Improved activity and significant SO2 tolerance of same for NO selective catalytic reduction with NH3

Applied Catalysis B: Environmental 244, 671-683 DOI: 10.1016/j.apcatb.2018.12.001

Citation Report

#	Article	IF	CITATIONS
1	Step-wise transitions of electrons between valence and conduction bands: a tri-doped TiO2 approach. Materials Research Express, 2019, 6, 105515.	0.8	0
2	Selective Catalytic Reduction of NO _{<i>x</i>} with NH ₃ by Using Novel Catalysts: State of the Art and Future Prospects. Chemical Reviews, 2019, 119, 10916-10976.	23.0	1,003
3	Improvement in alkali metal resistance of commercial V2O5–WO3/TiO2 SCR catalysts modified by Ce and Cu. Journal of Materials Science, 2019, 54, 14707-14719.	1.7	32
4	Research progress, challenges and perspectives on the sulfur and water resistance of catalysts for low temperature selective catalytic reduction of NOx by NH3. Applied Catalysis A: General, 2019, 588, 117207.	2.2	85
5	MnO _x –CeO ₂ @TiO ₂ core–shell composites for low temperature SCR of NO _x . New Journal of Chemistry, 2019, 43, 15161-15168.	1.4	25
6	Surface acidity enhancement of CeO ₂ catalysts <i>via</i> modification with a heteropoly acid for the selective catalytic reduction of NO with ammonia. Catalysis Science and Technology, 2019, 9, 5774-5785.	2.1	33
7	Insights into the highly efficient Co modified MnSm/Ti catalyst for selective catalytic reduction of NO with NH3 at low temperature. Fuel, 2019, 255, 115798.	3.4	38
8	Doping effect of Sm on the TiO ₂ /CeSmO _x catalyst in the NH ₃ -SCR reaction: structure–activity relationship, reaction mechanism and SO ₂ tolerance. Catalysis Science and Technology, 2019, 9, 3554-3567.	2.1	46
9	A comprehensive study on sulfur tolerance of niobia modified CeO2/WO3-TiO2 catalyst for low-temperature NH3-SCR. Applied Catalysis A: General, 2019, 580, 121-130.	2.2	40
10	Effect of W on the acidity and redox performance of the Cu0.02Fe0.2W TiOx (a = 0.01, 0.02, 0.03) catalysts for NH3-SCR of NO. Applied Catalysis B: Environmental, 2019, 248, 226-238.	10.8	132
11	A novel Cr/WO3-ZrO2 catalyst for the selective catalytic reduction of NOx with NH3. Catalysis Communications, 2019, 125, 77-81.	1.6	15
12	Promoting effects of acid enhancing on N2 selectivity for selectivity catalytic oxidation of NH3 over RuO /TiO2: The mechanism study. Applied Surface Science, 2020, 500, 144044.	3.1	53
13	Understanding the deposition and reaction mechanism of ammonium bisulfate on a vanadia SCR catalyst: A combined DFT and experimental study. Applied Catalysis B: Environmental, 2020, 260, 118168.	10.8	73
14	Enhanced low-temperature NH3-SCR performance of CeTiO catalyst via surface Mo modification. Chinese Journal of Catalysis, 2020, 41, 364-373.	6.9	44
15	The effect of non-selective oxidation on the Mn2Co1Ox catalysts for NH3-SCR: Positive and non-positive. Chemical Engineering Journal, 2020, 385, 123797.	6.6	52
16	Excellent low-temperature NH3-SCR NO removal performance and enhanced H2O resistance by Ce addition over the Cu0.02Fe0.2CeyTi1-yOx (yÂ= 0.1, 0.2, 0.3) catalysts. Chemosphere, 2020, 243, 125309.	4.2	53
17	Highly efficient WO3-FeO catalysts synthesized using a novel solvent-free method for NH3-SCR. Journal of Hazardous Materials, 2020, 388, 121812.	6.5	46
18	Investigation of Sulfated Iron-Based Catalysts with Different Sulfate Position for Selective Catalytic Reduction of NOx with NH3. Catalysts, 2020, 10, 1035.	1.6	14

#	Article	IF	CITATIONS
19	Surface fibrillation of <i>para</i> -aramid nonwoven as a multi-functional air filter with ultralow pressure drop. Journal of Materials Chemistry A, 2020, 8, 22269-22279.	5.2	15
20	MOF-74-M (M = Mn, Co, Ni, Zn, MnCo, MnNi, and MnZn) for Low-Temperature NH ₃ -SCR and In Situ DRIFTS Study Reaction Mechanism. ACS Applied Materials & Interfaces, 2020, 12, 48476-48485.	4.0	112
21	Improved Activity and SO ₂ Resistance by Sm-Modulated Redox of MnCeSmTiO _{<i>x</i>} Mesoporous Amorphous Oxides for Low-Temperature NH ₃ -SCR of NO. ACS Catalysis, 2020, 10, 9034-9045.	5.5	182
22	Design of Prussian blue analogue-derived double-cone structure Ce–Fe catalysts and their enhanced performance for the selective catalytic reduction of NO _x with NH ₃ . New Journal of Chemistry, 2020, 44, 21244-21254.	1.4	6
23	Rationally Tailored Redox Properties of a Mesoporous Mn–Fe Spinel Nanostructure for Boosting Low-Temperature Selective Catalytic Reduction of NO <i>_x</i> with NH ₃ . ACS Sustainable Chemistry and Engineering, 2020, 8, 17727-17739.	3.2	52
24	Alkali-Resistant NO _{<i>x</i>} Reduction over SCR Catalysts via Boosting NH ₃ Adsorption Rates by In Situ Constructing the Sacrificed Sites. Environmental Science & Technology, 2020, 54, 13314-13321.	4.6	70
25	Roles of Oxygen Vacancies in the Bulk and Surface of CeO ₂ for Toluene Catalytic Combustion. Environmental Science & Technology, 2020, 54, 12684-12692.	4.6	231
26	Promotional mechanism of activity <i>via</i> three-dimensional ordered macroporous Cu-doped Ce–Fe mixed oxides for the CO-SCR reaction. Environmental Science: Nano, 2020, 7, 3136-3154.	2.2	27
27	Investigating multi-functional traits of metal-substituted vanadate catalysts in expediting NOX reduction and poison degradation at low temperatures. Journal of Hazardous Materials, 2020, 397, 122671.	6.5	26
28	Effect of SiO2 addition on NH4HSO4 decomposition and SO2 poisoning over V2O5–MoO3/TiO2–CeO2 catalyst. Journal of Environmental Sciences, 2020, 91, 279-291.	3.2	18
29	In situ IR comparative study on N2O formation pathways over different valence states manganese oxides catalysts during NH3–SCR of NO. Chemical Engineering Journal, 2020, 397, 125446.	6.6	131
30	Al2O3-modified CuO-CeO2 catalyst for simultaneous removal of NO and toluene at wide temperature range. Chemical Engineering Journal, 2020, 397, 125419.	6.6	82
31	Promoting effect of Cu-doping on catalytic activity and SO2 resistance of porous CeO2 nanorods for H2S selective oxidation. Journal of Catalysis, 2020, 389, 382-399.	3.1	59
32	Recent advances in layered double hydroxides (LDHs) derived catalysts for selective catalytic reduction of NOx with NH3. Journal of Hazardous Materials, 2020, 400, 123260.	6.5	53
33	A review on application of cerium-based oxides in gaseous pollutant purification. Separation and Purification Technology, 2020, 250, 117181.	3.9	79
34	Enhancement of photocatalytic NO removal activity of g-C ₃ N ₄ by modification with illite particles. Environmental Science: Nano, 2020, 7, 1990-1998.	2.2	23
35	Low temperature high activity of M (MÂ=ÂCe, Fe, Co, Ni) doped M-Mn/TiO2 catalysts for NH3-SCR and in situ DRIFTS for investigating the reaction mechanism. Applied Surface Science, 2020, 515, 146014.	3.1	143
36	Construction of CoS/CeO ₂ heterostructure nanocages with enhanced photocatalytic performance under visible light. Journal of the American Ceramic Society, 2020, 103, 6136-6148.	1.9	14

#	Article	IF	CITATIONS
37	Effect of oxygen vacancies on ceria catalyst for selective catalytic reduction of NO with NH3. Applied Surface Science, 2020, 529, 147068.	3.1	60
38	Role of acid gases in HgO removal from flue gas over a novel cobalt-containing biochar prepared from harvested cobalt-enriched phytoremediation plant. Fuel Processing Technology, 2020, 207, 106478.	3.7	27
39	Severe deactivation and artificial enrichment of thallium on commercial SCR catalysts installed in cement kiln. Applied Catalysis B: Environmental, 2020, 277, 119194.	10.8	20
40	Design of assembled composite of Mn3O4@Graphitic carbon porous nano-dandelions: A catalyst for Low–temperature selective catalytic reduction of NOx with remarkable SO2 resistance. Applied Catalysis B: Environmental, 2020, 269, 118731.	10.8	41
41	Enhanced activity and SO ₂ resistance of Coâ€modified CeO ₂ â€TiO ₂ catalyst prepared by facile coâ€precipitation for elemental mercury removal in flue gas. Applied Organometallic Chemistry, 2020, 34, e5463.	1.7	13
42	Efficient Sm modified Mn/TiO2 catalysts for selective catalytic reduction of NO with NH3 at low temperature. Applied Catalysis A: General, 2020, 592, 117413.	2.2	72
43	The poisoning mechanism of gaseous HCl on low-temperature SCR catalysts: MnO â^'CeO2 as an example. Applied Catalysis B: Environmental, 2020, 267, 118668.	10.8	82
44	The dual effects of ammonium bisulfate on the selective catalytic reduction of NO with NH3 over Fe2O3-WO3 catalyst confined in MCM-41. Chemical Engineering Journal, 2020, 389, 124271.	6.6	24
45	Effect of SO2 treatment in the presence and absence of O2 over ceria–titania oxides for selective catalytic reduction. Journal of Materials Science, 2020, 55, 4570-4577.	1.7	3
46	Novel shielding and synergy effects of Mn-Ce oxides confined in mesoporous zeolite for low temperature selective catalytic reduction of NOx with enhanced SO2/H2O tolerance. Journal of Hazardous Materials, 2020, 396, 122592.	6.5	79
47	Outstanding stability and highly efficient methane oxidation performance of palladium-embedded ultrathin mesoporous Co2MnO4 spinel catalyst. Applied Catalysis A: General, 2020, 598, 117571.	2.2	25
48	Three-dimensionally ordered macroporous MnSmO composite oxides for propane combustion: Modification effect of Sm dopant. Catalysis Today, 2021, 376, 211-221.	2.2	37
49	Understanding the high performance of an iron-antimony binary metal oxide catalyst in selective catalytic reduction of nitric oxide with ammonia and its tolerance of water/sulfur dioxide. Journal of Colloid and Interface Science, 2021, 581, 427-441.	5.0	28
50	Comprehensive understanding of the superior performance of Sm-modified Fe2O3 catalysts with regard to NO conversion and H2O/SO2 resistance in the NH3-SCR reaction. Chinese Journal of Catalysis, 2021, 42, 417-430.	6.9	67
51	Environmental-friendly production of FeNbTi catalyst with significant enhancement in SCR activity and SO2 resistance for NOx removal. Fuel, 2021, 285, 119133.	3.4	32
52	Recent Progress of CeO ₂ â^'TiO ₂ Based Catalysts for Selective Catalytic Reduction of NO _x by NH ₃ . ChemCatChem, 2021, 13, 491-505.	1.8	38
53	Starch bio-template synthesis of W-doped CeO2 for selective catalytic reduction of NO with NH3: Influence of ammonia titration. Journal of Physics and Chemistry of Solids, 2021, 148, 109727.	1.9	7
54	NiMn mixed oxides with enhanced low-temperature deNOx performance: Insight into the coordinated decoration of MnOx by NiO phase via glycine combustion method. Applied Catalysis A: General, 2021, 610, 117918.	2.2	17

#	Article	IF	CITATIONS
55	Simultaneous removal of NO and HgO from flue gas over MnSmCo/Ti catalyst at low temperature. Proceedings of the Combustion Institute, 2021, 38, 5331-5338.	2.4	8
56	The effect of existence states of PdOx supported by Co3O4 nanoplatelets on catalytic oxidation of methane. Applied Surface Science, 2021, 539, 148211.	3.1	38
57	Supercritical Carbon Dioxide Extraction-Mediated Amendment of a Manganese Oxide Surface Desired to Selectively Transform Nitrogen Oxides and/or Ammonia. ACS Catalysis, 2021, 11, 767-786.	5.5	19
58	Core–Shell Confinement MnCeOx@ZSM-5 Catalyst for NOx Removal with Enhanced Performances to Water and SO2 Resistance. Nanostructure Science and Technology, 2021, , 165-179.	0.1	1
59	Fabrication of a wide temperature Mn–Ce/TNU-9 catalyst with superior NH ₃ -SCR activity and strong SO ₂ and H ₂ O tolerance. New Journal of Chemistry, 2021, 45, 3857-3865.	1.4	9
60	The Absence of Oxygen in Sulfation Promotes the Performance of the Sulfated CeO ₂ Catalyst for Low-Temperature Selective Catalytic Reduction of NO <i>_x</i> by NH ₃ : Redox Property versus Acidity. ACS Sustainable Chemistry and Engineering, 2021, 9, 967-979.	3.2	35
61	FeVO ₄ -supported Mn–Ce oxides for the low-temperature selective catalytic reduction of NO _{<i>x</i>} by NH ₃ . Catalysis Science and Technology, 2021, 11, 6770-6781.	2.1	16
62	Application of ReO _x /TiO ₂ catalysts with excellent SO ₂ tolerance for the selective catalytic reduction of NO _x by NH ₃ . Catalysis Science and Technology, 0, , .	2.1	63
63	MnOx Supported on Hierarchical SAPO-34 for the Low-Temperature Selective Catalytic Reduction of NO with NH3: Catalytic Activity and SO2 Resistance. Catalysts, 2021, 11, 314.	1.6	10
64	A one-pot synthesis of Cu-modified Mn-rich MnSAPO-34 catalyst with excellent low temperature NH3-selective catalytic reduction performance and H2O resistance. Journal of Industrial and Engineering Chemistry, 2021, 95, 252-259.	2.9	15
65	Sulfur-Resistant Ceria-Based Low-Temperature SCR Catalysts with the Non-bulk Electronic States of Ceria. Environmental Science & Technology, 2021, 55, 5435-5441.	4.6	51
66	Thulium modified MnOx/TiO2 catalyst for the low-temperature selective catalytic reduction of NO with ammonia. Journal of Cleaner Production, 2021, 290, 125858.	4.6	44
67	Mineral-derived catalysts optimized for selective catalytic reduction of NOx with NH3. Journal of Cleaner Production, 2021, 289, 125756.	4.6	12
68	Theoretical studies on NH2Â+ NO2 reaction: Driven by reaction dynamics. International Journal of Mass Spectrometry, 2021, 462, 116522.	0.7	1
69	Active sites adjustable phosphorus promoted CeO2/TiO2 catalysts for selective catalytic reduction of NO by NH3. Chemical Engineering Journal, 2021, 409, 128242.	6.6	27
70	New Insights into the Bulk and Surface Defect Structures of Ceria Nanocrystals from Neutron Scattering Study. Chemistry of Materials, 2021, 33, 3959-3970.	3.2	24
71	Sm-MnO catalysts for low-temperature selective catalytic reduction of NO with NH3: Effect of precipitation agent. Journal of Rare Earths, 2022, 40, 1199-1210.	2.5	10
72	Construction of Fe2O3 loaded and mesopore confined thin-layer titania catalyst for efficient NH3-SCR of NOx with enhanced H2O/SO2 tolerance. Applied Catalysis B: Environmental, 2021, 287, 119982.	10.8	64

#	Article	IF	CITATIONS
73	Unraveling Reactivity Descriptors and Structure Sensitivity in Low-Temperature NH ₃ -SCR Reaction over CeTiO <i>_x</i> Catalysts: A Combined Computational and Experimental Study. ACS Catalysis, 2021, 11, 7613-7636.	5.5	75
74	Boosting nitrous oxide direct decomposition performance based on samarium doping effects. Chemical Engineering Journal, 2021, 414, 128643.	6.6	30
75	Noble metal free catalyst with High activity and stability for catalytic wet air oxidation of N, N-dimethylformamide. Applied Catalysis A: General, 2021, 620, 118172.	2.2	7
76	Design of High-Performance Iron–Niobium Composite Oxide Catalysts for NH ₃ -SCR: Insights into the Interaction between Fe and Nb. ACS Catalysis, 2021, 11, 9825-9836.	5.5	66
77	Promotion Effect of Chromium on the Activity and SO ₂ Resistance of CeO ₂ –TiO ₂ Catalysts for the NH ₃ -SCR Reaction. Industrial & Engineering Chemistry Research, 2021, 60, 11676-11688.	1.8	18
78	Improved Sulfur Resistance of COMMERCIAl V2O5-WO3/TiO2 SCR Catalyst Modified by Ce and Cu. Catalysts, 2021, 11, 906.	1.6	5
79	Alkali-Resistant Catalytic Reduction of NO <i>_x</i> via Naturally Coupling Active and Poisoning Sites. Environmental Science & Technology, 2021, 55, 11255-11264.	4.6	32
80	Alkali-Resistant Catalytic Reduction of NO _{<i>x</i>} by Using Ce–O–B Alkali-Capture Sites. Environmental Science & Technology, 2021, 55, 11970-11978.	4.6	51
81	Insights into novel mesoporous Cu-SAPO-34 with enhanced deNOx performance for diesel emission control. Microporous and Mesoporous Materials, 2021, 323, 111245.	2.2	16
82	Insight into the enhancing activity and stability of Ce modified V2O5/AC during cyclic desulfurization-regeneration-denitrification. Journal of Hazardous Materials, 2022, 424, 127397.	6.5	9
83	Effects of different methods of introducing Mo on denitration performance and anti-SO2 poisoning performance of CeO2. Chinese Journal of Catalysis, 2021, 42, 1488-1499.	6.9	19
84	ZSM-5-supported V-Cu bimetallic oxide catalyst for remarkable catalytic oxidation of toluene in coal-fired flue gas. Chemical Engineering Journal, 2021, 419, 129675.	6.6	44
85	A strategy for constructing highly efficient yolk-shell Ce@Mn@TiOx catalyst with dual active sites for low-temperature selective catalytic reduction of NO with NH3. Chemical Engineering Journal, 2021, 419, 129572.	6.6	66
86	NH3 treatment of CeO2 nanorods catalyst for improving NH3-SCR of NO. Journal of the Energy Institute, 2021, 98, 199-205.	2.7	25
87	Effects of Sm modification on biochar supported Mn oxide catalysts for low-temperature NH3-SCR of NO. Journal of the Energy Institute, 2021, 98, 234-243.	2.7	47
88	Effect of oxygen vacancies on improving NO oxidation over CeO2 {111} and {100} facets for fast SCR reaction. Journal of Environmental Chemical Engineering, 2021, 9, 106218.	3.3	43
89	Balancing redox and acidic properties for optimizing catalytic performance of SCR catalysts: A case study of nanopolyhedron CeO -supported WO. Journal of Environmental Chemical Engineering, 2021, 9, 105828.	3.3	7
90	Improved NH3-SCR deNOx activity and tolerance to H2O & SO2 at low temperature over the NbmCu0.1-mCe0.9Ox catalysts: Role of acidity by niobium doping. Fuel, 2021, 303, 121239.	3.4	24

#	Article	IF	CITATIONS
11	Conquering ammonium bisulfate poison over low-temperature NH3-SCR catalysts: A critical review.	11	CHAHONS
91	Applied Catalysis B: Environmental, 2021, 297, 120388.	10.8	120
92	Mn and Fe oxides co-effect on nanopolyhedron CeO2 catalyst for NH3-SCR of NO. Journal of the Energy Institute, 2021, 99, 97-104.	2.7	55
93	Regulation of oxygen vacancies in cobalt-cerium oxide catalyst for boosting decontamination of VOCs by catalytic oxidation. Separation and Purification Technology, 2021, 277, 119505.	3.9	43
94	Low-temperature o-xylene oxidation over KOH pre-modified OMS-2 catalyst: Dual effect of K on oxygen activation and carboxylate intermediate desorption. Applied Surface Science, 2021, 569, 150974.	3.1	6
95	Effects of sulfation on hematite for selective catalytic reduction of nitrogen oxides with ammonia. Journal of Colloid and Interface Science, 2022, 606, 1445-1456.	5.0	21
96	Recent advances in non-metal doped titania for solar-driven photocatalytic/photoelectrochemical water-splitting. Journal of Energy Chemistry, 2022, 66, 529-559.	7.1	70
97	Comparison of low-temperature catalytic activity and H2O/SO2 resistance of the Ce-Mn/TiO2 NH3-SCR catalysts prepared by the reverse co-precipitation, co-precipitation and impregnation method. Applied Surface Science, 2022, 571, 151285.	3.1	42
98	Construction of CeO2/TiO2 heterojunctions immobilized on activated carbon fiber and its synergetic effect between adsorption and photodegradation for toluene removal. Journal of Nanoparticle Research, 2020, 22, 1.	0.8	18
99	Promotional role of Mo on Ce0.3FeOx catalyst towards enhanced NH3-SCR catalytic performance and SO2 resistance. Chemical Engineering Journal, 2020, 398, 125619.	6.6	79
100	Synergistic Effects of Ternary PdO–CeO2–OMS-2 Catalyst Afford High Catalytic Performance and Stability in the Reduction of NO with CO. ACS Applied Materials & Interfaces, 2021, 13, 622-630.	4.0	28
101	Insight into the promoting effect of support pretreatment with sulfate acid on selective catalytic reduction performance of CeO2/ZrO2 catalysts. Journal of Colloid and Interface Science, 2022, 608, 2718-2729.	5.0	26
102	Effect of different introduction methods of cerium and tin on the properties of titanium-based catalysts for the selective catalytic reduction of NO by NH3. Journal of Colloid and Interface Science, 2022, 613, 320-336.	5.0	11
103	Tuning lattice defects to facilitate the catalytic performance of Ni–Cu–O hybrid nanoparticles towards methane oxidation. International Journal of Hydrogen Energy, 2022, 47, 4536-4545.	3.8	9
104	Effect of Mn on the Performance and Mechanism of Catalysts for the Synthesis of (Ce,La)CO ₃ F. Journal of Power and Energy Engineering, 2021, 09, 1-32.	0.3	0
105	Insights into Samarium Doping Effects on Catalytic Activity and SO ₂ Tolerance of MnFeO _x Catalyst for Low-Temperature NH ₃ -SCR Reaction. SSRN Electronic Journal, 0, , .	0.4	0
106	Enhancing the K-poisoning resistance of CeO2-SnO2 catalyst by hydrothermal method for NH3-SCR reaction. Applied Surface Science, 2022, 579, 152176.	3.1	23
107	Constructing TiO2@CeMnOx nanocages by self-sacrificial hydrolytic etching MIL-125 for efficient wide-temperature selective catalytic reduction of nitrogen oxides. Chemical Engineering Journal, 2022, 432, 134236.	6.6	22
108	Enhanced performance and SO2 tolerance of Ce modified TiO2 supported Mn Sm catalyst for synergetic removal of HgO and NO from flue gas. Fuel Processing Technology, 2022, 227, 107136.	3.7	25

#	Article	IF	CITATIONS
109	Synthesis of TixSn1-xO2 mixed metal oxide for copper catalysts as high-efficiency NH3 selective catalytic oxidation. Fuel, 2022, 314, 123061.	3.4	24
110	Selective catalytic reductive removal of NOx with decreased interference from SO2 and H2O by use of Sm-modified SmxCo0.05-xCe0.05Ti0.9Oy catalysts. Journal of Colloid and Interface Science, 2022, 611, 9-21.	5.0	12
111	Catalytic performance over Mn-Ce catalysts for NH3-SCR of NO at low temperature: Different zeolite supports. Journal of Environmental Chemical Engineering, 2022, 10, 107167.	3.3	48
112	Significantly enhanced activity and SO2 resistance of Zr-modified CeTiOx catalyst for low-temperature NH3-SCR by H2 reduction treatment. Molecular Catalysis, 2022, 518, 112069.	1.0	4
113	One-pot synthesis of CrαMnβCeTiOx mixed oxides as NH3-SCR catalysts with enhanced low-temperature catalytic activity and sulfur resistance. Chemical Engineering Science, 2022, 251, 117450.	1.9	19
114	Understanding the role of redox properties and NO adsorption over MnFeO _{<i>x</i>} for NH ₃ -SCR. Catalysis Science and Technology, 2022, 12, 2030-2041.	2.1	16
115	Structure–activity relationship and the inhibitory effect of sulfur dioxide and water on nitrous oxide formation in selective catalytic reduction of nitrogen oxides by ammonia over hollow Co3O4@CoMn2O4 catalyst. Journal of Colloid and Interface Science, 2022, 616, 55-66.	5.0	8
116	Enhanced SO2 and H2O resistance of MnTiSnOy composite oxide for NH3-SCR through Sm modification. Applied Surface Science, 2022, 583, 152478.	3.1	24
117	Promoting effect of Co-doped CeO2 nanorods activity and SO2 resistance for Hg0 removal. Fuel, 2022, 317, 123320.	3.4	26
118	Sulfur-resistance iron catalyst in sulfur-containing VOCs abatement modulated through H2 reduction. Applied Surface Science, 2022, 584, 152631.	3.1	5
119	低温NH3-SCR脱ç¡å,¬åŒ–å‰,抗SO2䏿-'性èf½ç"ç©¶èį›å±•. Scientia Sinica Chimica, 2022, , .	0.2	0
120	A novel highly active catalyst form CuFeMg layered double oxides for the selective catalytic reduction of NO by CO. Fuel, 2022, 317, 123469.	3.4	23
121	Ceria–tungsten–tin oxide catalysts with superior regeneration capacity after sulfur poisoning for NH ₃ -SCR process. Catalysis Science and Technology, 2022, 12, 2471-2481.	2.1	10
122	Insights into Samarium Doping Effects on Catalytic Activity and So2 Tolerance of Mnfeox Catalyst for Low-Temperature Nh3-Scr Reaction. SSRN Electronic Journal, 0, , .	0.4	0
123	Amorphous Feox–Mn0.1oy Catalyst with Rich Oxygen Vacancies for Ammonia Selective Catalytic Reduction of Nitrogen Oxide at Low Temperatures. SSRN Electronic Journal, 0, , .	0.4	0
124	Like Cures like: Detoxification Effect between Alkali Metals and Sulfur over the V ₂ O ₅ /TiO ₂ deNO _{<i>x</i>} Catalyst. Environmental Science & Technology, 2022, 56, 3739-3747.	4.6	38
125	Selective catalytic reduction of NO by NH3 over V2O5-WO3 supported by titanium isopropoxide (TTIP)-treated TiO2. Journal of Industrial and Engineering Chemistry, 2022, 109, 422-430.	2.9	6
126	MnFe@CeO _{<i>x</i>} Core–Shell Nanocages for the Selective Catalytic Reduction of NO with NH ₃ at Low Temperature. ACS Applied Nano Materials, 2022, 5, 3619-3631.	2.4	20

#	Article	IF	CITATIONS
127	Interaction Mechanism for Simultaneous Elimination of Nitrogen Oxides and Toluene over the Bifunctional CeO ₂ –TiO ₂ Mixed Oxide Catalyst. Environmental Science & Technology, 2022, 56, 4467-4476.	4.6	47
128	Effect of Transition-Metal Oxide M (M = Co, Fe, and Mn) Modification on the Performance and Structure of Porous CuZrCe Catalysts for Simultaneous Removal of NO and Toluene at Low–Medium Temperatures. Energy & Fuels, 2022, 36, 4439-4455.	2.5	21
129	Synergistic catalytic oxidation of HgO and NH3-SCR of NO over MnCeTiOx catalyst in flue gas. Journal of Environmental Chemical Engineering, 2022, 10, 107574.	3.3	3
130	Green Ce-based honeycomb catalyst with excellent water and sulfur dioxide resistances for low-temperature selective catalytic reduction of NOx with ammonia. Chemical Engineering Research and Design, 2022, 162, 1-16.	2.7	3
131	Insights into co-doping effect of Sm and Fe on anti-Pb poisoning of Mn-Ce/AC catalyst for low-temperature SCR of NO with NH3. Fuel, 2022, 319, 123763.	3.4	70
132	Influence of preparation methods of supports on the deNO performance and alkali-metal resistance over TiO2/CeO2 catalysts in NH3-SCR reaction. Fuel, 2022, 320, 123920.	3.4	14
133	Insights into samarium doping effects on catalytic activity and SO2 tolerance of MnFeO catalyst for low-temperature NH3-SCR reaction. Fuel, 2022, 321, 124113.	3.4	85
134	Converting Poisonous Sulfate Species to an Active Promoter on TiO ₂ Predecorated MnO _{<i>x</i>} Catalysts for the NH ₃ -SCR Reaction. ACS Applied Materials & Interfaces, 2021, 13, 61237-61247.	4.0	16
135	SO ₂ -Tolerant catalytic reduction of NO _{<i>x</i>} by confining active species in TiO ₂ nanotubes. Environmental Science: Nano, 2022, 9, 2121-2133.	2.2	8
136	Support effects on the dispersion and interaction of Ce and W species for NH3-SCR. Molecular Catalysis, 2022, 524, 112284.	1.0	4
137	SO ₂ -Tolerant Catalytic Reduction of NO _{<i>x</i>} via Tailoring Electron Transfer between Surface Iron Sulfate and Subsurface Ceria. Environmental Science & Technology, 2022, 56, 5840-5848.	4.6	48
138	Effect of Metal Elements Doping on the Cepo4 Catalysts for Selective Catalytic Reduction of No with Nh3. SSRN Electronic Journal, 0, , .	0.4	0
139	Effect of different doping elements on performance of Ce–Mn/TiO2 catalyst for low temperature denitration. Journal of Rare Earths, 2023, 41, 689-697.	2.5	4
140	Improved activity and SO ₂ tolerance of rare-earth elements modified CeTi catalyst for Hg ⁰ and NO simultaneous removal from flue gas. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2022, 44, 3575-3583.	1.2	1
141	Engineering the oxygen vacancies enables Ni single-atom catalyst for stable and efficient C-H activation. Applied Catalysis B: Environmental, 2022, 314, 121516.	10.8	61
142	Enhanced Water and Sulfur Resistance by Sm3+ Modification of Ce–Mn/TiO2 for NH3-SCR. Catalysis Letters, 2023, 153, 850-862.	1.4	7
143	In-situ DRIFTS study on the k-poisoning resistance mechanism of titanium bearing blast furnace slag catalyst by Sm/La doping. Journal of Environmental Chemical Engineering, 2022, 10, 107895.	3.3	0
144	Synthesis and characterization of Mn-Co co-doped TNU-9 denitration catalyst with high activity. Journal of Chemical Sciences, 2022, 134, .	0.7	2

#	Article	IF	Citations
 145	Ternary CuCrCeO _x Solid Solution Enhances N ₂ electivity in the NO Reduction with CO in the Presence of Water and Oxygen. ChemCatChem, 2022, 14, .	1.8	9
146	NOx removal by selective catalytic reduction with NH3 over MOFs-derived MnTi catalyst. Journal of Environmental Chemical Engineering, 2022, 10, 108028.	3.3	5
147	Thulium oxides supported on MnCeTiO _X catalysts for low-temperature NH ₃ -SCR of NO _X . Materials Research Express, 2022, 9, 065501.	0.8	2
148	Polymer-Directed Self-Assembly Synthesis of Tin-Titanium-Manganese Compounded Oxides with Enhanced Activity and Sulfur Tolerance for Nh3-Scr. SSRN Electronic Journal, 0, , .	0.4	0
149	Excellently Remove NOx Over V-Modified Heteropolyacid Catalyst (V-HPMo/TiO2): Activity, Characterization and Mechanism. Catalysis Letters, 0, , .	1.4	0
150	In-situ infrared spectroscopic study of the mechanism of the low temperature selective catalytic reduction of NO surface by Mn/ bastnaesite concentrate. International Journal of Hydrogen Energy, 2022, 47, 24777-24795.	3.8	4
151	Single-Atom Ce-Modified α-Fe ₂ 0 ₃ for Selective Catalytic Reduction of NO with NH ₃ . Environmental Science & Technology, 2022, 56, 10442-10453.	4.6	52
152	Improving NH3-SCR denitrification performance over WaCo0.4TiOx catalysts: Effect of surface acidity due to W addition on low-temperature and high-temperature activity. Applied Catalysis A: General, 2022, 643, 118705.	2.2	6
153	LDH-derived preparation of CuMgFe layered double oxides for NH3-SCR and CO oxidation reactions: Performance study and synergistic mechanism. Chemical Engineering Journal, 2022, 446, 137414.	6.6	25
154	Engineering yolk–shell MnFe@CeO _{<i>x</i>} @TiO _{<i>x</i>} nanocages as a highly efficient catalyst for selective catalytic reduction of NO with NH ₃ at low temperatures. Nanoscale, 2022, 14, 12281-12296.	2.8	13
155	Cu-VWT Catalysts for Synergistic Elimination of NO _{<i>x</i>} and Volatile Organic Compounds from Coal-Fired Flue Gas. Environmental Science & Technology, 2022, 56, 10095-10104.	4.6	15
156	Porous washcoat structure in CeO ₂ modified Cuâ€SSZâ€13 monolith catalyst for NH ₃ â€SCR with improved catalytic performance. AICHE Journal, 2022, 68, .	1.8	7
157	Surface insights into MnOx-based catalysts containing metal oxides for the selective catalytic reduction of NOX with NH3. Applied Catalysis A: General, 2022, 643, 118770.	2.2	10
158	Promoting H2O/SO2 resistance of Ce-Mn/TiO2 nanostructures by Sb5+/Sb3+ addition for Selective catalytic reduction of NO with NH3. Applied Surface Science, 2022, 600, 154146.	3.1	14
159	Ternary MnCoVO catalysts with remarkable deNO performance: Dual acid-redox sites control strategy. Applied Catalysis B: Environmental, 2022, 318, 121779.	10.8	20
160	Bimetallic Ag-based catalysts for low-temperature SCR: Quo vadis?. Applied Catalysis A: General, 2022, 644, 118815.	2.2	3
161	Effects of sulfate on denitration performance of rare earth tailings for selective catalytic reduction of NO with NH ₃ . Molecular Crystals and Liquid Crystals, 2023, 755, 91-106.	0.4	2
162	Unique Compensation Effects of Heavy Metals and Phosphorus Copoisoning over NO _{<i>x</i>} Reduction Catalysts. Environmental Science & Technology, 2022, 56, 12553-12562.	4.6	17

#	Article	IF	CITATIONS
163	Effect of metal elements doping on the CePO4 catalysts for selective catalytic reduction of NO with NH3. Molecular Catalysis, 2022, 530, 112627.	1.0	5
164	Insights into the structure-activity relationships of highly efficient CuCe oxides for the low temperature CO oxidation and CO-SCR. Journal of the Energy Institute, 2022, 104, 142-155.	2.7	26
165	Tailoring the crystal structure of CaTiO3 by multielement doping for photo-assisted activation of NO. Chemical Engineering Journal, 2022, 450, 138255.	6.6	5
166	Mechanistic effect of SO2 on mesoporous CuFeAlZrOx catalyst for simultaneous removal of HgO and NO at wide temperature range. Fuel, 2022, 329, 125424.	3.4	10
167	Comparison of Mn doped CeO2 with different exposed facets for NH3-SCR at low temperature. Journal of the Energy Institute, 2022, 105, 114-120.	2.7	14
168	Promoting effect of Ti on MnTiOx catalysts for benzene highly efficient oxidation. Journal of Environmental Chemical Engineering, 2022, 10, 108538.	3.3	0
169	Effects of Nb-modified CeVO4 to form surface Ce-O-Nb bonds on improving low-temperature NH3-SCR deNO activity and resistance to SO2 & amp; H2O. Fuel, 2023, 331, 125799.	3.4	22
170	Insights into the low-temperature NH3-SCR of NO performance and mechanism over manganese tailings-derived catalyst. Fuel, 2023, 331, 125833.	3.4	4
171	Novel manganese-based assembled nanocatalyst with "nitrous oxide filter―for efficient NH3-SCR in wide low-temperature window: Optimization, design and mechanism. Fuel, 2023, 331, 125857.	3.4	10
172	Insights into the Contribution of Oxygen Vacancies on Co2ÂActivation for Dry Reforming of Methane Over Ceria-Based Solid Solutions. SSRN Electronic Journal, 0, , .	0.4	0
173	Mnce/Gac-Cnts Catalyst with High Activity, So2 and H2o Tolerance for Low-Temperature Nh3-Scr. SSRN Electronic Journal, 0, , .	0.4	0
174	Polymer-directed self-assembly synthesis of tin-titanium-manganese compounded oxides with enhanced activity and sulfur tolerance for NH3-SCR. Applied Surface Science, 2023, 607, 154956.	3.1	4
175	Three-Dimensional Graphene Supported CeCoxCu1–ÂxOÎ′ Catalysts for Low Temperature Selective Catalytic Reduction of NOx by NH3. Russian Journal of Physical Chemistry A, 2022, 96, 1680-1686.	0.1	0
176	Compensation or Aggravation: Pb and SO ₂ Copoisoning Effects over Ceria-Based Catalysts for NO _{<i>x</i>} Reduction. Environmental Science & amp; Technology, 2022, 56, 13368-13378.	4.6	27
177	Low-cost Mn-Ce/CuX catalyst from blast furnace slag waste for efficient low-temperature NH3-SCR. Applied Catalysis A: General, 2022, 646, 118868.	2.2	10
178	Novel 2D Layered Manganese Silicate Nanosheets with Excellent Performance for Selective Catalytic Reduction of NO with Ammonia. ChemCatChem, 2022, 14, .	1.8	0
179	Ordered mesoporous TiO ₂ /SBA-15 confined Ce _{<i>x</i>} W _{<i>y</i>} catalysts for selective catalytic reduction of NO using NH ₃ . New Journal of Chemistry, 2022, 46, 22030-22044.	1.4	2
180	Ordered mesoporous TiO2 framework confined CeSn catalyst exhibiting excellent high activity for selective catalytic reduction of NO with NH3 at low temperature. Chemical Engineering Journal, 2023, 454, 140181.	6.6	16

#	Article	IF	CITATIONS
181	Effects of doping Mn, Cu and Fe oxides on polyhedron CeO2 catalyst during NH3-SCR reaction. Journal of the Taiwan Institute of Chemical Engineers, 2022, 140, 104560.	2.7	12
182	Ceria accelerates ammonium bisulfate decomposition for improved SO2 resistance on a V2O5-WO3/TiO2 catalyst in low-temperature NH3-SCR. Journal of the Taiwan Institute of Chemical Engineers, 2022, 140, 104555.	2.7	7
183	MnCe/GAC-CNTs catalyst with high activity, SO2 and H2O tolerance for low-temperature NH3-SCR. Separation and Purification Technology, 2023, 305, 122498.	3.9	19
184	Density functional theory of SO3 adsorption on the La2CoFeO6 (0 0 1) surface. Fuel, 2023, 333, 126489.	3.4	1
185	Sm doped NiO catalysts with excellent H2O resistance for N2O decomposition under simulated nitric acid plant exhaust condition. Applied Surface Science, 2023, 611, 155657.	3.1	3
186	Controllable synthesis of substitutional and interstitial nitrogen-doped ceria: The effects of doping sites on enhanced catalytic ozonation of organic pollutants. Applied Catalysis B: Environmental, 2023, 321, 122040.	10.8	22
187	Boosting the plasma catalytic performance of CeO2/Î ³ -Al2O3 in long-chain alkane VOCs via tuning the crystallite size. Applied Surface Science, 2023, 611, 155742.	3.1	7
188	Poisoning Effects of HCl on MO _{<i>x</i>} â€WO ₃ /TiO ₂ (M=Mn, Ce and) ⁻ ChemCatChem, 2023, 15, .	Tj ETQq1 1 1.8	1 0.784314 rg ^B 4
189	Insight into the design and construction of Cr substituted Co-based columnar activated coke catalysts for effective and reliable removal of methylbenzene and HgO concurrently. Fuel, 2023, 334, 126732.	3.4	12
190	Preparation of high temperature NH ₃ -SCR catalysts with carbonate as precursors by ball milling method. RSC Advances, 2022, 12, 35094-35102.	1.7	1
191	Novel preparation method, catalytic performance and reaction mechanisms of PrxMn1â^'xOÎ/3DOM ZSM-5 catalysts for the simultaneous removal of soot and NO. Journal of Catalysis, 2023, 417, 226-247.	3.1	13
192	Insight into the enhanced catalytic activity and H2O/SO2 resistance of MnFeOx/Defect-Engineered TiO2 for low-temperature selective catalytic reduction of NO with NH3. Applied Surface Science, 2023, 614, 156139.	3.1	7
193	Negative effect of SO2 on mercury removal over catalyst/sorbent from coal-fired flue gas and its coping strategies: A review. Chemical Engineering Journal, 2023, 455, 140751.	6.6	30
194	Poisoning Effects of Chlorine on V2O5–WO3/TiO2 Catalysts for Selective Catalytic Reduction of NOx by NH3. Catalysis Surveys From Asia, 2023, 27, 147-154.	1.0	2
195	A novel MnTi mixed oxide catalyst engineered by metal–organic framework precursor for enhancing NO _x removal performance. Applied Organometallic Chemistry, 2023, 37, .	1.7	1
196	Close-Contact Oxygen Vacancies Synthesized by FSP Promote the Supplement of Active Oxygen Species To Improve the Catalytic Combustion Performance of Toluene. Langmuir, 2023, 39, 1093-1102.	1.6	2
197	Promoting catalytic performance by balancing acid and redox sites on Mn3O4–Mn2P2O7/TiO2 for selective catalytic reduction of NO by NH3 at low temperature. Molecular Catalysis, 2023, 536, 112913.	1.0	1
198	V-Cu bimetallic oxide supported catalysts for synergistic removal of toluene and NOx from coal-fired flue gas: The crucial role of support. Chemical Engineering Journal, 2023, 458, 141443.	6.6	12

#	Article	IF	CITATIONS
199	Microwave-assisted synthesis of bimetallic NiCo-MOF-74 with enhanced open metal site for efficient CO2 capture. , 2022, 1, 253-266.		2
201	Effect of samarium on the N2 selectivity of SmxMn0.3â [~] 'xTi catalysts during selective catalytic reduction of NOx with NH3. International Journal of Minerals, Metallurgy and Materials, 2023, 30, 642-652.	2.4	1
202	Promoter not inhibitor: The antidotal effects of arsenic on lead-poisoning V2O5â [~] WO3/TiO2 catalyst for selective catalytic reduction of NO with NH3. Journal of Cleaner Production, 2023, 397, 136621.	4.6	3
203	Hierarchical Pt/NiCo2O4 nanosheets decorated carbon nanofibers for room-temperature catalytic formaldehyde oxidation. Applied Surface Science, 2023, 623, 157012.	3.1	3
204	Optimized local geometry and electronic structure of MoO3/CeO2 catalyst by adding copper cations for boosted nitrogen oxide reduction performance. Applied Catalysis B: Environmental, 2023, 332, 122742.	10.8	5
205	Cu(Mn)MgAl mixed oxides with enhanced performance for simultaneous removal of NOx and toluene: Insight into the better collaboration of CuO and MnOx via layered double hydroxides (LDHs) precursor template. Chemical Engineering Journal, 2023, 462, 142150.	6.6	15
206	Improved activity and significant SO2 tolerance of Sb–Pd–V oxides on N-doped TiO2 for CB/NO synergistic degradation. Chemosphere, 2023, 329, 138613.	4.2	2
207	CeO ₂ -based oxygen storage capacity materials in environmental and energy catalysis for carbon neutrality: extended application and key catalytic properties. Catalysis Reviews - Science and Engineering, 0, , 1-84.	5.7	26
208	Prominent difference in the deactivation rate and mechanism of V2O5/TiO2 under H2S or SO2 during selective catalytic reduction of NOx with NH3. Applied Catalysis B: Environmental, 2023, 328, 122529.	10.8	11
209	Catalytic pyrolysis of corncob with Ni/CaO catalysts for hydrogen-rich gas: Synthesis modes and catalyst/biomass ratios. Journal of Industrial and Engineering Chemistry, 2023, 123, 51-61.	2.9	5
210	Tailoring valence state of V in V-Mo atomically dispersed ensemble enables exceptional NH4HSO4 poisoning resistance for NH3-SCR reaction. Chemical Engineering Journal, 2023, 464, 142540.	6.6	11
211	Revealing the Excellent Low-Temperature Activity of the Fe _{1–<i>x</i>} Ce _{<i>x</i>} O _{î´} -S Catalyst for NH ₃ -SCR: Improvement of the Lattice Oxygen Mobility. ACS Applied Materials & Interfaces, 2023, 15, 17834-17847.	4.0	13
212	The Contradictory Impact of Sulfation on a CeO _{<i>x</i>} /TiO ₂ NH ₃ -SCR Catalyst: A Combined Experimental and DFT Study. Energy & amp; Fuels, 2023, 37, 6674-6682.	2.5	5
213	Low-temperature deep oxidation of N, N-dimethylformamide (DMF) over CeCu binary oxides. Catalysis Science and Technology, 0, , .	2.1	0
214	Promoting mechanism of CuO on catalytic performance of CeFe catalyst for simultaneous removal of NO and CO. Fuel, 2023, 347, 128435.	3.4	9
244	Construction of cerium-based oxide catalysts with abundant defects/vacancies and their application to catalytic elimination of air pollutants. Journal of Materials Chemistry A, 2023, 11, 19210-19243.	5.2	1