Lithium–matrix composite anode protected by a solid metal batteries

Journal of Energy Chemistry 37, 29-34 DOI: 10.1016/j.jechem.2018.11.016

Citation Report

#	Article	IF	CITATIONS
1	Stable lithium metal anode enabled by lithium metal partial alloying. Nano Energy, 2019, 65, 103989.	8.2	73
2	A review of naturally derived nanostructured materials for safe lithium metal batteries. Materials Today Nano, 2019, 8, 100049.	2.3	39
3	Plating/Stripping Behavior of Actual Lithium Metal Anode. Advanced Energy Materials, 2019, 9, 1902254.	10.2	168
4	Early Lithium Plating Behavior in Confined Nanospace of 3D Lithiophilic Carbon Matrix for Stable Solid‣tate Lithium Metal Batteries. Small, 2019, 15, e1904216.	5.2	61
5	Effects of oxalic acid concentration on the microstructures and properties of nano-VO2(B). Journal of Solid State Electrochemistry, 2019, 23, 2951-2959.	1.2	9
6	Suppressing Sponge-Like Li Deposition via AlN-Modified Substrate for Stable Li Metal Anode. ACS Applied Materials & Interfaces, 2019, 11, 42261-42270.	4.0	9
7	Designing solid-state interfaces on lithium-metal anodes: a review. Science China Chemistry, 2019, 62, 1286-1299.	4.2	86
8	Threeâ€Dimensional Graphene/Ag Aerogel for Durable and Stable Li Metal Anodes in Carbonateâ€Based Electrolytes. Chemistry - A European Journal, 2019, 25, 5036-5042.	1.7	25
9	Alloy Anodes for Rechargeable Alkali-Metal Batteries: Progress and Challenge. , 2019, 1, 217-229.		135
10	A critical study on a 3D scaffold-based lithium metal anode. Electrochimica Acta, 2019, 318, 220-227.	2.6	15
11	Single-ion conducting artificial solid electrolyte interphase layers for dendrite-free and highly stable lithium metal anodes. Journal of Materials Chemistry A, 2019, 7, 13113-13119.	5.2	66
12	High lithium-ion conductivity polymer film to suppress dendrites in Li metal batteries. Journal of Power Sources, 2019, 423, 72-79.	4.0	37
13	Solvent-Processed Metallic Lithium Microparticles for Lithium Metal Batteries. ACS Applied Energy Materials, 2019, 2, 1623-1628.	2.5	13
14	Porous LiF layer fabricated by a facile chemical method toward dendrite-free lithium metal anode. Journal of Energy Chemistry, 2019, 37, 197-203.	7.1	116
15	Carbon materials for traffic power battery. ETransportation, 2019, 2, 100033.	6.8	37
16	Investigation of polysulfone film on high-performance anode with stabilized electrolyte/electrode interface for lithium batteries. Journal of Energy Chemistry, 2020, 42, 49-55.	7.1	16
17	PIM-1 as an artificial solid electrolyte interphase for stable lithium metal anode in high-performance batteries. Journal of Energy Chemistry, 2020, 42, 83-90.	7.1	83
18	Improving metallic lithium anode with NaPF6 additive in LiPF6-carbonate electrolyte. Journal of Energy Chemistry, 2020, 42, 1-4.	7.1	20

ATION RED

#	Article	IF	CITATIONS
19	P4S10 modified lithium anode for enhanced performance of lithium–sulfur batteries. Journal of Energy Chemistry, 2020, 41, 27-33.	7.1	23
20	High rate and cycling stable Li metal anodes enabled with aluminum-zinc oxides modified copper foam. Journal of Energy Chemistry, 2020, 41, 87-92.	7.1	27
21	Three dimensional porous frameworks for lithium dendrite suppression. Journal of Energy Chemistry, 2020, 44, 73-89.	7.1	104
22	A Supramolecular Electrolyte for Lithiumâ€Metal Batteries. Batteries and Supercaps, 2020, 3, 47-51.	2.4	17
23	Rolling press of lithium with carbon for high-performance anodes. Energy Storage Materials, 2020, 24, 689-693.	9.5	17
24	ZnCo2O4/ZnO induced lithium deposition in multi-scaled carbon/nickel frameworks for dendrite-free lithium metal anode. Journal of Energy Chemistry, 2020, 43, 16-23.	7.1	39
25	Homogenous charge distribution by free-standing porous structure for dendrite-free Li metal anode. Journal of Energy Chemistry, 2020, 44, 68-72.	7.1	15
26	Rational design on separators and liquid electrolytes for safer lithium-ion batteries. Journal of Energy Chemistry, 2020, 43, 58-70.	7.1	170
27	Paraffin wax protecting 3D non-dendritic lithium for backside-plated lithium metal anode. Energy Storage Materials, 2020, 24, 153-159.	9.5	20
28	Engineering a flexible and mechanically strong composite electrolyte for solid-state lithium batteries. Journal of Energy Chemistry, 2020, 46, 187-190.	7.1	25
29	A Review of Composite Lithium Metal Anode for Practical Applications. Advanced Materials Technologies, 2020, 5, .	3.0	111
30	Realizing both high gravimetric and volumetric capacities in Li/3D carbon composite anode. Nano Energy, 2020, 69, 104471.	8.2	30
31	An engineered self-supported electrocatalytic cathode and dendrite-free composite anode based on 3D double-carbon hosts for advanced Li–SeS ₂ batteries. Journal of Materials Chemistry A, 2020, 8, 2969-2983.	5.2	59
32	Bottom-top channeling Li nucleation and growth by a gradient lithiophilic 3D conductive host for highly stable Li-metal anodes. Journal of Materials Chemistry A, 2020, 8, 1678-1686.	5.2	31
33	Boosting the electrochemical performance of 3D composite lithium metal anodes through synergistic structure and interface engineering. Energy Storage Materials, 2020, 26, 56-64.	9.5	73
34	Salt-with-Salt, a novel strategy to design the flexible solid electrolyte membrane for highly safe lithium metal batteries. Journal of Membrane Science, 2020, 597, 117768.	4.1	25
35	Crosstalk shielding of transition metal ions for long cycling lithium–metal batteries. Journal of Materials Chemistry A, 2020, 8, 4283-4289.	5.2	51
36	Dendrite-free lithium metal and sodium metal batteries. Energy Storage Materials, 2020, 27, 522-554.	9.5	151

#	Article	IF	CITATIONS
37	A compact inorganic layer for robust anode protection in lithiumâ€sulfur batteries. InformaÄnÃ- Materiály, 2020, 2, 379-388.	8.5	197
38	Advances in Artificial Layers for Stable Lithium Metal Anodes. Chemistry - A European Journal, 2020, 26, 4193-4203.	1.7	36
39	The origin of sulfuryl-containing components in SEI from sulfate additives for stable cycling of ultrathin lithium metal anodes. Journal of Energy Chemistry, 2020, 47, 128-131.	7.1	63
40	Bifunctional Li6CoO4 serving as prelithiation reagent and pseudocapacitive electrode for lithium ion capacitors. Journal of Energy Chemistry, 2020, 47, 38-45.	7.1	33
41	Enhancing the cycling stability of all-solid-state lithium-ion batteries assembled with Li1.3Al0.3Ti1.7(PO4)3 solid electrolytes prepared from precursor solutions with appropriate pH values. Ceramics International, 2020, 46, 9629-9636.	2.3	59
42	Facile and Scalable Modification of a Cu Current Collector toward Uniform Li Deposition of the Li Metal Anode. ACS Applied Materials & Interfaces, 2020, 12, 3681-3687.	4.0	28
43	A multifunctional polyimide nanofiber separator with a self-closing polyamide–polyvinyl alcohol top layer with a Turing structure for high-performance lithium–sulfur batteries. Materials Advances, 2020, 1, 3449-3459.	2.6	8
44	Facile preparation of a stable 3D host for lithium metal anodes. Chemical Communications, 2020, 56, 9898-9900.	2.2	17
45	A bifunctional ethylene-vinyl acetate copolymer protective layer for dendrites-free lithium metal anodes. Journal of Energy Chemistry, 2020, 48, 203-207.	7.1	68
46	Graphene film with folds for a stable lithium metal anode. Ionics, 2020, 26, 5357-5365.	1.2	4
47	3D Lithiophilic and Conductive N-CNT@Cu ₂ O@Cu Framework for a Dendrite-Free Lithium Metal Battery. Chemistry of Materials, 2020, 32, 9656-9663.	3.2	13
48	Rational Tuning of a Li ₄ SiO ₄ -Based Hybrid Interface with Unique Stepwise Prelithiation for Dendrite-Proof and High-Rate Lithium Anodes. ACS Applied Materials & Interfaces, 2020, 12, 39362-39371.	4.0	23
49	Polymer of intrinsic microporosity (PIM) films and membranes in electrochemical energy storage and conversion: A mini-review. Electrochemistry Communications, 2020, 118, 106798.	2.3	45
50	Air-stable means more: designing air-defendable lithium metals for safe and stable batteries. Materials Horizons, 2020, 7, 2619-2634.	6.4	37
51	Flexible rGO @ Nonwoven Fabrics' Membranes Guide Stable Lithium Metal Anodes for Lithium–Oxygen Batteries. ACS Applied Energy Materials, 2020, 3, 7944-7951.	2.5	9
52	Scaffold-structured polymer binders for long-term cycle performance of stabilized lithium-powder electrodes. Electrochimica Acta, 2020, 364, 136878.	2.6	14
53	High Rate Transfer Mechanism of Lithium Ions in Lithium–Tin and Lithium–Indium Alloys for Lithium Batteries. Journal of Physical Chemistry C, 2020, 124, 24644-24652.	1.5	23
54	Electrolytes for Lithium―and Sodiumâ€Metal Batteries. Chemistry - an Asian Journal, 2020, 15, 3584-3598.	1.7	28

#	Article	IF	CITATIONS
55	Artificial Solid Electrolyte Interphase Acting as "Armor―to Protect the Anode Materials for High-performance Lithium-ion Battery. Chemical Research in Chinese Universities, 2020, 36, 402-409.	1.3	32
56	Advanced Current Collectors for Alkali Metal Anodes. Chemical Research in Chinese Universities, 2020, 36, 386-401.	1.3	24
57	Toward Practical All-solid-state Batteries with Sulfide Electrolyte: A Review. Chemical Research in Chinese Universities, 2020, 36, 377-385.	1.3	24
58	An Artificial Protective Coating toward Dendriteâ€Free Lithiumâ€Metal Anodes for Lithium–Sulfur Batteries. Energy Technology, 2020, 8, 2000348.	1.8	19
59	In situ regulated solid electrolyte interphase via reactive separators for highly efficient lithium metal batteries. Energy Storage Materials, 2020, 30, 27-33.	9.5	90
60	Silicon Quantum Dots Induce Uniform Lithium Plating in a Sandwiched Metal Anode. ChemElectroChem, 2020, 7, 2026-2032.	1.7	8
61	Mesoporous Graphene Hosts for Dendrite-Free Lithium Metal Anode in Working Rechargeable Batteries. Transactions of Tianjin University, 2020, 26, 127-134.	3.3	33
62	Integrated lithium metal anode protected by composite solid electrolyte film enables stable quasi-solid-state lithium metal batteries. Chinese Chemical Letters, 2020, 31, 2339-2342.	4.8	50
63	The influence of formation temperature on the solid electrolyte interphase of graphite in lithium ion batteries. Journal of Energy Chemistry, 2020, 49, 335-338.	7.1	55
64	The evolution and failure mechanism of lithium metal anode under practical working conditions. Journal of Energy Chemistry, 2020, 48, 424-425.	7.1	6
65	On the Effect of Pre-formed Scales in Mitigating Corrosion of Steels in CO2 Environments. Journal of Bio- and Tribo-Corrosion, 2020, 6, 1.	1.2	1
66	Slurryâ€Coated Sulfur/Sulfide Cathode with Li Metal Anode for Allâ€Solidâ€State Lithiumâ€Sulfur Pouch Cells. Batteries and Supercaps, 2020, 3, 596-603.	2.4	50
67	Exfoliated multi-layered graphene anode with the broadened delithiation voltage plateau below 0.5ÂV. Journal of Energy Chemistry, 2020, 49, 233-242.	7.1	12
68	Review on nanomaterials for nextâ€generation batteries with lithium metal anodes. Nano Select, 2020, 1, 94-110.	1.9	14
69	A Perspective toward Practical Lithium–Sulfur Batteries. ACS Central Science, 2020, 6, 1095-1104.	5.3	442
70	Skin care design for lithium metal protection with cosmetics introduction. Journal of Energy Chemistry, 2020, 48, 383-389.	7.1	3
71	High reversible Li plating and stripping by in-situ construction a multifunctional lithium-pinned array. Energy Storage Materials, 2020, 28, 188-195.	9.5	34
72	Waterproof lithium metal anode enabled by cross-linking encapsulation. Science Bulletin, 2020, 65, 909-916.	4.3	60

#	Article	IF	CITATIONS
73	An Anionâ€Tuned Solid Electrolyte Interphase with Fast Ion Transfer Kinetics for Stable Lithium Anodes. Advanced Energy Materials, 2020, 10, 1903843.	10.2	186
74	Simultaneous Suppression of Shuttle Effect and Lithium Dendrite Growth by Lightweight Bifunctional Separator for Li–S Batteries. ACS Applied Energy Materials, 2020, 3, 2643-2652.	2.5	34
75	Water-proof, electrolyte-nonvolatile, and flexible Li-Air batteries via O2-Permeable silica-aerogel-reinforced polydimethylsiloxane external membranes. Energy Storage Materials, 2020, 27, 297-306.	9.5	69
76	Stable Lithium Deposition Enabled by an Acid-Treated g-C ₃ N ₄ Interface Layer for a Lithium Metal Anode. ACS Applied Materials & Interfaces, 2020, 12, 11265-11272.	4.0	24
77	A novel permselective organo-polysulfides/PVDF gel polymer electrolyte enables stable lithium anode for lithium–sulfur batteries. Journal of Energy Chemistry, 2020, 48, 267-276.	7.1	45
78	A systematical study on the electrodeposition process of metallic lithium. Journal of Energy Chemistry, 2020, 49, 59-70.	7.1	16
79	Towards optimized Li-ion storage performance: Insight on the oxygen species evolution of hard carbon by H2 reduction. Electrochimica Acta, 2020, 337, 135736.	2.6	12
80	Constructing Co ₃ O ₄ Nanowires on Carbon Fiber Film as a Lithiophilic Host for Stable Lithium Metal Anodes. Chemistry - an Asian Journal, 2020, 15, 1057-1066.	1.7	13
81	High-performance PVDF-HFP based gel polymer electrolyte with a safe solvent in Li metal polymer battery. Journal of Energy Chemistry, 2020, 49, 80-88.	7.1	155
82	Topological design of ultrastrong MXene paper hosted Li enables ultrathin and fully flexible lithium metal batteries. Nano Energy, 2020, 74, 104817.	8.2	112
83	Recent progress on flexible lithium metal batteries: Composite lithium metal anodes and solid-state electrolytes. Energy Storage Materials, 2020, 29, 310-331.	9.5	63
84	Toward the Sustainable Lithium Metal Batteries with a New Electrolyte Solvation Chemistry. Advanced Energy Materials, 2020, 10, 2000567.	10.2	111
85	Analyzing Energy Materials by Cryogenic Electron Microscopy. Advanced Materials, 2020, 32, e1908293.	11.1	61
86	Synergistic tungsten oxide/N, S co-doped carbon nanofibers interlayer as anchor of polysulfides for high-performance lithium-sulfur batteries. Journal of Alloys and Compounds, 2020, 833, 154969.	2.8	41
87	Boron-containing single-ion conducting polymer electrolyte for dendrite-free lithium metal batteries. Solid State Ionics, 2020, 349, 115309.	1.3	14
88	Robust interface layers with redox shuttle reactions suppress the dendrite growth for stable solid-state Li metal batteries. Journal of Energy Chemistry, 2020, 51, 222-229.	7.1	8
89	Uniform Li Plating/Stripping within Ni Macropore Arrays Enabled by Regulated Electric Field Distribution for Ultra-Stable Li-Metal Anodes. IScience, 2020, 23, 101089.	1.9	1
90	Flame-retardant concentrated electrolyte enabling a LiF-rich solid electrolyte interface to improve cycle performance of wide-temperature lithium–sulfur batteries. Journal of Energy Chemistry, 2020, 51, 154-160.	7.1	53

	CHATION RE	FORT	
#	Article	IF	CITATIONS
91	Designer uniform Li plating/stripping through lithium–cobalt alloying hierarchical scaffolds for scalable high-performance lithium-metal anodes. Journal of Energy Chemistry, 2021, 52, 385-392.	7.1	29
92	A 3D conducting scaffold with in-situ grown lithiophilic Ni2P nanoarrays for high stability lithium metal anodes. Journal of Energy Chemistry, 2021, 54, 301-309.	7.1	32
93	A Lightweight, Adhesive, Dualâ€Functionalized Overâ€Coating Interphase Toward Ultraâ€6table Highâ€Current Density Lithium Metal Anodes. Energy and Environmental Materials, 2021, 4, 103-110.	7.3	8
94	Confining Li2O2 in tortuous pores of mesoporous cathodes to facilitate low charge overpotentials for Li-O2 batteries. Journal of Energy Chemistry, 2021, 55, 55-61.	7.1	16
95	Electrolyte additives: Adding the stability of lithium metal anodes. Nano Select, 2021, 2, 16-36.	1.9	28
96	Armed lithium metal anodes with functional skeletons. Materials Today Nano, 2021, 13, 100103.	2.3	38
97	Recent advances of metal phosphides for Li–S chemistry. Journal of Energy Chemistry, 2021, 55, 533-548.	7.1	103
98	Porous conductive interlayer for dendrite-free lithium metal battery. Journal of Energy Chemistry, 2021, 53, 412-418.	7.1	13
99	Nickel sulfide-based energy storage materials for high-performance electrochemical capacitors. Rare Metals, 2021, 40, 353-373.	3.6	81
100	A robust interface enabled by electrospun membrane with optimal resistance in lithium metal batteries. Journal of Energy Chemistry, 2021, 55, 1-9.	7.1	15
101	In-situ construction of a Mg-modified interface to guide uniform lithium deposition for stable all-solid-state batteries. Journal of Energy Chemistry, 2021, 55, 272-278.	7.1	49
102	Boron-doping induced lithophilic transition of graphene for dendrite-free lithium growth. Journal of Energy Chemistry, 2021, 56, 463-469.	7.1	18
103	A review on the failure and regulation of solid electrolyte interphase in lithium batteries. Journal of Energy Chemistry, 2021, 59, 306-319.	7.1	183
104	The Insights of Lithium Metal Plating/Stripping in Porous Hosts: Progress and Perspectives. Energy Technology, 2021, 9, 2000700.	1.8	38
105	Improving the structural stability of Ni-rich LiNi0.81Co0.15Al0.04O2 cathode materials with optimal content of trivalent Al ions doping for lithium ions batteries. Ceramics International, 2021, 47, 9717-9726.	2.3	24
106	Alternating nanolayers as lithiophilic scaffolds for Li-metal anode. Journal of Energy Chemistry, 2021, 57, 131-139.	7.1	8
107	Toward the Scaleâ€Up of Solidâ€State Lithium Metal Batteries: The Gaps between Labâ€Level Cells and Practical Largeâ€Format Batteries. Advanced Energy Materials, 2021, 11, 2002360.	10.2	103
108	A two-dimension laminar composite protective layer for dendrite-free lithium metal anode. Journal of Energy Chemistry, 2021, 56, 391-394.	7.1	26

#	Article	IF	CITATIONS
109	Constructing nanoporous Ni foam current collectors for stable lithium metal anodes. Journal of Energy Chemistry, 2021, 58, 124-132.	7.1	26
110	High-loading lateral Li deposition realized by a Scalable Fluorocarbon Bonded Laminates. Carbon, 2021, 171, 894-906.	5.4	8
111	Self-Standing N-Doped Carbonized Cellulose Fiber as a Dual-Functional Host for Lithium Metal Anodes. ACS Sustainable Chemistry and Engineering, 2021, 9, 2326-2337.	3.2	12
112	Regulating the carbon distribution of anode materials in lithium-ion batteries. Nanoscale, 2021, 13, 3937-3947.	2.8	21
113	Surface-modified boron nitride as a filler to achieve high thermal stability of polymer solid-state lithium-metal batteries. Journal of Materials Chemistry A, 2021, 9, 20530-20543.	5.2	30
114	High-Performance All-Solid-State Lithium–Sulfur Batteries Enabled by Slurry-Coated Li6PS5Cl/S/C Composite Electrodes. Frontiers in Energy Research, 2021, 8, .	1.2	15
115	Rational Designs for Lithium ulfur Batteries with Low Electrolyte/Sulfur Ratio. Advanced Functional Materials, 2021, 31, 2010499.	7.8	70
116	Homogenous lithium plating/stripping regulation by a mass-producible Zn particles modified Li-metal composite anode. Nano Research, 2021, 14, 3999-4005.	5.8	24
117	Nucleation and Growth Mechanism of Anionâ€Derived Solid Electrolyte Interphase in Rechargeable Batteries. Angewandte Chemie - International Edition, 2021, 60, 8521-8525.	7.2	77
118	A perspective on sustainable energy materials for lithium batteries. SusMat, 2021, 1, 38-50.	7.8	208
119	The Defect Chemistry of Carbon Frameworks for Regulating the Lithium Nucleation and Growth Behaviors in Lithium Metal Anodes. Small, 2021, 17, e2007142.	5.2	35
120	Nucleation and Growth Mechanism of Anionâ€Derived Solid Electrolyte Interphase in Rechargeable Batteries. Angewandte Chemie, 2021, 133, 8602-8606.	1.6	16
121	Selective elimination of the reactive groups of porous biochar 3D host for stable lithium anodes. Electrochimica Acta, 2021, 388, 138632.	2.6	3
122	Lithium Storage in Bowl-like Carbon: The Effect of Surface Curvature and Space Geometry on Li Metal Deposition. ACS Energy Letters, 2021, 6, 2145-2152.	8.8	41
	Sustainable and Robust Graphene Cellulose Paper Decorated with Lithiophilic Au Nanoparticles to		
123	Enable Dendriteâ€free and Highâ€Power Lithium Metal Anode. Chemistry - A European Journal, 2021, 27, 8168-8177.	1.7	7
123 124	Enable Dendriteâ€free and Highâ€Power Lithium Metal Anode. Chemistry - A European Journal, 2021, 27,	1.7	7
	Enable Dendriteâ€free and Highâ€Power Lithium Metal Anode. Chemistry - A European Journal, 2021, 27, 8168-8177. Li3N film modified separator with homogenization effect of lithium ions for stable lithium metal		

#	ARTICLE	IF	CITATIONS
127	Structurally tunable characteristics of ionic liquids for optimizing lithium plating/stripping via electrolyte engineering. Journal of Energy Chemistry, 2021, 63, 270-277.	7.1	36
128	A 3D lithium metal anode reinforced by scalable in-situ copper oxide nanostick copper mesh. Journal of Alloys and Compounds, 2021, 865, 158908.	2.8	9
129	Lithium Host:Advanced architecture components for lithium metal anode. Energy Storage Materials, 2021, 38, 276-298.	9.5	89
130	Balancing particle properties for practical lithium-ion batteries. Particuology, 2022, 61, 18-29.	2.0	35
131	LixCu alloy nanowires nested in Ni foam for highly stable Li metal composite anode. Science China Materials, 2022, 65, 69-77.	3.5	13
132	In Situ Chemical Lithiation Transforms Diamondâ€Like Carbon into an Ultrastrong Ion Conductor for Dendriteâ€Free Lithiumâ€Metal Anodes. Advanced Materials, 2021, 33, e2100793.	11.1	82
133	Au-modified 3D carbon cloth as a dendrite-free framework for Li metal with excellent electrochemical stability. Journal of Alloys and Compounds, 2021, 871, 159491.	2.8	10
134	Facile synthesis of spinel LiNi0.5Mn1.5O4 as 5.0ÂV-class high-voltage cathode materials for Li-ion batteries. Chinese Journal of Chemical Engineering, 2021, 39, 247-254.	1.7	2
135	Hierarchical CoNi-LDH nanosheet array with hydrogen vacancy for high-performance aqueous battery cathode. Journal of Energy Chemistry, 2022, 69, 9-15.	7.1	23
136	Ultrafine SnSSe/multilayer graphene nanosheet nanocomposite as a high-performance anode material for potassium-ion half/full batteries. Journal of Energy Chemistry, 2021, 60, 241-248.	7.1	54
137	Carbon materials for stable Li metal anodes: Challenges, solutions, and outlook. , 2021, 3, 957-975.		64
138	Advanced strategies for the development of porous carbon as a Li host/current collector for lithium metal batteries. Energy Storage Materials, 2021, 41, 448-465.	9.5	60
139	Electrospun Li-confinable hollow carbon fibers for highly stable Li-metal batteries. Chemical Engineering Journal, 2021, 422, 130017.	6.6	33
140	Chlorinated dual-protective layers as interfacial stabilizer for dendrite-free lithium metal anode. Energy Storage Materials, 2021, 41, 485-494.	9.5	66
141	Synthetic poly-dioxolane as universal solid electrolyte interphase for stable lithium metal anodes. Journal of Energy Chemistry, 2021, 62, 172-178.	7.1	26
142	New insights into "dead lithium―during stripping in lithium metal batteries. Journal of Energy Chemistry, 2021, 62, 289-294.	7.1	115
143	Polar interaction of polymer host–solvent enables stable solid electrolyte interphase in composite lithium metal anodes. Journal of Energy Chemistry, 2022, 64, 172-178.	7.1	42
144	Multi-dimensional hybrid flexible films promote uniform lithium deposition and mitigate volume change as lithium metal anodes. Journal of Energy Chemistry, 2022, 65, 583-591.	7.1	6

#	Article	IF	CITATIONS
145	Bottom-up lithium growth guided by Ag concentration gradient in 3D PVDF framework towards stable lithium metal anode. Journal of Energy Chemistry, 2022, 65, 666-673.	7.1	27
146	Status and challenges facing representative anode materials for rechargeable lithium batteries. Journal of Energy Chemistry, 2022, 66, 260-294.	7.1	149
147	Quasi-solid-state lithium-tellurium batteries based on flexible gel polymer electrolytes. Journal of Colloid and Interface Science, 2022, 605, 547-555.	5.0	9
148	Stable Li storage in micron-sized SiO particles with rigid-flexible coating. Journal of Energy Chemistry, 2022, 64, 309-314.	7.1	19
149	Glycolide additives enrich organic components in the solid electrolyte interphase enabling stable ultrathin lithium metal anodes. Materials Chemistry Frontiers, 2021, 5, 2791-2797.	3.2	21
150	Review on Li Deposition in Working Batteries: From Nucleation to Early Growth. Advanced Materials, 2021, 33, e2004128.	11.1	205
151	Practical development and challenges of garnet-structured Li7La3Zr2O12 electrolytes for all-solid-state lithium-ion batteries: A review. International Journal of Minerals, Metallurgy and Materials, 2021, 28, 1565-1583.	2.4	26
152	Failure mechanism of lithium metal anode under practical conditions. Wuli Xuebao/Acta Physica Sinica, 2020, 69, 228501.	0.2	8
153	Lightweight Shield to Stabilize Li Metal Anodes at High Current Rates. ACS Applied Energy Materials, 2021, 4, 11878-11885.	2.5	5
154	ZnF2/ZnS heterostructures@NC doped porous carbon nanofibers as interlayers for stable lithium metal anodes. Composites Part B: Engineering, 2022, 230, 109531.	5.9	7
155	Architecture design principles for stable electrodeposition behavior-towards better alkali metal (Li/Na/K) anodes. Energy Storage Materials, 2022, 45, 48-73.	9.5	34
156	Three-dimensional lithiophilic Li22Sn5 alloy skeleton for dendrite-free and ultrahigh-capacity Li metal anode. Electrochimica Acta, 2022, 405, 139787.	2.6	14
157	Self-Adaptive 3D Skeleton with Charge Dissipation Capability for Practical Li Metal Pouch Cells. Nano Energy, 2022, 93, 106805.	8.2	19
158	High-valence sulfur-containing species in solid electrolyte interphase stabilizes lithium metal anodes in lithium–sulfur batteries. Journal of Energy Chemistry, 2022, 68, 300-305.	7.1	36
159	Highly Fluorinated Al-Centered Lithium Salt Boosting the Interfacial Compatibility of Li-Metal Batteries. ACS Energy Letters, 2022, 7, 591-598.	8.8	34
160	Self-assembled, highly-lithiophilic and well-aligned biomass engineered MXene paper enables dendrite-free lithium metal anode in carbonate-based electrolyte. Journal of Energy Chemistry, 2022, 69, 221-230.	7.1	26
161	Homogeneous electric field and Li+ flux regulation in three-dimensional nanofibrous composite framework for ultra-long-life lithium metal anode. Journal of Colloid and Interface Science, 2022, 614, 138-146.	5.0	11
162	Unblocked Electron Channels Enable Efficient Contact Prelithiation for Lithiumâ€lon Batteries. Advanced Materials, 2022, 34, e2110337.	11.1	58

CITATION REPORT ARTICLE IF CITATIONS Regulated lithium deposition behavior by an artificial coating of Cu foil for dendrite-free lithium 1.9 3 metal batteries. Materials Today Sustainability, 2022, 18, 100127. Dead lithium formation in lithium metal batteries: A phase field model. Journal of Energy Chemistry, 7.1 2022, 71, 29-35. Rational design of a self-supporting skeleton decorated with dual lithiophilic Sn-containing and N-doped carbon tubes for dendrite-free lithium metal anodes. Journal of Materials Chemistry A, 2022, 5.22 10, 11458-11469. A perspective on energy chemistry of low-temperature lithium metal batteries. , 2022, 1, 72-81. In-situ generated Li3N/Li-Al alloy in reduced graphene oxide framework optimizing ultra-thin lithium 9.5 24 metal electrode for solid-state batteries. Energy Storage Materials, 2022, 49, 546-554. Forming Solid-Electrolyte Interphases with Rich Grain Boundaries on 3D Lithiophilic Skeleton for Low-Temperature Lithium Metal Batteries. Energy Storage Materials, 2022, 49, 454-462. Research Progress and Perspective on Lithium/Sodium Metal Anodes for Nextâ€Generation Rechargeable 3.6 22 Batteries. ChemSusChem, 2022, 15, . N-Doped C/ZnO-Modified Cu Foil Current Collector for a Stable Anode of Lithium-Metal Batteries. 1.8 Industrial & amp; Engineering Chemistry Research, 2022, 61, 7303-7311. Silver Copper Oxide Nanowires by Electrodeposition for Stable Lithium Metal Anode in 3.2 7 Carbonate-Based Electrolytes. ACS Sustainable Chemistry and Engineering, 2022, 10, 7196-7204. First-principles prediction of anomalously strong phase dependence of transport and mechanical 3.8 properties of lithium fluoride. Acta Materialia, 2022, 235, 118077. Li-Ca Alloy Composite Anode with Ant-Nest-Like Lithiophilic Channels in Carbon Cloth Enabling 2.8 6 High-Performance Li Metal Batteries. Research, 2022, 2022, . <scp>3D Freeâ€Standing</scp> Carbon Nanofibers Modified by Lithiophilic Metals Enabling 7.3 <scp>Dendriteâ€Free</scp> Anodes for Li Metal Batteries. Energy and Environmental Materials, 2023, 6, . Carbon/Lithium Composite Anode for Advanced Lithium Metal Batteries: Design, Progress, In Situ 10.2 40 Characterization, and Perspectives. Advanced Energy Materials, 2022, 12, . Advances in the Emerging Gradient Designs of Li Metal Hosts. Research, 2022, 2022, . 2.8 14 MXene/ZnO flexible freestanding film as a dendrite-free support in lithium metal batteries. Journal of 5.211 Materials Chemistry A, 2022, 10, 17199-17207. Recent advances in dendrite-free lithium metal anodes for high-performance batteries. Physical 1.3 34 Chemistry Chemical Physics, 2022, 24, 19996-20011.

179	Spatiotemporal-scale neutron studies on lithium-ion batteries and beyond. Applied Physics Letters, 2022, 121, .	1.5	5	
	Strategies and challenges of carbon materials in the practical applications of lithium metal apode: a			

1.3

review. Physical Chemistry Chemical Physics, 2022, 24, 26356-26370.

180

163

164

165

167

169

171

173

174

175

		CITATION RI	EPORT	
#	Article		IF	CITATIONS
181	Working Principles of Lithium Metal Anode in Pouch Cells. Advanced Energy Materials, 2	2022, 12, .	10.2	39
182	Metal–organic framework-derived Co3O4 modified nickel foam-based dendrite-free a lithium metal batteries. Chinese Chemical Letters, 2023, 34, 107947.	node for robust	4.8	37
183	Melting lithium alloying to improve the affinity of Cu foil for ultra-thin lithium metal ano of Colloid and Interface Science, 2023, 630, 901-908.	de. Journal	5.0	8
184	TiO2/Cu2O heterostructure enabling selective and uniform lithium deposition towards metal anodes. Nano Research, 2023, 16, 4917-4925.	stable lithium	5.8	6
185	Hybrid solid electrolyte interphases formed in conventional carbonate electrolyte enable high-voltage and ultra-stable magnesium metal batteries. Journal of Energy Chemistry, 2	2 2023, 78, 315-324.	7.1	4
186	A strategic way of high-performance energy storage device development with environm "Water-in-salt―electrolytes. Journal of Energy Chemistry, 2023, 78, 350-373.	entally viable	7.1	9
187	Advanced Composite Lithium Metal Anodes with 3D Frameworks: Preloading Strategies Optimization, and Perspectives. Small, 2023, 19, .	, Interfacial	5.2	10
188	Electrode structure enabling dendrite inhibition for high cycle stability quasi-solid-state metal batteries. Journal of Energy Chemistry, 2023, 79, 232-241.	lithium	7.1	4
189	A review on lithium-sulfur batteries: Challenge, development, and perspective. Nano Research, 2023, 16, 8097-8138.		5.8	36
190	Improved electrochemical and air stability performance of SeS2 doped argyrodite lithiur conductors for all-solid-state lithium batteries. Electrochimica Acta, 2023, 442, 141869	n superionic ·	2.6	2
191	Composite lithium metal anodes for solid-state battery applications. , 2023, , 81-94.			1
192	Lithiophilic hyperbranched Cu nanostructure for stable Li metal anodes. SmartMat, 202	3, 4, .	6.4	5
193	Diluted low concentration electrolyte for interphase stabilization of high-voltage LiNi0.5 cathode. Journal of Energy Chemistry, 2023, 81, 404-409.	iMn1.504	7.1	4
194	Ultrathin Li-rich Li-Cu alloy anode capped with lithiophilic LiC6 headspace enabling stabl performance. Journal of Colloid and Interface Science, 2023, 643, 205-213.	e cyclic	5.0	3
195	Ultrathin Composite Li Electrode for Highâ€Performance Li Metal Batteries: A Review fro Chemistry. Advanced Functional Materials, 2023, 33, .	om Synthetic	7.8	14
196	In situ electrochemical modification of the Li/Li1.3Al0.3Ti1.7(PO4)3 interface in solid litl batteries via an electrolyte additive. Journal of Colloid and Interface Science, 2023, 641,	nium metal 396-403.	5.0	2
197	Highly stable lithium-ion wide-temperature storage performance achieved via anion-don solvation structure and electric double-layer engineering. Journal of Power Sources, 202 232975.	ninated .3, 567,	4.0	1
198	Lithiophilic Interface Layer Induced Uniform Deposition for Dendrite-free Lithium Metal Polyethersulfone Frame. ACS Applied Materials & Interfaces, 2023, 15, 20865-208		4.0	6

ARTICLE

IF CITATIONS