistry, 2022, 94, 547-558.	0.9	1
300	Regio- and Diastereoselective Decarboxylative Allylation of <i>N-</i> Aryl α-Amino Acids by Dual Photoredox/Nickel Catalysis. ACS Catalysis, 0, , 5949-5960.	5.5	2
301	Modular Access to Chiral \hat{l}_{\pm} -(Hetero)aryl Amines via Ni/Photoredox-Catalyzed Enantioselective Cross-Coupling. Journal of the American Chemical Society, 2022, 144, 8797-8806.	6.6	56
302	Dihydroquinazolinones as adaptative C(sp3) handles in arylations and alkylations via dual catalytic C–C bond-functionalization. Nature Communications, 2022, 13, 2394.	5.8	27
303	Accelerated Direct Hydroxylation of Aryl Chlorides with Water to Phenols <i>via</i> the Proximity Effect in a Heterogeneous Metallaphotocatalyst. ACS Catalysis, 2022, 12, 6068-6080.	5 . 5	25
304	αâ€Amino Radical Halogen Atom Transfer Agents for Metallaphotoredox atalyzed Crossâ€Electrophile Couplings of Distinct Organic Halides. ChemSusChem, 2022, 15, .	3.6	12
305	Visible-light-induced cross-coupling of aryl iodides with hydrazones <i>via</i> an EDA-complex. Chemical Science, 2022, 13, 7165-7171.	3.7	15
306	Nickel-Catalyzed Three-Component Alkylacylation of Alkenes Enabled by a Photoactive Electron Donor–Acceptor Complex. Organic Letters, 2022, 24, 3938-3943.	2.4	20
307	ART─An Amino Radical Transfer Strategy for C(sp ²)–C(sp ³) Coupling Reactions, Enabled by Dual Photo/Nickel Catalysis. Journal of the American Chemical Society, 2022, 144, 9997-10005.	6.6	14
308	Carbene and photocatalyst-catalyzed decarboxylative radical coupling of carboxylic acids and acyl imidazoles to form ketones. Nature Communications, 2022, 13 , .	5.8	53

#	Article	IF	Citations
309	Visible-Light-Promoted Desulfurative Alkylation of Alkyl Thianthrenium Salts with Activated Olefins. Organic Letters, 2022, 24, 4070-4074.	2.4	10
310	Visible light-induced Ni-catalyzed C–heteroatom cross-coupling of aryl halides <i>via</i> LMCT with DBU to access a Ni(<scp>i</scp>)/Ni(<scp>iii</scp>) cycle. Organic Chemistry Frontiers, 2022, 9, 3847-3853.	2.3	19
311	Expedient access to <i>N</i> -alkylphthalimides <i>via</i> redox-neutral photocatalysed Giese-type reactions. Organic and Biomolecular Chemistry, 2022, 20, 5377-5382.	1.5	5
312	Autocatalytic aerobic <i>ipso</i> -hydroxylation of arylboronic acid with Hantzsch ester and Hantzsch pyridine. Organic Chemistry Frontiers, 2022, 9, 4091-4096.	2.3	6
313	Nickel-catalysed SET-reduction-based access to functionalized allenes <i>via</i> 1,4-carbohydrogenation of 1,3-enynes with alkyl bromides. Organic Chemistry Frontiers, 2022, 9, 3862-3868.	2.3	9
314	Catalytic defluorinative ketyl–olefin coupling by halogen-atom transfer. Chemical Science, 2022, 13, 7855-7862.	3.7	12
315	Efficient synthesis of \hat{l}^2 -substituted amines via combining deoxygenation of amides with photochemical organocatalysis. Cell Reports Physical Science, 2022, 3, 100955.	2.8	10
316	Nickel catalyzed multicomponent stereodivergent synthesis of olefins enabled by electrochemistry, photocatalysis and photo-electrochemistry. Nature Communications, 2022, 13, .	5.8	32
317	Iron-Promoted Oxidative Alkylation/Cyclization of Ynones with 4-Alkyl-1,4-dihydropyridines: Access to 2-Alkylated Indenones. Journal of Organic Chemistry, 2022, 87, 8599-8610.	1.7	5
318	Photoinduced carbamoylation reactions: unlocking new reactivities towards amide synthesis. Chemical Communications, 2022, 58, 8322-8339.	2.2	11
319	Radical umpolung chemistry enabled by dual catalysis: concept and recent advances. Catalysis Science and Technology, 2022, 12, 5241-5251.	2.1	2
320	Two-in-one metallaphotoredox cross-couplings enabled by a photoactive ligand. CheM, 2022, 8, 2419-2431.	5.8	17
321	Dual Nickel/Photoredoxâ€Catalyzed Siteâ€Selective Crossâ€Coupling of 1,2â€Bisâ€Boronic Esters Enabled by 1,2â€Boron Shifts. Angewandte Chemie, 0, , .	1.6	2
322	Câ^'S Crossâ€Coupling Reactions Catalyzed by Wellâ€Defined Copper and Nickel Complexes. European Journal of Organic Chemistry, 2022, 2022, .	1.2	5
323	Nickel-Catalyzed anti-Markovnikov Hydroalkylation of Trifluoromethylalkenes. ACS Catalysis, 2022, 12, 9410-9417.	5.5	26
324	Dual Nickel/Photoredoxâ€Catalyzed Siteâ€Selective Crossâ€Coupling of 1,2â€Bisâ€Boronic Esters Enabled by 1,2â€Boron Shifts. Angewandte Chemie - International Edition, 2022, 61, .	7.2	20
325	Cooperative triple catalysis enables regioirregular formal Mizoroki–Heck reactions. , 2022, 1, 565-575.		19
326	The Nickel Age in Synthetic Dual Photocatalysis: A Bright Trip Toward Materials Science. ChemSusChem, 2022, 15, .	3.6	19

#	Article	IF	Citations
327	Dicarbofunctionalization of $[1.1.1]$ Propellane Enabled by Nickel/Photoredox Dual Catalysis: One-Step Multicomponent Strategy for the Synthesis of BCP-Aryl Derivatives. Journal of the American Chemical Society, 2022, 144, 12961-12969.	6.6	56
328	Kinetics of a Ni/Ir-Photocatalyzed Coupling of ArBr with RBr: Intermediacy of ArNi ^{II} (L)Br and Rate/Selectivity Factors. Journal of the American Chemical Society, 2022, 144, 15372-15382.	6.6	15
329	Dual Photoredox Ni/Benzophenone Catalysis: A Study of the Ni ^{II} Precatalyst Photoreduction Step. Journal of Organic Chemistry, 2022, 87, 11172-11184.	1.7	2
330	Light-Promoted Nickel-Catalyzed Aromatic Halogen Exchange. ACS Catalysis, 2022, 12, 11089-11096.	5.5	19
331	Ni/Photoredox-Catalyzed C(sp ²)–C(sp ³) Cross-Coupling of Alkyl Pinacolboronates and (Hetero)Aryl Bromides. Organic Letters, 2022, 24, 5663-5668.	2.4	3
332	Dicarbofunctionalizations of an Unactivated Alkene via Photoredox/Nickel Dual Catalysis. Organic Letters, 2022, 24, 6261-6265.	2.4	8
333	Total Synthesis of the Tetracyclic Pyridinium Alkaloid epiâ€Tetradehydrohalicyclamine B. Angewandte Chemie, 0, , .	1.6	1
334	Total Synthesis of the Tetracyclic Pyridinium Alkaloid <i>epi</i> i>â€Tetradehydrohalicyclamineâ€B. Angewandte Chemie - International Edition, 2022, 61, .	7.2	14
335	Visible-Light-Promoted Nickel-Catalyzed Cross-Coupling of Alkyltitanium Alkoxides with Aryl and Alkenyl Halides. Organic Letters, 2022, 24, 6277-6281.	2.4	3
336	Photocatalyzed Dehydrogenation of Aliphatic N-Heterocycles Releasing Dihydrogen. ACS Catalysis, 2022, 12, 10326-10332.	5.5	13
337	Photo-driven metal-free multicomponent reaction between aldehydes, anilines and 4-substituted-DHPs for the synthesis of secondary amines. Green Chemistry, 2022, 24, 7968-7973.	4.6	6
338	Direct acylation and alkynylation of hydrocarbons <i>via</i> synergistic decatungstate photo-HAT/nickel catalysis. Chemical Communications, 2022, 58, 11937-11940.	2.2	7
339	Research Progress on Light-Promoted Transition Metal-Catalyzed C-Heteroatom Bond Coupling Reactions. Chinese Journal of Organic Chemistry, 2022, 42, 2275.	0.6	3
340	Investigations into mechanism and origin of regioselectivity in the metallaphotoredox-catalyzed \hat{l}_{\pm} -arylation of $\langle i \rangle N \langle i \rangle$ -alkylbenzamides. Chemical Science, 2022, 13, 10566-10573.	3.7	8
341	Recent advancements in visible-light-driven carboxylation with carbon dioxide. Chemical Communications, 2022, 58, 9312-9327.	2.2	9
342	Selective Reductive Coupling of Vinyl Azaarenes and Alkynes via Photoredox Cobalt Dual Catalysis. Angewandte Chemie, 2023, 135, .	1.6	1
343	Catalystâ€free Hantzsch Esterâ€mediated Organic Transformations Driven by Visible light. Asian Journal of Organic Chemistry, 2022, 11, .	1.3	16
344	Electrophotochemical Metalâ€Catalyzed Decarboxylative Coupling of Aliphatic Carboxylic Acids. Chemistry - A European Journal, 2022, 28, .	1.7	19

#	Article	IF	CITATIONS
345	Selective Reductive Coupling of Vinyl Azaarenes and Alkynes via Photoredox Cobalt Dual Catalysis. Angewandte Chemie - International Edition, 2023, 62, .	7.2	16
346	Visible Light-Induced Deoxygenation and Allylation/Vinylation of Pyridyl Ethers. Organic Letters, 2022, 24, 7309-7314.	2.4	2
349	Injectable versatile liquid-solid transformation implants alliance checkpoint blockade for magnetothermal dynamic-immunotherapy. Materials Today Bio, 2022, 16, 100442.	2.6	0
350	Organogermanium(<scp>iv</scp>) compounds in photo-induced radical reactions. Organic Chemistry Frontiers, 2022, 9, 7016-7027.	2.3	11
351	lon-Pairing Catalysis in Stereoselective, Light-Induced Transformations. Journal of the American Chemical Society, 2022, 144, 19207-19218.	6.6	19
352	Photoredoxâ€Mediated Deoxygenative Radical Additions of Aromatic Acids to Vinyl Boronic Esters and <i>gem</i> hotoredoxâ€Diborylalkenes**. Chemistry - A European Journal, 2023, 29, .	1.7	7
353	The Role of Excited States of LNi ^{II/III} (Aryl)(Halide) Complexes in Ni–Halide Bond Homolysis in the Arylation of C _{sp3} –H Bonds. ACS Catalysis, 2022, 12, 13215-13224.	5 . 5	13
354	An Alternative to the Arbuzov Reaction: Generation and Transformation of \hat{l} ±-Dialkyl-Substituted Methylphosphonate Carbanions via an SET Reduction Process. Synthesis, 2023, 55, 907-918.	1.2	4
355	Programmable Photocatalytic Activity of Multicomponent Covalent Organic Frameworks Used as Metallaphotocatalysts. Chemistry - A European Journal, 2023, 29, .	1.7	5
357	Allenyl Radicals in Organic Synthesis: Challenges and Recent Advances. European Journal of Organic Chemistry, 0, , .	1.2	2
358	Integrated nickel/polymer dual catalytic system for visible-light-driven sulfonamidation between aryl halides and aryl sulfonamides. Chem Catalysis, 2022, 2, 3546-3558.	2.9	12
359	Visible light metallaphotoredox catalysis in the late-stage functionalization of pharmaceutically potent compounds. Organic Chemistry Frontiers, 2022, 10, 216-236.	2.3	19
360	Convergent paired electrosynthesis of different types of bis- \hat{l}^2 -diketone derivatives based on the knoevenagel condensation reaction under green conditions. Electrochimica Acta, 2023, 437, 141512.	2.6	0
361	Photocatalytic Cleavage of Trityl Protected Thiols and Alcohols. Synthesis, 2023, 55, 1367-1374.	1.2	1
362	Metallaphotoredox Decarboxylative Arylation of Natural Amino Acids via an Elusive Mechanistic Pathway. ACS Catalysis, 2023, 13, 647-658.	5 . 5	9
363	Hypervalent iodine mediated Pd(II)â \in catalyzed <i>ortho</i> â \in C(<i>sp</i> ² â $^{\circ}$ H) functionalization of azoles deciphering Hantzsch ester and malononitrile as the functional group surrogates. ChemistrySelect, 2022, 7, .	0.7	0
364	Mechanistic insights into the photocatalytic valorization of lignin models via Câ^'O/Câ^'C cleavage or Câ^'C/Câ^'N coupling. Chem Catalysis, 2023, 3, 100470.	2.9	5
365	Photochemical Synthesis of Anilines via Ni-Catalyzed Coupling of Aryl Halides with Ammonium Salts. ACS Catalysis, 2022, 12, 15590-15599.	5.5	23

#	Article	IF	CITATIONS
366	Visible-Light-Induced Nickel-Catalyzed Radical Cross-Couplings to Access α-Aryl-α-trifluoromethyl Alcohols. Organic Letters, 2022, 24, 9332-9336.	2.4	7
367	Regio- and Stereoselective Reductive Coupling of Alkynes and Crotononitrile. Journal of the American Chemical Society, 2022, 144, 23001-23009.	6.6	19
368	Advances in Enantioconvergent Transition-Metal-Catalyzed Cross-Coupling Reactions of Racemic \hat{l}_{\pm} -Silyl and \hat{l}_{\pm} -Boryl Reagents. Synthesis, 0, , .	1.2	3
369	Ligand-controlled stereodivergent alkenylation of alkynes to access functionalized trans- and cis-1,3-dienes. Nature Communications, 2023, 14, .	5.8	20
370	Machineâ€Learning Classification for the Prediction of Catalytic Activity of Organic Photosensitizers in the Nickel(II)â€Saltâ€Induced Synthesis of Phenols. Angewandte Chemie, 2023, 135, .	1.6	0
371	Combining the best of both worlds: radical-based divergent total synthesis. Beilstein Journal of Organic Chemistry, 0, 19, 1-26.	1.3	4
372	Machineâ€Learning Classification for the Prediction of Catalytic Activity of Organic Photosensitizers in the Nickel(II)â€Saltâ€Induced Synthesis of Phenols. Angewandte Chemie - International Edition, 2023, 62, .	7.2	3
373	A Visible Light Driven Nickel Carbonylation Catalyst: The Synthesis of Acid Chlorides from Alkyl Halides. Angewandte Chemie - International Edition, 2023, 62, .	7.2	13
374	A Visible Light Driven Nickel Carbonylation Catalyst: The Synthesis of Acid Chlorides from Alkyl Halides. Angewandte Chemie, 2023, 135, .	1.6	1
375	Cyclopropanation of <i>N</i> -vinylimides <i>via</i> addition/anionic cyclisation process. Organic Chemistry Frontiers, 2023, 10, 1245-1251.	2.3	3
376	Synthesis of Chiral αâ€Amino Ketones via Transition Metal Catalyzed or Photoredox Crossâ€Coupling and Olefin Photoâ€Cleavage Reaction Sequence. Advanced Synthesis and Catalysis, 0, , .	2.1	1
377	Generation and Use of Glycosyl Radicals under Acidic Conditions: Glycosyl Sulfinates as Precursors. Angewandte Chemie - International Edition, 2023, 62, .	7.2	13
378	Generation and Use of Glycosyl Radicals under Acidic Conditions: Glycosyl Sulfinates as Precursors. Angewandte Chemie, 2023, 135, .	1.6	0
379	Directed Photochemically Mediated Nickel-Catalyzed (Hetero)arylation of Aliphatic C–H Bonds. Journal of the American Chemical Society, 2023, 145, 3882-3890.	6.6	4
380	Recent Advances in Nickel-Catalyzed C-C Cross-Coupling. Topics in Organometallic Chemistry, 2023, , 181-231.	0.7	1
381	Photocatalytic Decarboxylative Coupling of Aliphatic <i>N</i> â∈Hydroxyphthalimide Esters with Bromopolyfluorobenzene. Advanced Synthesis and Catalysis, 2023, 365, 854-859.	2.1	3
382	Enantioselective C(sp ³)â€"H Functionalization of Oxacycles via Photo-HAT/Nickel Dual Catalysis. Journal of the American Chemical Society, 2023, 145, 5231-5241.	6.6	18
383	Mechanistic Insights into Enantioselective C(sp ³)â°'H Acylation to Construct αâ€Amino Ketones via Photoredox and Ni(II) Dual Catalysis: A DFT Study. Chemistry - an Asian Journal, 2023, 18, .	1.7	1

#	ARTICLE	IF	CITATIONS
384	Synthesis of thiophosphates by visible-light Daual photoredox/nickel catalysis. Tetrahedron, 2023, 136, 133338.	1.0	0
385	Multimetallic-Catalyzed C–C Bond-Forming Reactions: From Serendipity to Strategy. Journal of the American Chemical Society, 2023, 145, 6596-6614.	6.6	18
386	Catalyst-free photochemical reactions of alkyl dihydropyridines <i>via</i> modulation of chromophores and light wavelength. New Journal of Chemistry, 2023, 47, 7369-7374.	1.4	2
387	Photoinduced Cobalt-Catalyzed Desymmetrization of Dialdehydes to Access Axial Chirality. Journal of the American Chemical Society, 2023, 145, 6944-6952.	6.6	24
388	Poly(heptazine imide) ligand exchange enables remarkable low catalyst loadings in heterogeneous metallaphotocatalysis. Nature Communications, 2023, 14, .	5. 8	17
389	Pd-Catalyzed Photochemical Alkylative Functionalization of Câ•C and Câ•N Bonds. Journal of Organic Chemistry, 2023, 88, 4422-4433.	1.7	5
390	Overcoming Energy Transfer for the Metallophotoredox Catalyzed Decarboxylative Alkenylation between Alkylcarboxylic Acids and Enol Triflates. Chemistry - A European Journal, 0, , .	1.7	1
391	Design, synthesis and visible-light-induced non-radical reactions of dual-functional Rh catalysts., 2023, 2, 535-547.		5
392	Interrogating the Mechanistic Features of Ni(I)-Mediated Aryl Iodide Oxidative Addition Using Electroanalytical and Statistical Modeling Techniques. Journal of the American Chemical Society, 0, , .	6.6	13
393	Virtual Ligand Strategy in Transition Metal Catalysis Toward Highly Efficient Elucidation of Reaction Mechanisms and Computational Catalyst Design. ACS Catalysis, 2023, 13, 5697-5711.	5 . 5	3
394	Site- and Stereoselective Synthesis of Alkenyl Chlorides by Dual Functionalization of Internal Alkynes via Photoredox/Nickel Catalysis. Journal of the American Chemical Society, 2023, 145, 9876-9885.	6.6	7
395	Synthesis of α-Haloboronates by the Halogenation of <i>gem</i> -Diborylalkanes via Tetracoordinate Boron Species. Organic Letters, 2023, 25, 2928-2933.	2.4	4
396	Deoxygenative Radical Boration of Inert Amides via a Combination of Relay and Cooperative Catalysis. Chemistry - A European Journal, 2023, 29, .	1.7	4
397	Rapid Synthesis of \hat{I}^2 -Chiral Sulfones by Ni-Organophotocatalyzed Enantioselective Sulfonylalkenylation of Alkenes. Jacs Au, 2023, 3, 1321-1327.	3.6	10
399	Photoredox Microfluidic Synthesis of Trifluoromethylated Amino Acids. Organic Letters, 2023, 25, 3083-3088.	2.4	1
402	Heterogeneous Metallaphotocatalytic C(sp ²)–C(sp ³) Cross-Coupling Reactions with Integrated Bipyridyl-Ni(II)-Carbon Nitride. Organic Letters, 2023, 25, 4124-4129.	2.4	5
403	Late-stage Functionalization for Improving Drug-like Molecular Properties. Chemical Reviews, 2023, 123, 8127-8153.	23.0	22
412	Formal Cross-Coupling of Amines and Carboxylic Acids to Form sp ³ –sp ² Carbon–Carbon Bonds. Journal of the American Chemical Society, 2023, 145, 10930-10937.	6.6	14

#	ARTICLE	IF	CITATIONS
418	The mechanism of visible light-induced C–C cross-coupling by C _{sp³} –H bond activation. Chemical Society Reviews, 2023, 52, 5373-5387.	18.7	7
419	Development of Photoredox Cross-Electrophile Coupling of Strained Heterocycles with Aryl Bromides Using High-Throughput Experimentation for Library Construction. Organic Letters, 0, , .	2.4	2
426	Persulfate promoted carbamoylation of <i>N</i> -arylacrylamides and <i>N</i> -arylcinnamamides with 4-carbamoyl-Hantzsch esters. Organic and Biomolecular Chemistry, 2023, 21, 7530-7534.	1.5	3
442	Coupling Reaction Between sp3-Carbon Centers. , 2023, , .		0
445	Enantioselective C–C bond formation in complex multicatalytic systems. Advances in Catalysis, 2023, , 211-244.	0.1	0
458	Visible-light-driven EDA complex-promoted cascade cyclization to construct 4-cyanoalkyl isoquinoline-1,3-diones. Chemical Communications, 2024, 60, 2958-2961.	2.2	0