Photocatalytic hydrogen production using metal doped

Applied Catalysis B: Environmental

244, 1021-1064

DOI: 10.1016/j.apcatb.2018.11.080

Citation Report

#	Article	IF	CITATIONS
1	Indium-Doped TiO ₂ Photocatalysts with High-Temperature Anatase Stability. Journal of Physical Chemistry C, 2019, 123, 21083-21096.	1.5	69
2	Optical properties of TiO2 thin films deposited by DC sputtering and their photocatalytic performance in photoinduced process. International Journal of Hydrogen Energy, 2019, 44, 20017-20028.	3 . 8	22
3	Simultaneous reduction of Cr (VI) and degradation of azo dyes by F-Fe-codoped TiO ₂ /SiO ₂ photocatalysts under visible and solar irradiation. Canadian Journal of Chemistry, 2019, 97, 659-671.	0.6	7
4	Photocatalytic Degradation of Pharmaceuticals Carbamazepine, Diclofenac, and Sulfamethoxazole by Semiconductor and Carbon Materials: A Review. Molecules, 2019, 24, 3702.	1.7	92
5	Hydrogen Photo-Production from Glycerol Using Nickel-Doped TiO2 Catalysts: Effect of Catalyst Pre-Treatment. Energies, 2019, 12, 3351.	1.6	13
6	Synthesis of Bi2FexNbO7 films applied as a catalyst for hydrogen production using visible-light photo-electrolysis. IOP Conference Series: Materials Science and Engineering, 2019, 659, 012081.	0.3	3
7	Ultrathin Twoâ€Dimensional Semiconductors for Photocatalysis in Energy and Environment Applications. ChemCatChem, 2019, 11, 6147-6165.	1.8	55
8	Preparation of TiO2 and Fe-TiO2 with an Impinging Stream-Rotating Packed Bed by the Precipitation Method for the Photodegradation of Gaseous Toluene. Nanomaterials, 2019, 9, 1173.	1.9	20
9	Construction of CoP/B doped g-C3N4 nanodots/g-C3N4 nanosheets ternary catalysts for enhanced photocatalytic hydrogen production performance. Applied Surface Science, 2019, 496, 143738.	3.1	44
10	Toward the Green Production of H ₂ : Binary Pt–Ru Promoted Nb-TiO ₂ Based Photocatalysts. ACS Sustainable Chemistry and Engineering, 2019, 7, 15671-15683.	3.2	17
11	Nanostructured heterogeneous photo-catalysts for hydrogen production and water splitting: A comprehensive insight. Applied Materials Today, 2019, 17, 159-182.	2.3	41
12	The Role of Fluorine in F-La/TiO2 Photocatalysts on Photocatalytic Decomposition of Methanol-Water Solution. Materials, 2019, 12, 2867.	1.3	12
13	Photocatalytic Approaches for Hydrogen Production via Formic Acid Decomposition. Topics in Current Chemistry, 2019, 377, 27.	3.0	17
14	Ternary photocatalyst of atomic-scale Pt coupled with MoS2 co-loaded on TiO2 surface for highly efficient degradation of gaseous toluene. Applied Catalysis B: Environmental, 2019, 256, 117877.	10.8	56
15	2D Nanomaterials for Photocatalytic Hydrogen Production. ACS Energy Letters, 2019, 4, 1687-1709.	8.8	375
16	Effect of thickness and cracking phenomena on the photocatalytic performances of Ti/TiO2 photoanodes produced by dip coating. Materials Chemistry and Physics, 2019, 234, 1-8.	2.0	4
17	Hydrogen thermo-photo production using Ru/TiO2: Heat and light synergistic effects. Applied Catalysis B: Environmental, 2019, 256, 117790.	10.8	44
18	Exploring improvement of photocatalytic and catalytic performance in Nd-doped BiYO3 nanotube systems. Inorganic Chemistry Communication, 2019, 106, 151-157.	1.8	10

#	Article	IF	CITATIONS
19	Next-Generation Multifunctional Carbon–Metal Nanohybrids for Energy and Environmental Applications. Environmental Science &	4.6	109
20	Red phosphorus decorated and doped TiO2 nanofibers for efficient photocatalytic hydrogen evolution from pure water. Applied Catalysis B: Environmental, 2019, 255, 117764.	10.8	151
21	Deposition of platinum on boron-doped TiO ₂ /Ti nanotube arrays as an efficient and stable photocatalyst for hydrogen generation from water splitting. RSC Advances, 2019, 9, 11443-11450.	1.7	7
22	Surface modification of titanium oxide as efficient support of metal nanoparticles for hydrogen production via water splitting. Materials Chemistry and Physics, 2019, 232, 331-338.	2.0	9
23	Efficient H2 production by photocatalytic water splitting under UV or solar light over variously modified TiO2-based catalysts. International Journal of Hydrogen Energy, 2019, 44, 14796-14807.	3.8	38
24	Photocatalytic Hydrogen Production: Role of Sacrificial Reagents on the Activity of Oxide, Carbon, and Sulfide Catalysts. Catalysts, 2019, 9, 276.	1.6	214
25	Effect of TiO2 nanoshape on the photoproduction of hydrogen from water-ethanol mixtures over Au3Cu/TiO2 prepared with preformed Au-Cu alloy nanoparticles. Applied Catalysis B: Environmental, 2019, 248, 504-514.	10.8	25
26	Fast microwaveâ€assisted hydrothermal synthesis of TiNb 2 O 7 nanoparticles. International Journal of Ceramic Engineering & Science, 2019, 1, 235-240.	0.5	6
27	Photochemical Thermodynamic Efficiency Factors (PTEFs) for Hydrogen Production Using Different TiO ₂ Photocatalysts. Industrial & Engineering Chemistry Research, 2019, 58, 22225-22235.	1.8	8
28	Hydrogen Production from Aqueous Methanol Solutions Using Ti–Zr Mixed Oxides as Photocatalysts under UV Irradiation. Catalysts, 2019, 9, 938.	1.6	12
29	Synthesis of Plasmonic Photocatalysts for Water Splitting. Catalysts, 2019, 9, 982.	1.6	23
30	Facile and Large-scale Synthesis of Defective Black TiO2â^'x(B) Nanosheets for Efficient Visible-light-driven Photocatalytic Hydrogen Evolution. Catalysts, 2019, 9, 1048.	1.6	19
31	Recent advances in earth-abundant photocatalyst materials for solar H2 production. Advanced Powder Technology, 2020, 31, 11-28.	2.0	64
32	A highly active three-dimensional Z-scheme ZnO/Au/g-C3N4 photocathode for efficient photoelectrochemical water splitting. Applied Catalysis B: Environmental, 2020, 263, 118180.	10.8	126
33	Rapid detection of low concentration CO using Pt-loaded ZnO nanosheets. Journal of Hazardous Materials, 2020, 381, 120944.	6.5	98
34	Crystal facets engineering and rGO hybridizing for synergistic enhancement of photocatalytic activity of nickel disulfide. Journal of Hazardous Materials, 2020, 384, 121402.	6.5	11
35	Synthesis and characterization of visible light driven Nâ€"Feâ€codoped TiO ₂ /SiO ₂ for simultaneous photoremoval of Cr (VI) and azo dyes in a novel fixed bed continuous flow photoreactor. Canadian Journal of Chemical Engineering, 2020, 98, 705-716.	0.9	11
36	Fabrication and photocatalytic behavior of titanium oxide–gold nanoparticles composite ultrathin films prepared using surface sol–gel process. Journal of Sol-Gel Science and Technology, 2020, 93, 563-569.	1.1	5

#	ARTICLE	IF	Citations
37	One-step molten-salt synthesis of anatase/rutile bi-phase TiO2@MoS2 hierarchical photocatalysts for enhanced solar-driven hydrogen generation. Applied Surface Science, 2020, 507, 145072.	3.1	28
38	Simultaneous Removal of Cu(II) and Cr(VI) Ions from Wastewater by Photoreduction with TiO2–ZrO2. Journal of Water Process Engineering, 2020, 33, 101052.	2.6	25
39	Hydrogen photogeneration using ternary CuGaS2-TiO2-Pt nanocomposites. International Journal of Hydrogen Energy, 2020, 45, 1510-1520.	3.8	24
40	Enhanced removal of sulfamethoxazole by a novel composite of TiO2 nanocrystals in situ wrapped-Bi2O4 microrods under simulated solar irradiation. Chemical Engineering Journal, 2020, 384, 123278.	6.6	62
41	Role of molecular oxygen on the synthesis of Ni(OH)2/TiO2 photocatalysts and its effect on solar hydrogen production activity. International Journal of Hydrogen Energy, 2020, 45, 7627-7640.	3.8	20
42	Physicochemical properties of La3+-doped TiO2 monolith prepared by sol–gel approach: application to adsorption and solar photodegradation of ibuprofen. Journal of Materials Science: Materials in Electronics, 2020, 31, 1072-1083.	1.1	7
43	Moâ€Doped ZnIn ₂ S ₄ Flowerâ€Like Hollow Microspheres for Improved Visible Lightâ€Driven Hydrogen Evolution. Solar Rrl, 2020, 4, 1900483.	3.1	76
44	Morphological effect of 1D/1D In2O3/TiO2 NRs/NWs heterojunction photo-embedded with Cu-NPs for enhanced photocatalytic H2 evolution under visible light. Applied Surface Science, 2020, 506, 145034.	3.1	59
45	Surface Aspects of Semiconductor Photochemistry. Surfaces, 2020, 3, 467-472.	1.0	1
46	g-C3N4/carbon dot-based nanocomposites serve as efficacious photocatalysts for environmental purification and energy generation: A review. Journal of Cleaner Production, 2020, 276, 124319.	4.6	379
47	Photoinduced Deposition of Platinum from (Bu ₄ N) ₂ [Pt(NO ₃) ₆] for a Low Pt-Loading Pt/TiO ₂ Hydrogen Photogeneration Catalyst. ACS Applied Materials & Samp; Interfaces, 2020, 12, 48631-48641.	4.0	24
48	Exploring the effect of neodymium doped titanium dioxide nanoparticles in dye-sensitized solar cell. Materials Today: Proceedings, 2020, 50, 2764-2764.	0.9	1
49	Recent Progress in the Abatement of Hazardous Pollutants Using Photocatalytic TiO2-Based Building Materials. Nanomaterials, 2020, 10, 1854.	1.9	44
50	Facile synthesis and electrochemical hydrogen storage of bentonite/TiO2/Au nanocomposite. International Journal of Hydrogen Energy, 2020, 45, 33771-33788.	3.8	32
51	A review and recent advances in solar-to-hydrogen energy conversion based on photocatalytic water splitting over doped-TiO2 nanoparticles. Solar Energy, 2020, 211, 522-546.	2.9	185
52	<i>Operando</i> X-ray Absorption Spectroscopy Investigation of Photocatalytic Hydrogen Evolution over Ultradispersed Pt/TiO ₂ Catalysts. ACS Catalysis, 2020, 10, 12696-12705.	5.5	37
53	Photocatalytic CO2 Reduction and Electrocatalytic H2 Evolution over Pt(0,II,IV)-Loaded Oxidized Ti Sheets. Nanomaterials, 2020, 10, 1909.	1.9	9
54	Sulfonated polyindole coated magnetic zincoxysulfide (Ni@ZnO0.6S0.4@SPID) core/shell nanocatalyst for simultaneous photocatalytic H2 production and BPA degradation. Environmental Nanotechnology, Monitoring and Management, 2020, 14, 100359.	1.7	2

#	ARTICLE	IF	CITATIONS
55	CulnS ₂ nanoparticles embedded in mesoporous TiO ₂ nanofibers for boosted photocatalytic hydrogen production. Journal of Materials Chemistry C, 2020, 8, 11001-11007.	2.7	29
56	Atmospheric Pressure Plasma Deposition of TiO2: A Review. Materials, 2020, 13, 2931.	1.3	29
57	Photocatalytic oxidation process for treatment of gas phase benzene using Ti3+ self-doped TiO2 microsphere with sea urchin-like structure. Chemical Engineering Journal, 2020, 402, 126220.	6.6	41
58	Mesoporous Nitrogen Doped Zinc Oxide Nanosheets with Enhanced Photocatalytic Activity. International Journal of Electrochemical Science, 2020, 15, 8459-8470.	0.5	4
59	Visible-Light Acceleration of H ₂ Evolution from Aqueous Solutions of Inorganic Hydrides Catalyzed by Gold-Transition-Metal Nanoalloys. ACS Applied Materials & Samp; Interfaces, 2020, 12, 53816-53826.	4.0	26
60	Defective Titanium Dioxide-supported Ultrasmall Au Clusters for Photocatalytic Hydrogen Production. Frontiers in Physics, 2020, 8, .	1.0	2
61	Influence of N sources on the photocatalytic activity of N-doped TiO2. Arabian Journal of Chemistry, 2020, 13, 7637-7651.	2.3	25
62	A straightforward method to prepare supported Au clusters by mechanochemistry and its application in photocatalysis. Applied Materials Today, 2020, 21, 100873.	2.3	7
63	On the UV–Visible Light Synergetic Mechanisms in Au/TiO ₂ Hybrid Model Nanostructures Achieving Photoreduction of Water. Journal of Physical Chemistry C, 2020, 124, 25421-25430.	1.5	16
64	A Ti-MOF Decorated With a Pt Nanoparticle Cocatalyst for Efficient Photocatalytic H2 Evolution: A Theoretical Study. Frontiers in Chemistry, 2020, 8, 660.	1.8	8
65	A high performance and low cost poly(dibenzothiophene- <i>S</i> , <i>S</i> -dioxide)@TiO ₂ composite with hydrogen evolution rate up to 51.5 mmol h ^{\hat{a}1} g ^{\hat{a}1} . Journal of Materials Chemistry A, 2020, 8, 18292-18301.	5.2	23
66	Photocatalytic active silver organic framework: Ag(I)â€MOF and its hybrids with silver cyanamide. Applied Organometallic Chemistry, 2020, 34, e5972.	1.7	10
67	Fe-doped zirconia nanoparticles with highly negative conduction band potential for enhancing visible light photocatalytic performance. Applied Surface Science, 2020, 530, 147291.	3.1	18
68	Heterostructured g-CN/TiO2 Photocatalysts Prepared by Thermolysis of g-CN/MIL-125(Ti) Composites for Efficient Pollutant Degradation and Hydrogen Production. Nanomaterials, 2020, 10, 1387.	1.9	27
69	Hydrogen production upon UV-light irradiation of Cu/TiO2 photocatalyst in the presence of alkanol-amines. International Journal of Hydrogen Energy, 2020, 45, 26701-26715.	3.8	16
70	Effective and magnetically recoverable TiO2/Fe3O4/AgI nanocomposite for degradation dye pollutants under visible light illumination. Journal of Materials Science: Materials in Electronics, 2020, 31, 15546-15557.	1.1	1
71	Zero-degree photochemical synthesis of highly dispersed Pt/TiO2 for enhanced photocatalytic hydrogen generation. Journal of Alloys and Compounds, 2020, 849, 156634.	2.8	16
72	Platinum Atomic Clusters Embedded in Defects of Anatase/Graphene for Efficient Electro- and Photocatalytic Hydrogen Evolution. ACS Applied Materials & Samp; Interfaces, 2020, 12, 40204-40212.	4.0	27

#	Article	IF	Citations
73	Enhancing the Photocatalytic Activity of TiO ₂ Catalysts. Advanced Sustainable Systems, 2020, 4, 2000197.	2.7	69
74	Hydrogen production through photoreforming processes over Cu2O/TiO2 composite materials: A mini-review. International Journal of Hydrogen Energy, 2020, 45, 28531-28552.	3.8	51
75	Effect of Pd and Au on Hydrogen Abstraction and C–C Cleavage in Photoconversion of Glycerol: Beyond Charge Separation. Journal of Physical Chemistry C, 2020, 124, 20320-20327.	1.5	6
76	Photocatalytic Generation of Hydrogen from Organic Substances Using Iron-Containing Composites under the Conditions of UV and Visible Irradiation. Russian Journal of Applied Chemistry, 2020, 93, 960-966.	0.1	0
77	Recent Developments of TiO2-Based Photocatalysis in the Hydrogen Evolution and Photodegradation: A Review. Nanomaterials, 2020, 10, 1790.	1.9	121
78	Efficient photocatalysts of a tetraphenylporphyrin/P25 hybrid for visible-light photoreduction of CO ₂ . New Journal of Chemistry, 2020, 44, 17229-17235.	1.4	2
79	Optical Properties and Applications of Plasmonicâ€Metal Nanoparticles. Advanced Functional Materials, 2020, 30, 2005400.	7.8	265
80	A MATLAB-Based Application for Modeling and Simulation of Solar Slurry Photocatalytic Reactors for Environmental Applications. Water (Switzerland), 2020, 12, 2196.	1.2	11
81	An Accurate Growth Mechanism and Photocatalytic Degradation Rhodamine B of Crystalline Nb2O5 Nanotube Arrays. Catalysts, 2020, 10, 1480.	1.6	1
82	Photocatalytic Reactivity of Carbon–Nitrogen–Sulfur-Doped TiO2 Upconversion Phosphor Composites. Catalysts, 2020, 10, 1188.	1.6	4
83	Synthesis of Ni- and N-Doped Titania Nanotube Arrays for Photocatalytic Hydrogen Production from Glycerol–Water Solutions. Catalysts, 2020, 10, 1234.	1.6	9
84	Crafting carbon sphere-titania core–shell interfacial structure to achieve enhanced visible light photocatalysis. Applied Surface Science, 2020, 534, 147566.	3.1	16
85	New insights into the mechanism of photocatalytic hydrogen evolution from aqueous solutions of saccharides over CdS-based photocatalysts under visible light. International Journal of Hydrogen Energy, 2020, 45, 30165-30177.	3.8	25
86	Thermoâ€Photocatalytic Methanol Reforming for Hydrogen Production over a CuPdâ^'TiO ₂ Catalyst. ChemPhotoChem, 2020, 4, 630-637.	1.5	23
87	TiO2/BiYO3 composites for enhanced photocatalytic hydrogen production. Journal of Alloys and Compounds, 2020, 836, 155428.	2.8	42
88	Experimental and numerical study on photocatalytic activity of the ZnO nanorods/CuO composite film. Scientific Reports, 2020, 10, 7792.	1.6	14
89	A dual surface inorganic molecularly imprinted Bi2WO6-CuO/Ag2O heterostructure with enhanced activity-selectivity towards the photocatalytic degradation of target contaminantst. Photochemical and Photobiological Sciences, 2020, 19, 943-955.	1.6	25
90	Boosting Pt/TiO2 hydrogen photoproduction through Zr doping of the anatase structure: A spectroscopic and mechanistic study. Chemical Engineering Journal, 2020, 398, 125665.	6.6	18

#	Article	IF	CITATIONS
91	Nanosized Titania-Nickel mixed oxide for visible light photocatalytic activity. Journal of Molecular Liquids, 2020, 311, 113328.	2.3	12
92	Catalytic Metal-Accelerated Crystallization of High-Performance Solution-Processed Earth-Abundant Metal Oxide Semiconductors. ACS Applied Materials & Samp; Interfaces, 2020, 12, 25000-25010.	4.0	4
93	Recent development in band engineering of binary semiconductor materials for solar driven photocatalytic hydrogen production. International Journal of Hydrogen Energy, 2020, 45, 15985-16038.	3.8	187
94	Electronic and optical properties of mono and co-doped anatase TiO2: First principles calculations. Materials Chemistry and Physics, 2020, 252, 123285.	2.0	19
95	Highly Defective Dark Nano Titanium Dioxide: Preparation via Pulsed Laser Ablation and Application. Materials, 2020, 13, 2054.	1.3	27
96	Mo-ion doping evoked visible light response in TiO2 nanocrystals for highly-efficient removal of benzene. Chemical Engineering Journal, 2020, 397, 125444.	6.6	22
97	Combined Adsorption/Photocatalytic dye removal by copper-titania-fly ash composite. Surfaces and Interfaces, 2020, 19, 100534.	1.5	18
98	Comprehensive Study on the Effect of Preparation Conditions on the Activity of Sulfated Silica–Titania for Green Biofuel Production. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30, 3999-4013.	1.9	6
99	Photocatalytic hydrogen generation by WO3 in synergism with hematite-anatase heterojunction. International Journal of Hydrogen Energy, 2020, 45, 18946-18960.	3.8	16
100	Heterostructured thin LaFeO3/g-C3N4 films for efficient photoelectrochemical hydrogen evolution. International Journal of Hydrogen Energy, 2020, 45, 17468-17479.	3.8	42
101	Carbon doped ultra-small TiO2 coated on carbon cloth for efficient photocatalytic toluene degradation under visible LED light irradiation. Applied Surface Science, 2020, 527, 146780.	3.1	27
102	Self-reduction derived nickel nanoparticles in CdS/Ni(OH)2 heterostructure for enhanced photocatalytic hydrogen evolution. Journal of Chemical Physics, 2020, 152, 214701.	1.2	13
103	Promoting H2 photoproduction of TiO2-based materials by surface decoration with Pt nanoparticles and SnS2 nanoplatelets. Applied Catalysis B: Environmental, 2020, 277, 119246.	10.8	35
104	Boosting the photocatalytic ability of hybrid biVO4-TiO2 heterostructure nanocomposites for H2 production by reduced graphene oxide (rGO). Journal of the Taiwan Institute of Chemical Engineers, 2020, 111, 325-336.	2.7	27
105	Green fabrication of chitosan/tragacanth gum bionanocomposite films having TiO2@Ag hybrid for bioactivity and antibacterial applications. International Journal of Biological Macromolecules, 2020, 162, 512-522.	3.6	28
106	Mesoporous TiO2 mixed crystals for photocatalytic pure water splitting. Science China Materials, 2020, 63, 758-768.	3.5	11
107	Inâ€situ Selfâ€transformation Synthesis of Nâ€doped Carbon Coating Paragenetic Anatase/Rutile Heterostructure with Enhanced Photocatalytic CO ₂ Reduction Activity. ChemCatChem, 2020, 12, 3274-3284.	1.8	14
108	Effect of Morphology on the Photoelectrochemical Activity of TiO2 Self-Organized Nanotube Arrays. Catalysts, 2020, 10, 279.	1.6	12

#	Article	IF	CITATIONS
109	Constructing NiFe-LDH wrapped Cu2O nanocube heterostructure photocatalysts for enhanced photocatalytic dye degradation and CO2 reduction via Z-scheme mechanism. Journal of Alloys and Compounds, 2020, 831, 154723.	2.8	73
110	On the interface crystallography of heat induced self-welded TiO ₂ nanofibers grown by oriented attachment. CrystEngComm, 2020, 22, 4602-4610.	1.3	0
111	How to make use of methanol in green catalytic hydrogen production?. Nano Select, 2020, 1, 12-29.	1.9	60
112	Uniformly assembling n-type metal oxide nanostructures (TiO2 nanoparticles and SnO2 nanowires) onto P doped g-C3N4 nanosheets for efficient photocatalytic water splitting. Applied Catalysis B: Environmental, 2020, 278, 119301.	10.8	55
113	Ru/CdS Quantum Dots Templated on Clay Nanotubes as Visibleâ€Lightâ€Active Photocatalysts: Optimization of S/Cd Ratio and Ru Content. Chemistry - A European Journal, 2020, 26, 13085-13092.	1.7	48
114	Oxygen-Vacancy-Induced CeO2/Co4N heterostructures toward enhanced pH-Universal hydrogen evolution reactions. Applied Catalysis B: Environmental, 2020, 277, 119282.	10.8	166
115	Recent progress in structural development and band engineering of perovskites materials for photocatalytic solar hydrogen production: A review. International Journal of Hydrogen Energy, 2020, 45, 19078-19111.	3.8	76
116	Engineering nanostructures of CuO-based photocatalysts for water treatment: Current progress and future challenges. Arabian Journal of Chemistry, 2020, 13, 8424-8457.	2.3	177
117	An Operando X-ray Absorption Spectroscopy Study of a NiCuâ^'TiO ₂ Photocatalyst for H ₂ Evolution. ACS Catalysis, 2020, 10, 8293-8302.	5.5	46
118	Facile and scalable synthesis of Ti6Mn2 oxo-cluster nanocrystals with flower-like morphology and excellent photocatalytic properties. Dalton Transactions, 2020, 49, 2444-2451.	1.6	7
119	Pt Modified TiO ₂ _– _{<i>x</i>} /C Composites with Metalâ€organic Frameworks as Precursors for Photodegradation of Organic Dye. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2020, 646, 220-227.	0.6	2
120	Hollow graphene with apparent potential difference to boost charge directional transfer for photocatalytic H2 evolution. Applied Catalysis B: Environmental, 2020, 268, 118742.	10.8	23
121	Ce and Er Co-doped TiO2 for rapid bacteria- killing using visible light. Bioactive Materials, 2020, 5, 201-209.	8.6	61
122	Mo doped TiO ₂ : impact on oxygen vacancies, anatase phase stability and photocatalytic activity. JPhys Materials, 2020, 3, 025008.	1.8	42
123	Photodeposition of Au Nanoclusters for Enhanced Photocatalytic Dye Degradation over TiO ₂ Thin Film. ACS Applied Materials & Interfaces, 2020, 12, 14983-14992.	4.0	75
124	Direct conversion of CO2 to aromatics with high yield via a modified Fischer-Tropsch synthesis pathway. Applied Catalysis B: Environmental, 2020, 269, 118792.	10.8	106
125	Enhanced photocatalytic activity under visible light by the synergistic effects of plasmonics and Ti3+-doping at the Ag/TiO2- heterojunction. Ceramics International, 2020, 46, 10667-10677.	2.3	51
126	Multi-interfacial plasmon coupling in multigap (Au/AgAu)@CdS core–shell hybrids for efficient photocatalytic hydrogen generation. Nanoscale, 2020, 12, 4383-4392.	2.8	41

#	ARTICLE	IF	Citations
127	Photodegradation of 4-nitrophenol over B-doped TiO2 nanostructure: effect of dopant concentration, kinetics, and mechanism. Environmental Science and Pollution Research, 2020, 27, 10966-10980.	2.7	52
128	Piezopotential augmented photo- and photoelectro-catalysis with a built-in electric field. Chinese Journal of Catalysis, 2020, 41, 534-549.	6.9	75
129	A soft-chemistry assisted strong metal–support interaction on a designed plasmonic core–shell photocatalyst for enhanced photocatalytic hydrogen production. Nanoscale, 2020, 12, 7011-7023.	2.8	23
130	Enhanced Photogenerated Electron Transfer in a Semiartificial Photosynthesis System Based on Highly Dispersed Titanium Oxide Nanoparticles. Journal of Physical Chemistry Letters, 2020, 11, 1822-1827.	2.1	24
131	Photocatalysis and photoelectrochemical glucose oxidation on Bi2WO6: Conditions for the concomitant H2 production. Renewable Energy, 2020, 152, 974-983.	4.3	36
132	Ni-Doped Titanium Dioxide Films Obtained by Plasma Electrolytic Oxidation in Refrigerated Electrolytes. Surfaces, 2020, 3, 168-181.	1.0	7
133	Novel synergistic combination of Cu/S co-doped TiO2 nanoparticles incorporated as photoanode in dye sensitized solar cell. Solar Energy, 2020, 203, 296-303.	2.9	48
134	Innovative synthesis of graphene/Pd-doped TiO2 nanocomposite by combination of sonochemical and freeze-drying methods with enhanced visible-light photocatalytic activity. Applied Nanoscience (Switzerland), 2020, 10, 1581-1589.	1.6	4
135	High response methane sensor based on Au-modified hierarchical porous nanosheets-assembled ZnO microspheres. Materials Chemistry and Physics, 2020, 250, 123027.	2.0	38
136	Overview on recent developments on hydrogen energy: Production, catalysis, and sustainability. , 2020, , 3-32.		5
137	Noncovalent interaction stabilizes the 2,4-Dinitrophenylhydrazone Derivatives over g-C3N4 surface to enhance optical properties: Synthesis, characterization, and DFT investigation. Journal of Molecular Structure, 2020, 1214, 128192.	1.8	12
138	Hydrogen production from aqueous triethanolamine solution using Eosin Y-sensitized ZnO photocatalyst doped with platinum. International Journal of Hydrogen Energy, 2020, 45, 11097-11107.	3.8	22
139	Fabrication and characterization of transparent Cr-decorated TiO2 nanoporous electrode for enhanced photo-electrocatalytic performance. Vacuum, 2020, 177, 109375.	1.6	7
140	Visible-light Bi-Fe-Nb-O photoanodes for solar-light driven hydrogen production. Environmental Technology (United Kingdom), 2021, 42, 4355-4362.	1.2	2
141	Atomic Layer Deposition of ZnO on TiO2 Nanofibers for Boosted Photocatalytic Hydrogen Production. Catalysis Letters, 2021, 151, 78-85.	1.4	3
142	Enhanced photocatalysis of TiO2 by aluminum plasmonic. Catalysis Today, 2021, 376, 162-167.	2.2	11
143	Progress and challenges in photocatalytic ammonia synthesis. Materials Advances, 2021, 2, 564-581.	2.6	32
144	Novel Z-Scheme/Type-II CdS@ZnO/g-C3N4 ternary nanocomposites for the durable photodegradation of organics: Kinetic and mechanistic insights. Chemosphere, 2021, 277, 128730.	4.2	58

#	Article	IF	Citations
145	Molecular design of dye-TiO2 assemblies for green light-induced photocatalytic selective aerobic oxidation of amines. Journal of Colloid and Interface Science, 2021, 581, 826-835.	5.0	17
146	Enhancing ORR/OER active sites through lattice distortion of Fe-enriched FeNi3 intermetallic nanoparticles doped N-doped carbon for high-performance rechargeable Zn-air battery. Journal of Colloid and Interface Science, 2021, 582, 977-990.	5.0	99
147	Revealing property-performance relationships for efficient CO2 hydrogenation to higher hydrocarbons over Fe-based catalysts: Statistical analysis of literature data and its experimental validation. Applied Catalysis B: Environmental, 2021, 282, 119554.	10.8	51
148	Fabrication of hierarchical flower-like BiOI/MoS2 heterostructures with highly enhanced visible-light photocatalytic activities. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 610, 125714.	2.3	25
149	Rational Design of Metal Oxideâ€Based Heterostructure for Efficient Photocatalytic and Photoelectrochemical Systems. Advanced Functional Materials, 2021, 31, 2008247.	7.8	77
150	A comprehensive update on antibiotics as an emerging water pollutant and their removal using nano-structured photocatalysts. Journal of Environmental Chemical Engineering, 2021, 9, 104796.	3.3	46
151	Photocatalytic hydrogen production using FeTiO3 concentrates modified by high energy ball milling and the presence of Mg precursors. Topics in Catalysis, 2021, 64, 2-16.	1.3	7
152	Efficient photoelectrocatalytic degradation of tylosin on TiO2 nanotube arrays with tunable phosphorus dopants. Journal of Environmental Chemical Engineering, 2021, 9, 104742.	3.3	23
153	Pd quantum dots loading Ti3+,N co-doped TiO2 nanotube arrays with enhanced photocatalytic hydrogen production and the salt ions effects. Applied Surface Science, 2021, 540, 148239.	3.1	26
154	Advances in designing heterojunction photocatalytic materials. Chinese Journal of Catalysis, 2021, 42, 710-730.	6.9	182
155	Cu nanoclusters incorporated mesoporous TiO2 nanoparticles: An efficient and stable noble metal-free photocatalyst for light driven H2 generation. International Journal of Hydrogen Energy, 2021, 46, 6461-6473.	3.8	24
156	Recent Progress of Transition Metal Phosphides for Photocatalytic Hydrogen Evolution. ChemSusChem, 2021, 14, 539-557.	3.6	76
157	Sustainable engineering of TiO2-based advanced oxidation technologies: From photocatalyst to application devices. Journal of Materials Science and Technology, 2021, 78, 202-222.	5.6	60
158	K, Na and Cl co-doped TiO ₂ nanorod arrays on carbon cloth for efficient photocatalytic degradation of formaldehyde under UV/visible LED irradiation. Catalysis Science and Technology, 2021, 11, 230-238.	2.1	10
159	Progress on the nanoscale spherical TiO ₂ photocatalysts: Mechanisms, synthesis and degradation applications. Nano Select, 2021, 2, 447-467.	1.9	8
160	Recent progress in Bi ₂ WO ₆ â€Based photocatalysts for clean energy and environmental remediation: Competitiveness, challenges, and future perspectives. Nano Select, 2021, 2, 187-215.	1.9	31
161	Triptycene-based discontinuously-conjugated covalent organic polymer photocatalysts for visible-light-driven hydrogen evolution from water. Applied Catalysis B: Environmental, 2021, 285, 119802.	10.8	63
162	Reduced graphene oxide as a solid-state mediator in TiO2/In0.5WO3 S-scheme photocatalyst for hydrogen production. Solar Energy, 2021, 213, 260-270.	2.9	45

#	Article	IF	CITATIONS
163	Towards full-spectrum photocatalysis: Successful approaches and materials. Applied Catalysis A: General, 2021, 610, 117966.	2.2	36
164	Two-dimensional MXene-based and MXene-derived photocatalysts: Recent developments and perspectives. Chemical Engineering Journal, 2021, 409, 128099.	6.6	230
165	Theoretically guiding the construction of a novel Cu ₂ 0@Cu ₉₇ P ₃ @Cu ₃ P heterojunction with a 3D hierarchical structure for efficient photocatalytic hydrogen evolution. Nanoscale, 2021, 13, 1340-1353.	2.8	32
166	Solvothermal preparation and characterization of ordered-mesoporous ZrO2/TiO2 composites for photocatalytic degradation of organic dyes. Ceramics International, 2021, 47, 7632-7641.	2.3	22
167	Synergy of surface fluorine and oxygen vacancy of TiO2 nanosheets for O2 activation in selective photocatalytic organic transformations. Journal of Materials Chemistry C, 2021, 9, 1593-1603.	2.7	6
168	TiO2 nanobelts with ultra-thin mixed C/SiO coating as high-performance photo/photoelectrochemical hydrogen evolution materials. Applied Surface Science, 2021, 537, 147861.	3.1	8
169	Highly promoted hydrogen production enabled by interfacial P N chemical bonds in copper phosphosulfide Z-scheme composite. Applied Catalysis B: Environmental, 2021, 283, 119624.	10.8	45
170	Significantly enhanced photocatalytic activity of TiO2/TiC coatings under visible light. Journal of Solid State Electrochemistry, 2021, 25, 603-609.	1.2	1
171	Ti-based metal–organic frameworks for visible light photocatalysis. , 2021, , 561-573.		0
172	Synchrotron infrared spectroscopic high-throughput screening of multi-composite photocatalyst films for air purification. Catalysis Science and Technology, 2021, 11, 790-794.	2.1	3
173	Emerging applications of nanodiamonds in photocatalysis. Functional Diamond, 2021, 1, 93-109.	1.7	13
174	A visible light active, carbon–nitrogen–sulfur co-doped TiO ₂ /g-C ₃ N ₄ Z-scheme heterojunction as an effective photocatalyst to remove dye pollutants. RSC Advances, 2021, 11, 16747-16754.	1.7	14
175	Engineering cation defect-mediated Z-scheme photocatalysts for a highly efficient and stable photocatalytic hydrogen production. Journal of Materials Chemistry A, 2021, 9, 7759-7766.	5.2	54
176	A direct Z-scheme mechanism for selective hydrogenation of aromatic nitro compounds over a hybrid photocatalyst composed of ZnIn ₂ S ₄ and WO ₃ nanorods. New Journal of Chemistry, 2021, 45, 3298-3310.	1.4	9
177	Doped Semiconductor Nanomaterials: Applications in Energy and in the Degradation of Organic Compounds., 2021,, 2179-2202.		0
178	Atomicâ€Level Charge Separation Strategies in Semiconductorâ€Based Photocatalysts. Advanced Materials, 2021, 33, e2005256.	11.1	215
179	Indium sulfide-based photocatalysts for hydrogen production and water cleaning: a review. Environmental Chemistry Letters, 2021, 19, 1065-1095.	8.3	83
180	Effect of anisotropic conductivity of Ag ₂ S-modified $Zn(i>m)=1,5)$ on the photocatalytic properties in solar hydrogen evolution. RSC Advances, 2021, 11, 26908-26914.	1.7	4

#	Article	IF	CITATIONS
181	Rich oxygen vacancies, mesoporous TiO ₂ derived from MIL-125 for highly efficient photocatalytic hydrogen evolution. Chemical Communications, 2021, 57, 9704-9707.	2.2	36
182	Mechanism of surface and interface engineering under diverse dimensional combinations: the construction of efficient nanostructured MXene-based photocatalysts. Catalysis Science and Technology, 2021, 11, 5028-5049.	2.1	11
183	Cation-modified photocatalysts., 2021,, 23-53.		1
184	In situ construction of sulfated TiO2 nanoparticles with TiOSO4 for enhanced photocatalytic hydrogen production. Nanoscale, 2021, 13, 901-911.	2.8	12
185	A critical analysis of modification effects on nanostructured TiO2-based photocatalysts for hydrogen production., 2021,, 541-559.		0
186	Modified titania, A green material for wastewater remediation. , 2021, , 317-331.		0
187	TiO2-based materials for photocatalytic hydrogen production. , 2021, , 211-240.		0
188	Modification of morphology and optic properties of TiO2 as photoreforming catalyst for H2 production from biomass derivatives: a review. IOP Conference Series: Materials Science and Engineering, 2021, 1053, 012055.	0.3	4
189	Bioproduction of CuO and Ag/CuO heterogeneous photocatalysis-photocatalytic dye degradation and biological activities. Applied Nanoscience (Switzerland), 2021, 11, 1411-1425.	1.6	45
190	TiO2 Photocatalysis for the Transformation of Aromatic Water Pollutants into Fuels. Catalysts, 2021, 11, 317.	1.6	34
191	Controllable fabrication of highly visible-light responsive oxygen-rich Ti-based microspheres with the hierarchical surface through a facile and dopant-free hydrothermal route. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 611, 125776.	2.3	0
192	Reaction Condition Effects on the Photocatalytic Production of H ₂ from Ethanol in the Gas Phase over Pt/TiO ₂ . ChemPhotoChem, 2021, 5, 381-389.	1.5	2
193	TiO2-Graphene Quantum Dots Nanocomposites for Photocatalysis in Energy and Biomedical Applications. Catalysts, 2021, 11, 319.	1.6	28
194	Electrochemical Properties and Thin-Film Morphology of Mn-doped TiO2 Thin Layer Prepared by Electrodeposition Technique and Its application as photocatalyst for Rhodamine B degradation. International Journal of Electrochemical Science, 2021, 16, 210340.	0.5	13
195	One-pot synthesis of visible-light-responsive titanium oxide photocatalyst with embedded silver nanoparticles. Journal of Sol-Gel Science and Technology, 2021, 98, 281-287.	1.1	1
196	Intensification of Heterogeneous Photocatalytic Reactions Without Efficiency Losses: The Importance of Surface Catalysis. Catalysis Letters, 2021, 151, 3105-3113.	1.4	18
197	In ₂ O ₃ /In ₂ S ₃ Heterostructures Derived from Inâ€MOFs with Enhanced Visible Light Photocatalytic Performance for CO ₂ Reduction. ChemistrySelect, 2021, 6, 2508-2515.	0.7	10
198	Ferrocene-Functionalized Polyoxo-Titanium Cluster for CO ₂ Photoreduction. ACS Catalysis, 2021, 11, 4510-4519.	5.5	57

#	Article	IF	CITATIONS
199	Visible-light-driven graphene supported Cu/Pd alloy nanoparticle-catalyzed borylation of alkyl bromides and chlorides in air. Journal of Catalysis, 2021, 395, 258-265.	3.1	14
200	Emerging polymeric carbon nitride Z-scheme systems for photocatalysis. Cell Reports Physical Science, 2021, 2, 100355.	2.8	99
201	Enhanced photocatalytic activity and stability of TiO2/graphene oxide composites coatings by electrophoresis deposition. Materials Letters, 2021, 286, 129258.	1.3	14
202	NiO Nanosheets Coupled With CdS Nanorods as 2D/1D Heterojunction for Improved Photocatalytic Hydrogen Evolution. Frontiers in Chemistry, 2021, 9, 655583.	1.8	17
203	Nickel-enhanced electrochemical activities of shape-tailored TiO2{001} nanocrystals for water treatment: A combined experimental and DFT studies. Electrochimica Acta, 2021, 376, 138066.	2.6	7
204	Synthesis of step-scheme In2Se3/CdSe nanocomposites photocatalysts for hydrogen production. Composites Communications, 2021, 24, 100618.	3.3	10
205	Effects of 4d transition metals doping on the photocatalytic activities of anatase <scp>TiO</scp> (101) surface. International Journal of Quantum Chemistry, 2021, 121, e26683.	1.0	6
206	Microemulsion Derived Titania Nanospheres: An Improved Pt Supported Catalyst for Glycerol Aqueous Phase Reforming. Nanomaterials, 2021, 11, 1175.	1.9	8
207	Molecule assembly of heterostructured TiO2@BiOCl via fenton-like reaction for enhanced solar energy conversion. Ceramics International, 2021, 47, 10716-10723.	2.3	12
208	The effect of shape and size of 1D and 0D titanium oxide nanorods in the photocatalytic degradation of red amaranth toxic dye. Nano Structures Nano Objects, 2021, 26, 100738.	1.9	7
209	In2Se3/CdS nanocomposites as high efficiency photocatalysts for hydrogen production under visible light irradiation. International Journal of Hydrogen Energy, 2021, 46, 15539-15549.	3.8	19
210	Hierarchically Porous, Biphasic, and C-Doped TiO ₂ for Solar Photocatalytic Degradation of Dyes and Selective Oxidation of Benzyl Alcohol. ACS Omega, 2021, 6, 12124-12132.	1.6	10
212	Efficient Schottky Junction Construction in Metalâ€Organic Frameworks for Boosting H ₂ Production Activity. Advanced Science, 2021, 8, 2004456.	5.6	11
213	The interfacial charge transfer in triphenylphosphine-based COF/PCN heterojunctions and its promotional effects on photocatalytic hydrogen evolution. International Journal of Hydrogen Energy, 2021, 46, 17666-17676.	3.8	10
214	Synthesis of chemically bound conjugated polymer on TiO2 for a visible-light-driven photocatalyst: Changeable surface wettability. Materials and Design, 2021, 203, 109630.	3.3	13
215	Recent advances in bismuth-based multimetal oxide photocatalysts for hydrogen production from water splitting: Competitiveness, challenges, and future perspectives. Materials Reports Energy, 2021, 1, 100019.	1.7	17
216	Editorial: Modeling and Applications of Optoelectronic Devices for Access Networks. Frontiers in Physics, 2021, 9, .	1.0	4
217	Control of surface area and conductivity of niobium-added titanium oxides as durable supports for cathode of polymer electrolyte fuel cells. Materials and Design, 2021, 203, 109623.	3.3	7

#	Article	IF	Citations
218	Solar photocatalysts based on titanium dioxide nanotubes for hydrogen evolution from aqueous solutions of ethanol. International Journal of Hydrogen Energy, 2021, 46, 16917-16924.	3.8	20
219	Formation of a Small Electron Polaron in Tantalum Oxynitride: Origin of Low Mobility. Journal of Physical Chemistry C, 2021, 125, 11548-11554.	1.5	16
220	Graphene coupled TiO2 photocatalysts for environmental applications: A review. Chemosphere, 2021, 271, 129506.	4.2	132
221	Ni/NiO hybrid nanostructure supported on biomass carbon for visible-light photocatalytic hydrogen evolution. Journal of Materials Science, 2021, 56, 12775-12788.	1.7	10
222	A highly efficient photocatalyst based on layered g-C3N4/SnS2 composites. Current Nanoscience, 2021, 17, .	0.7	0
223	Solar-driven low-temperature reforming of methanol into hydrogen via synergetic photo- and thermocatalysis. Nano Energy, 2021, 84, 105953.	8.2	28
224	Assembly of a Titanium-Oxo Cluster and a Bismuth Iodide Cluster, a Single-Source Precursor of a p–n-Type Photocatalyst. Inorganic Chemistry, 2021, 60, 9589-9597.	1.9	15
225	A review of clay based photocatalysts: Role of phyllosilicate mineral in interfacial assembly, microstructure control and performance regulation. Chemosphere, 2021, 273, 129723.	4.2	57
226	Crystal phase-dependent generation of mobile OH radicals on TiO2: Revisiting the photocatalytic oxidation mechanism of anatase and rutile. Applied Catalysis B: Environmental, 2021, 286, 119905.	10.8	61
227	In situ growing graphene on g-C3N4 with barrier-free interface and polarization electric field for strongly boosting solar energy conversion into H2 energy. Applied Catalysis B: Environmental, 2021, 287, 119986.	10.8	38
228	Improved photocatalytic activity of SnO2-TiO2 nanocomposite thin films prepared by low-temperature sol-gel method. Catalysis Today, 2022, 397-399, 540-549.	2.2	9
229	Surface modification of BiOBr/TiO2 by reduced AgBr for solar-driven PAHs degradation: Mechanism insight and application assessment. Journal of Hazardous Materials, 2021, 412, 125221.	6.5	58
230	Experimental and theoretical studies of hydrogen generation by binary metal (oxide)-graphene oxide composite materials. International Journal of Hydrogen Energy, 2021, 46, 19802-19813.	3.8	5
231	A gas sensor based on Ag-modified ZnO flower-like microspheres: Temperature-modulated dual selectivity to CO and CH4. Surfaces and Interfaces, 2021, 24, 101110.	1.5	37
232	TiOF2/g-C3N4 composite for visible-light driven photocatalysis. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 618, 126471.	2.3	22
233	A highly photoresponsive and efficient molybdenum-modified titanium dioxide photocatalyst for the degradation of methyl orange. International Journal of Environmental Science and Technology, 2022, 19, 5579-5594.	1.8	6
234	Ethanol Sensing Properties and First Principles Study of Au Supported on Mesoporous ZnO Derived from Metal Organic Framework ZIF-8. Sensors, 2021, 21, 4352.	2.1	12
235	Enhancement of photocatalytic degradation of Malachite Green using iron doped titanium dioxide loaded on oil palm empty fruit bunch-derived activated carbon. Chemosphere, 2021, 272, 129588.	4.2	36

#	Article	IF	CITATIONS
236	Facile synthesis of molecularly imprinted black TiO2-x/carbon dots nanocomposite and its recognizable photocatalytic performance under visible-light. Applied Surface Science, 2021, 551, 149476.	3.1	22
237	A TiO2NW "bridged―composite photocatalyst Bi12O17Cl2–TiO2NW / Fe2TiO5 / Fe2O3 for water treatment driven by visible light. Optical Materials, 2021, 117, 111176.	1.7	3
238	Enhanced dye-removal performance of Cu-TiO2-fly ash composite by optimized adsorption and photocatalytic activity under visible light irradiation. Environmental Science and Pollution Research, 2021, 28, 68834-68845.	2.7	5
239	Decoration of conjugated polyquinoxaline dots on mesoporous TiO2 nanofibers for visible-light-driven photocatalysis. Polymer, 2021, 228, 123892.	1.8	18
240	Effect of Metal and Non-metal Doping on the Photocatalytic Performance of Titanium dioxide (TiO2): A Review. Current Nanoscience, 2022, 18, 499-519.	0.7	8
241	Aluminium-doped TiO2 nanotubes with enhanced light-harvesting properties. Ceramics International, 2021, 47, 18358-18366.	2.3	6
242	Indium-doped ZnOas efficient photosensitive material for sunlight driven hydrogen generation and DSSC applications: integrated experimental and computational approach. Journal of Solid State Electrochemistry, 2021, 25, 2279-2292.	1.2	2
243	Surface Plasmon Resonance from Gallium-Doped Zinc Oxide Nanoparticles and Their Electromagnetic Enhancement Contribution to Surface-Enhanced Raman Scattering. ACS Applied Materials & Samp; Interfaces, 2021, 13, 35038-35045.	4.0	33
244	Visible Light-Responsive N-Doped TiO2 Photocatalysis: Synthesis, Characterizations, and Applications. Transactions of Tianjin University, 2022, 28, 33-52.	3.3	40
245	Sustainable Hydrogen Production from Starch Aqueous Suspensions over a Cd0.7Zn0.3S-Based Photocatalyst. Catalysts, 2021, 11, 870.	1.6	6
246	Emerging Cocatalysts on gâ€C ₃ N ₄ for Photocatalytic Hydrogen Evolution. Small, 2021, 17, e2101070.	5.2	223
247	TiO2 as a gas sensor: The novel carbon structures and noble metals as new elements for enhancing sensitivity – A review. Ceramics International, 2021, 47, 17844-17876.	2.3	44
248	Z-scheme g-C3N4-AQ-MoO3 photocatalyst with unique electron transfer channel and large reduction area for enhanced sunlight photocatalytic hydrogen production. Applied Catalysis B: Environmental, 2021, 288, 120025.	10.8	86
249	TiN Bridged Allâ€Solid Zâ€Scheme CNNS/TiN/TiO _{2â^'} <i>_x</i> Heterojunction by a Facile In Situ Reduction Strategy for Enhanced Photocatalytic Hydrogen Evolution. Advanced Materials Interfaces, 2021, 8, 2100695.	1.9	5
250	MultilayeredÂTiO2/TiO2â^ $^{\prime}$ x/TiO2 films deposited by reactive sputtering for photocatalytic applications. Journal of Materials Research, 2021, 36, 3096-3108.	1.2	5
251	Recent research progress of bimetallic phosphides-based nanomaterials as cocatalyst for photocatalytic hydrogen evolution. Chinese Chemical Letters, 2022, 33, 1141-1153.	4.8	149
252	Light-driven breakdown of microcystin-LR in water: A critical review. Chemical Engineering Journal, 2021, 417, 129244.	6.6	31
253	Tragacanth gum mediated green fabrication of mesoporous titania nanomaterials: Application in photocatalytic degradation of crystal violet. Journal of Environmental Management, 2021, 291, 112680.	3.8	13

#	Article	IF	CITATIONS
254	A facile synthesis of C3N4-modified TiO2 nanotube embedded Pt nanoparticles for photocatalytic water splitting. Research on Chemical Intermediates, 2021, 47, 5175-5188.	1.3	6
255	Enhanced H2 evolution through water splitting using TiO2/ultrathin g-C3N4: A type II heterojunction photocatalyst fabricated by $\langle i \rangle$ in situ $\langle i \rangle$ thermal exfoliation. Applied Physics Letters, 2021, 119, .	1.5	12
256	Toward photocatalytic hydrogen generation over BiVO4 by controlling particle size. Chinese Chemical Letters, 2021, 32, 2419-2422.	4.8	22
257	Rutile-phase TiO2@carbon core-shell nanowires and their photoactivation in visible light region. Carbon, 2021, 181, 280-289.	5.4	22
258	An improved photocatalytic activity of H ₂ production: a hydrothermal synthesis of TiO ₂ nanostructures in aqueous triethanolamine. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2021, 76, 1061-1066.	0.7	1
259	3D dahlia-like NiAl-LDH/CdS heterosystem coordinating with 2D/2D interface for efficient and selective conversion of CO2. Chinese Chemical Letters, 2022, 33, 2111-2116.	4.8	12
260	Photocatalytic Hydrogen from Water Over Semiconductors. Green Energy and Technology, 2022, , 175-194.	0.4	0
261	Photocatalytic hydrogen generation via water splitting using ZIF-67 derived Co3O4@C/TiO2. Journal of Environmental Chemical Engineering, 2021, 9, 105702.	3.3	82
262	Facile hydrothermal preparation, characterization and multifunction of rock salt-type LiTiO2. Journal of Alloys and Compounds, 2021, 872, 159759.	2.8	8
263	A carbon dotâ€based total green and selfâ€recoverable solidâ€state electrochemical cell fully utilizing O ₂ /H ₂ O redox couple. SusMat, 2021, 1, 448-457.	7.8	12
264	On the Roles of Electron Transfer in Catalysis by Nanoclusters and Nanoparticles. Chemistry - A European Journal, 2021, 27, 16291-16308.	1.7	8
265	Various Material Development Strategies for Suitable Catalysts of Photo Catalytic Water Splitting to Green Fuel H2:A Critical Review. Material Science Research India, 2021, 18, 108-142.	0.9	3
266	Latest developments on TiO2-based photocatalysis: a special focus on selectivity and hollowness for enhanced photonic efficiency. Applied Catalysis A: General, 2021, 623, 118243.	2.2	19
267	Modification of surface \hat{l} ±-Fe2O3/TiO2 photocatalyst nanocomposite with enhanced photocatalytic activity by Ar gas plasma treatment for hydrogen evolution. Journal of Environmental Chemical Engineering, 2021, 9, 105660.	3.3	30
268	The impact of Au-decorated TiO2 nanoparticles on high performance and low 1/f noise in UV photodetector. Journal of Materials Science: Materials in Electronics, 2021, 32, 27107-27120.	1.1	3
269	Ultrasound-assisted decoration of CuOx nanoclusters on TiO2 nanoparticles for additives free photocatalytic hydrogen production and biomass valorization by selective oxidation. Molecular Catalysis, 2021, 514, 111664.	1.0	5
270	Metalâ€facilitated Photocatalytic Nanohybrids: Rational Design and Promising Environmental Applications. Chemistry - an Asian Journal, 2021, 16, 3038-3054.	1.7	1
271	Ultra-fine Cu clusters decorated hydrangea-like titanium dioxide for photocatalytic hydrogen production. Rare Metals, 2022, 41, 385-395.	3.6	31

#	Article	IF	CITATIONS
272	The Role of Common Alcoholic Sacrificial Agents in Photocatalysis: Is It Always Trivial?. Chemistry - A European Journal, 2021, 27, 15936-15943.	1.7	10
273	Alâ€Incorporated Mesoporous Silica Supported ZnFe 2 O 4 for Photocatalytic Hydrogen Evolution. ChemistrySelect, 2021, 6, 9112-9119.	0.7	0
274	Z-scheme CdS/WO3 on a carbon cloth enabling effective hydrogen evolution. Frontiers in Energy, 2021, 15, 678.	1.2	5
275	Antenna Effect in BODIPY-(Zn)Porphyrin Entities Promotes H ₂ Evolution in Dye-Sensitized Photocatalytic Systems. ACS Applied Energy Materials, 2021, 4, 10042-10049.	2.5	16
276	Highly efficient photocatalytic degradation of organic pollutants by mesoporous graphitic carbon nitride bonded with cyano groups. Chemical Engineering Journal, 2021, 419, 129503.	6.6	47
277	Solar-light elimination of various dye effluents using plasmon AgBrCl solid solution on carbon defects-MWCNTs modified with DBD-plasma: Nano-hybrid photocatalyst and ultrasonic precipitation design. Applied Surface Science, 2022, 572, 151433.	3.1	25
278	Quasi-homogenous photocatalysis of quantum-sized Fe-doped TiO2 in optically transparent aqueous dispersions. Scientific Reports, 2021, 11, 17687.	1.6	22
279	Lattice mismatch in Ni3Al-based alloy for efficient oxygen evolution. Journal of Materials Science and Technology, 2022, 106, 19-27.	5.6	10
280	Hybrid Phase MoS ₂ as a Noble Metal-Free Photocatalyst for Conversion of Nitroaromatics to Aminoaromatics. Journal of Physical Chemistry C, 2021, 125, 20887-20895.	1.5	7
281	Interfacial charge transfer and photocatalytic activity in a reverse designed Bi2O3/TiO2 core-shell. Frontiers in Energy, 2021, 15, 732.	1.2	2
282	Density-Based Descriptors of Redox Reactions Involving Transition Metal Compounds as a Reality-Anchored Framework: A Perspective. Molecules, 2021, 26, 5541.	1.7	2
283	Enhanced Photocatalytic Activity in Strain Engineered Janus WSSe Monolayers. Journal of Electronic Materials, 2021, 50, 7230-7239.	1.0	7
284	Regulated effect of organic small molecular doped in carbon nitride skeleton for boosting photocatalytic hydrogen evolution. International Journal of Hydrogen Energy, 2021, 46, 38299-38309.	3.8	5
285	Interpreting quantum efficiency for energy and environmental applications of photo-catalytic materials. Current Opinion in Chemical Engineering, 2021, 33, 100712.	3.8	6
286	Considering photocatalytic activity of Cu2+/biochar-doped TiO2 using corn straw as sacrificial agent in water decomposition to hydrogen. Environmental Science and Pollution Research, 2022, 29, 12261-12281.	2.7	6
287	Synthesis of Vanadium Doped Lanthanum Bismuthate Nanorods for Enhanced Photocatalytic Activity. Journal of Nanoscience and Nanotechnology, 2021, 21, 5329-5336.	0.9	4
288	The effect of TiO2 coatings on the formation of ozone and nitrogen oxides in non-thermal atmospheric pressure plasma. Journal of Environmental Chemical Engineering, 2021, 9, 106046.	3.3	4
289	Rapid detoxification of polluted water using ultrastable TiO2 encapsulated CsPbBr3 QDs in collected sunlight. Materials Research Bulletin, 2021, 142, 111433.	2.7	11

#	Article	IF	CITATIONS
290	Experimental and modelling studies on the photocatalytic generation of hydrogen during water-splitting over a commercial TiO2 photocatalyst P25. Energy Conversion and Management, 2021, 245, 114582.	4.4	11
291	Copper-Nickel-Oxide Nanomaterial for Photoelectrochemical Hydrogen Evolution and Photocatalytic Degradation of Volatile Organic Compounds. Materials Research Bulletin, 2021, 142, 111418.	2.7	17
292	Pt/B-g-C3N4 catalysts for hydrogen photo-production: Activity interpretation through a spectroscopic and intrinsic kinetic analysis. Journal of Environmental Chemical Engineering, 2021, 9, 106073.	3.3	8
293	TiO2 photocatalysis: Impact of the platinum loading method on reductive and oxidative half-reactions. Catalysis Today, 2021, 380, 3-15.	2.2	19
294	Single noble metal atoms doped 2D materials for catalysis. Applied Catalysis B: Environmental, 2021, 297, 120389.	10.8	49
295	Latest progress on the key operating parameters affecting the photocatalytic activity of TiO2-based photocatalysts for hydrogen fuel production: A comprehensive review. Fuel, 2021, 303, 121207.	3.4	114
296	Solar photocatalytic H2 production over CeO2-based catalysts: Influence of chemical and structural modifications. Catalysis Today, 2021, 380, 187-198.	2.2	18
297	Titanium dioxide catalytic hydrothermal liquefaction to treat oily sludge: As hydrogen production catalyst. Chemical Engineering Journal Advances, 2021, 8, 100139.	2.4	5
298	Controllable Synthesis of Modified Porous Anatase TiO2 with High Photocatalytic Activity. Journal of Nanoscience and Nanotechnology, 2021, 21, 5742-5748.	0.9	0
299	A review on photocatalytic degradation of hazardous pesticides using heterojunctions. Polyhedron, 2021, 209, 115465.	1.0	38
300	CTAB-melamine molecular crystals as precursor for synthesis of layered carbon nitride porous nanostructures with enhanced photocatalytic activity for hydrogen production. Materials Today Communications, 2021, 29, 102780.	0.9	4
301	Atomic heterojunction-induced accelerated charge transfer for boosted photocatalytic hydrogen evolution over 1D CdS nanorod/2D Znln2S4 nanosheet composites. Journal of Colloid and Interface Science, 2021, 604, 500-507.	5.0	33
302	Thermo-photo production of hydrogen using ternary Pt-CeO2-TiO2 catalysts: A spectroscopic and mechanistic study. Chemical Engineering Journal, 2021, 425, 130641.	6.6	13
303	Facet-dependent photocatalytic H2O2 production of single phase Ag3PO4 and Z-scheme Ag/ZnFe2O4-Ag-Ag3PO4 composites. Chemical Engineering Journal, 2022, 429, 132373.	6.6	37
304	Light-induced secondary hydroxyl defects in Sr1-xSn(OH)6 enable sustained and efficient photocatalytic toluene mineralization. Chemical Engineering Journal, 2022, 427, 131764.	6.6	15
305	Recent advances in non-metal doped titania for solar-driven photocatalytic/photoelectrochemical water-splitting. Journal of Energy Chemistry, 2022, 66, 529-559.	7.1	70
306	Study on K2Ti4O9 modified by Fe3+ cations in visible-light photocatalysis. Materials Letters, 2022, 306, 130913.	1.3	1
307	TiO2 based Z-scheme photocatalysts for energy and environmental applications. , 2021, , 257-282.		1

#	Article	IF	CITATIONS
308	Highly crystalline anatase TiO ₂ nanocuboids as an efficient photocatalyst for hydrogen generation. RSC Advances, 2021, 11, 7587-7599.	1.7	27
309	Efficient solar photocatalytic hydrogen production using direct Z-scheme heterojunctions. Physical Chemistry Chemical Physics, 2021, 23, 22743-22749.	1.3	7
310	Single-Atom Photocatalysts for Emerging Reactions. ACS Central Science, 2021, 7, 39-54.	5.3	94
311	A facile synthesis of Zn-doped TiO ₂ nanoparticles with highly exposed (001) facets for enhanced photocatalytic performance. RSC Advances, 2021, 11, 7627-7632.	1.7	8
312	Recent advancements and opportunities of decorated graphitic carbon nitride toward solar fuel production and beyond. Sustainable Energy and Fuels, 2021, 5, 4457-4511.	2.5	25
313	Metallic Bismuth Modified P25 for Photocatalytic Hydrogen Production. Material Sciences, 2021, 11, 527-535.	0.0	0
314	Effect of Metal Work Function on Hydrogen Production from Photocatalytic Water Splitting with MTiO ₂ Catalysts. ChemistrySelect, 2020, 5, 1013-1019.	0.7	30
315	Boosted photogenerated carriers separation in Z-scheme Cu3P/ZnIn2S4 heterojunction photocatalyst for highly efficient H2 evolution under visible light. International Journal of Hydrogen Energy, 2020, 45, 14334-14346.	3.8	78
316	Photosynthesis of H2 and its storage on the Bandgap Engineered Mesoporous (Ni2+/Ni3+)O @ TiO2 heterostructure. Journal of Power Sources, 2020, 466, 228305.	4.0	23
317	Small Organic Molecule Based Photoelectrodes for Efficient Photoelectrochemical Cathodic Protection. ACS Applied Electronic Materials, 2020, 2, 4012-4022.	2.0	11
318	Comparative study of the around-Fermi electronic structure of $5 < i > d < i> $ metals and metal-oxides by means of high-resolution X-ray emission and absorption spectroscopies. Journal of Synchrotron Radiation, 2020, 27, 689-694.	1.0	7
319	Theoretical calculation of a TiO ₂ -based photocatalyst in the field of water splitting: A review. Nanotechnology Reviews, 2020, 9, 1080-1103.	2.6	49
320	Catalytic and Photothermo-catalytic Applications of TiO2-CoOx Composites. Journal of Photocatalysis, 2020, 1, 3-15.	0.4	9
321	Investigation of the Visible Light-Sensitive ZnO Photocatalytic Thin Films. Engineering, Technology & Applied Science Research, 2020, 10, 5524-5527.	0.8	7
322	Synergistic impact of photocatalyst and dopants on pharmaceutical-polluted waste water treatment: a review. Environmental Pollutants and Bioavailability, 2021, 33, 347-364.	1.3	19
323	Atomic-level insights into surface engineering of semiconductors for photocatalytic CO2 reduction. Journal of Energy Chemistry, 2022, 67, 309-341.	7.1	67
324	Graphene-like h-BN supported polyhedral NiS2/NiS nanocrystals with excellent photocatalytic performance for removing rhodamine B and Cr(VI). Frontiers of Chemical Science and Engineering, 2021, 15, 1537-1549.	2.3	7
325	Role of Oil Palm Empty Fruit Bunch-Derived Cellulose in Improving the Sonocatalytic Activity of Silver-Doped Titanium Dioxide. Polymers, 2021, 13, 3530.	2.0	2

#	Article	IF	CITATIONS
326	Semiconductiveâ€Ferroelectricâ€Enhanced Photoâ€Electrochemistry with Collective Improvements on Light Absorption, Charge Separation, and Carrier Transportation. Advanced Materials Interfaces, 2021, 8, 2101227.	1.9	8
327	Preparation and photocatalytic properties of ZnO nanorods/g-C3N4 composite. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	1.1	7
328	Hydrogen production by Photocatalytic Degradation of Organic Substances Using Ironâ€Containing Metalâ€Ceramic Composites Under UV and Visibleâ€Light Irradiation. ChemistrySelect, 2021, 6, 10025-10032.	0.7	2
329	Organic Solvent Resistant Nanocomposite Films Made from Selfâ€precipitated Ag/TiO 2 Nanofibers and Cellulose Nanofiber for Harmful Volatile Organic Compounds Photodegradation. Advanced Materials Interfaces, 2021, 8, 2101467.	1.9	5
330	Band Engineering of Semiconducting Microporous Graphitic Carbons by Phosphorous Doping: Enhancing of Photocatalytic Overall Water Splitting. ACS Applied Materials & Samp; Interfaces, 2021, 13, 48753-48763.	4.0	10
331	Nitrogen Doped Titanium Dioxide (N-TiO2): Synopsis of Synthesis Methodologies, Doping Mechanisms, Property Evaluation and Visible Light Photocatalytic Applications. Photochem, 2021, 1, 371-410.	1.3	29
332	Photoelectrochemical Performance of Doped and Undoped TiO2 Nanotubes for Light-Harvesting and Water Splitting Techniques: Systematic Review and Meta-Analysis. Engineering Materials, 2022, , 171-183.	0.3	0
333	The Study of Photoactive Materials. Reviews and Advances in Chemistry, 2020, 10, 73-111.	0.2	1
334	Enhanced methane sensing performance of Ag modified In2O3 microspheres. Journal of Alloys and Compounds, 2022, 895, 162557.	2.8	17
335	Triple-Channel Charge Transfer over W ₁₈ O ₄₉ /Au/g-C ₃ N ₄ <i>Z</i> Scheme Photocatalysts for Achieving Broad-Spectrum Solar Hydrogen Production. ACS Applied Materials & Samp; Interfaces, 2021, 13, 52670-52680.	4.0	36
336	Doped Semiconductor Nanomaterials: Applications in Energy and in the Degradation of Organic Compounds., 2020,, 1-24.		0
337	Hydrogarnet-derived Rh/TiO2 catalysts with a low rhodium content for a photocatalytic hydrogen production. Materials Letters, 2022, 307, 130997.	1.3	2
338	In-situ Mo doped ZnIn2S4 wrapped MoO3 S-scheme heterojunction via Mo-S bonds to enhance photocatalytic HER. Chemical Engineering Journal, 2022, 430, 132770.	6.6	66
339	Enhanced photoelectrocatalytic hydrogen evolution using off-stoichiometry La0.43FeOy films. Journal of Alloys and Compounds, 2022, 893, 162238.	2.8	0
340	Gas-Phase Nitrogen Doping of Monolithic TiO ₂ Nanoparticle-Based Aerogels for Efficient Visible Light-Driven Photocatalytic H ₂ Production. ACS Applied Materials & Distriction amplitudes applied Materials & Distriction and Distriction are subjected by Samp and Distriction and Distriction and Distriction and Distriction are subjected by Samp and Distriction and	4.0	22
341	Evolution of atomic and electronic structures of Cun (nÂ=Â2–10) clusters supported on anatase TiO2(1) Tj ETC	Qq1 1 0.78	84314 rgBī
342	Construction of Au/g-C3N4/ZnIn2S4 plasma photocatalyst heterojunction composite with 3D hierarchical microarchitecture for visible-light-driven hydrogen production. International Journal of Hydrogen Energy, 2022, 47, 2900-2913.	3.8	43
343	Hydrogen photo-production from glycerol on platinum, gold and silver-modified TiO2-USY62 catalysts. Catalysis Today, 2022, 390-391, 92-98.	2.2	7

#	Article	IF	CITATIONS
344	Nanoflower-like Ti3CN@TiO2/CdS heterojunction photocatalyst for efficient photocatalytic water splitting. International Journal of Hydrogen Energy, 2022, 47, 19580-19589.	3.8	27
345	Recent advances on silver-based photocatalysis: Photocorrosion inhibition, visible-light responsivity enhancement, and charges separation acceleration. Separation and Purification Technology, 2022, 283, 120194.	3.9	21
346	Cu/TiO2 composite nanofibers with improved photocatalytic performance under UV and UV–visible light irradiation. Surfaces and Interfaces, 2022, 28, 101644.	1.5	14
347	Enhancement of the photocatalytic activity of nanoparticles due to the localization of electromagnetic fields. Journal of Physics: Conference Series, 2021, 2015, 012114.	0.3	0
348	Non-metal fluorine doping in Ruddlesden–Popper perovskite oxide enables high-efficiency photocatalytic water splitting for hydrogen production. Materials Today Energy, 2022, 23, 100896.	2.5	46
349	Visible Light Trapping against Charge Recombination in FeOx–TiO2 Photonic Crystal Photocatalysts. Materials, 2021, 14, 7117.	1.3	4
350	Hydrogen Productivity Analysis Using Low Concentration of TiO ₂ –Au Nanoparticles on a Ultraviolet‣EDâ€Based Photocatalytic Reactors. Energy Technology, 2022, 10, .	1.8	4
351	Floating Carbon-Doped TiO2 Photocatalyst with Metallic Underlayers Investigation for Polluted Water Treatment under Visible-Light Irradiation. Catalysts, 2021, 11, 1454.	1.6	12
352	Metalâ€Doped Titanium Dioxide for Environmental Remediation, Hydrogen Evolution and Sensing: A Review. ChemistrySelect, 2021, 6, 12742-12751.	0.7	8
353	S-Scheme α-Fe2O3/TiO2 Photocatalyst with Pd Cocatalyst for Enhanced Photocatalytic H2 Production Activity and Stability. Catalysis Letters, 2022, 152, 2590-2606.	1.4	16
354	Ti3C2T MXene functionalization induced enhancement of photoelectrochemical performance of TiO2 nanotube arrays. Materials Chemistry and Physics, 2022, 278, 125651.	2.0	30
355	TiO2/graphene nanocomposite supported on clinoptilolite nanoplate and its enhanced visible light photocatalytic activity. Inorganic Chemistry Communication, 2022, 136, 109144.	1.8	27
356	Enhanced performance of a magnetic photocatalyst regulated using a magnetic field. Separation and Purification Technology, 2022, 284, 120263.	3.9	8
357	In-situ construction of core–shell structured TiB2-TiO2@g-C3N4 for efficient photocatalytic degradation. Applied Surface Science, 2022, 579, 152201.	3.1	18
358	Embedding an organic dye into Ti-MCM-48 for direct photocatalytic selective aerobic oxidation of sulfides driven by green light. Chemical Engineering Journal, 2022, 432, 134285.	6.6	8
359	First modification strategy: Ester is better than acid to improve the activity of photocatalyst nano-TiO2. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 636, 128144.	2.3	2
360	Thermochemistry of nano-phased titanium dioxides relevant to energy application: A Review. Chemical Thermodynamics and Thermal Analysis, 2022, 5, 100033.	0.7	4
361	WO3(H2O)0.333/CdSe-diethylenetriamine nanocomposite as a step-scheme photocatalyst for hydrogen production. Surfaces and Interfaces, 2022, 29, 101702.	1.5	2

#	Article	IF	CITATIONS
362	Heterogeneous photocatalytic aqueous succinic acid formation from maleic acid reduction. Chemical Engineering Journal, 2022, 431, 134131.	6.6	5
363	MoS ₂ Modified Hexagonal Pyramid CdS To Form New Photogenerated Carriers Migration Path With Highly Efficient Photocatalytic H ₂ Performance. SSRN Electronic Journal, 0, , .	0.4	0
364	Functional Materials with Wideâ€Spectralâ€Responsive Photocatalytic Activity and Realâ€Time Temperature Feedback: The Electrospun Fibers Embedded with NaGdF 4 â€Tmâ€Yb@TiO 2 Nanocrystals. Advanced Materials Interfaces, 0, , 2101869.	1.9	2
365	Applying Hydrogenation to Stabilize N-TiO2 and Enhance Its Visible Light Photocatalytic Activity. Catalysts, 2022, 12, 178.	1.6	2
366	Indium-Based Metal–Organic Framework for Efficient Photocatalytic Hydrogen Evolution. Inorganic Chemistry, 2022, 61, 2587-2594.	1.9	20
367	Enhanced cocatalyst-free photocatalytic H ₂ evolution by the synergistic AIE and FRET for an Ir-complex conjugated porphyrin. Journal of Materials Chemistry A, 2022, 10, 4440-4445.	5 . 2	17
368	Ti-Based porous materials for reactive oxygen species-mediated photocatalytic reactions. Chemical Communications, 2022, 58, 607-618.	2.2	10
369	CdS@Mg(OH)2 core/shell composite photocatalyst for efficient visible-light photocatalytic overall water splitting. International Journal of Hydrogen Energy, 2022, 47, 8729-8738.	3.8	11
370	Photocatalytic H2 Production on Au/TiO2: Effect of Au Photodeposition on Different TiO2 Crystalline Phases. J, 2022, 5, 92-104.	0.6	1
371	Electric Field Manipulation for Improved Rates of Photocatalysis by Mesoporous TiO2. Journal of Physical Chemistry C, 2022, 126, 1376-1388.	1.5	0
372	Unravelling the Impact of Ta Doping on the Electronic and Structural Properties of Titania: A Combined Theoretical and Experimental Approach. Journal of Physical Chemistry C, 2022, 126, 2285-2297.	1.5	2
373	Facile construction of self-assembled Cu@polyaniline nanocomposite as an efficient noble-metal free cocatalyst for boosting photocatalytic hydrogen production. International Journal of Hydrogen Energy, 2022, 47, 6011-6028.	3.8	15
375	Hydrogen in single-crystalline anatase TiO2. Journal of Applied Physics, 2022, 131, .	1.1	8
376	Facetâ€Control versus Coâ€Catalystâ€Control in Photocatalytic H ₂ Evolution from Anatase TiO ₂ Nanocrystals. ChemistryOpen, 2022, 11, e202200010.	0.9	6
377	Seed-induced synthesis of durian-like mischcrystal TiO2/graphene as an efficient photocatalyst for desulfurization. Molecular Crystals and Liquid Crystals, 0, , 1-16.	0.4	1
378	Synthesis and low temperature methane sensing performance of Pd modified In2O3 microspheres. Materials Chemistry and Physics, 2022, 279, 125749.	2.0	8
379	Water denitration over titania-supported Pt and Cu by combined photocatalytic and catalytic processes: Implications for hydrogen generation properties in a photocatalytic system. Journal of Environmental Chemical Engineering, 2022, 10, 107129.	3.3	3
380	Modulation of BiOBr-based photocatalysts for energy and environmental application: A critical review. Journal of Environmental Chemical Engineering, 2022, 10, 107226.	3.3	16

#	ARTICLE	IF	CITATIONS
381	Plasmon excitation facilitating generation of electrons and reactive oxygen species for broad spectrum photocatalytic activity. Applied Surface Science, 2022, 584, 152655.	3.1	5
382	External influences of cactus type composite for hydrogen evolution reaction. Journal of Alloys and Compounds, 2022, 903, 163813.	2.8	6
383	Simulation of the Physicochemical Properties of Anatase TiO2 with Oxygen Vacancies and Doping of Different Elements for Photocatalysis Processes. Lecture Notes in Networks and Systems, 2022, , 238-249.	0.5	0
384	Synergetic Photo-Thermo Catalytic Hydrogen Production by Carbon Materials. Journal of Physical Chemistry Letters, 2022, 13, 1602-1608.	2.1	12
385	Graphdiyne based GDY/CuI/NiO parallel double S-scheme heterojunction for efficient photocatalytic hydrogen evolution. 2D Materials, 2022, 9, 025014.	2.0	28
386	Manipulating a TiO2-graphene-Ta3N5 heterojunction for efficient Z-scheme photocatalytic pure water splitting. Materials Research Bulletin, 2022, 150, 111782.	2.7	7
387	Photocatalytic hydrogen production from seawater under full solar spectrum without sacrificial reagents using TiO2 nanoparticles. Nano Research, 2022, 15, 2013-2022.	5.8	43
388	Synthesis, modification and application of titanium dioxide nanoparticles: a review. Nanoscale, 2022, 14, 6709-6734.	2.8	79
389	Lanthanide Ion-Doped Titanium Dioxide: Effective Photocatalyst for Hydrogen Production Via Water Splitting. SSRN Electronic Journal, 0, , .	0.4	1
390	Highly efficient doping of titanium dioxide with sulfur using disulfide-linked macrocycles for hydrogen production under visible light. Green Chemistry, 2022, 24, 2557-2566.	4.6	10
391	In-Situ Exfoliation and Assembly of 2d/2d G-C3n4/Tio2(B) Hierarchical Microflower: Enhanced Photo-Oxidation of Benzyl Alcohol Under Visible Light. SSRN Electronic Journal, 0, , .	0.4	0
392	Enhance the Photocatalytic Performance of Tio2 Nano-Semiconductor by Simultaneously Doping of Transition and Lanthanide Elements for the C-C Homocoupling Reaction Under Sunlight Irradiation. SSRN Electronic Journal, 0, , .	0.4	0
393	Template-Free and One-Pot Synthesis of Hierarchical Cu2o/Cu Hollow Sphere as Visible-Light Driven Photocatalyst for Efficient Degradation of Organic Contaminants. SSRN Electronic Journal, 0, , .	0.4	0
394	Major Trends and Mechanistic Insights for the Development of TiO2-Based Nanocomposites for Visible-Light-Driven Photocatalytic Hydrogen Production. Engineering Materials, 2022, , 771-794.	0.3	2
395	Room-Temperature Gas Sensor Based on in Situ Grown, Etched and W-Doped Zno Nanotubes Functionalized with Pt Nanoparticles for the Detection of Low-Concentration H2s. SSRN Electronic Journal, 0, , .	0.4	0
396	Synthesis of nitrogen and terbium co-doped TiO ₂ nanocrystals with enhanced photocatalytic activity for AO7 degradation under visible-light radiation. New Journal of Chemistry, 2022, 46, 6878-6884.	1.4	1
397	In Situ Growth Tio2 Nanoparticles on Mxene (Ti3c2) Decorated with Nio Quantum Dots for Enhanced Photocatalytic Performance. SSRN Electronic Journal, 0, , .	0.4	0
398	Nickel-loaded nitrogen-doped titanate nanostructured catalysts for solar-light driven hydrogen evolution and environmental remediation. International Journal of Hydrogen Energy, 2022, 47, 12937-12952.	3.8	1

#	Article	IF	CITATIONS
399	In situ modification by graphidyne as interlayer in titanium dioxide thin film / platinum for water splitting photocatalysis. International Journal of Hydrogen Energy, 2022, 47, 14563-14569.	3.8	5
400	Proposal of a novel modular photo-thermo-reactor system for cascaded hydrogen production from methanol steam reforming. Energy Conversion and Management, 2022, 256, 115390.	4.4	10
401	Effect of Ni substitution on structural, magnetic and dielectric properties of Ti1-xNixO2 {0Ââ‰ÂxÂâ‰Â0.3} nanoparticles prepared by sol gel method. Materials Today: Proceedings, 2022, , .	0.9	2
402	Aerosol processing of Ag/TiO2 composite nanoparticles for enhanced photocatalytic water treatment under UV and visible light irradiation. Ceramics International, 2022, 48, 9434-9441. Enhance the photocatalytic performance of TiO <mml:math< td=""><td>2.3</td><td>7</td></mml:math<>	2.3	7
403	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e4949" altimg="si476.svg"> <mml:msub><mml:mrow /><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:mrow </mml:msub> nano-semiconductor by simultaneously doping of transition and lanthanide elements for the C C homocoupling reaction	1.9	4
404	Prinder sunlight irradiation. Nano Structures Nano Objects, 2022, 30, 100858. Pt nanoparticles decorated chitosan/Zn1103: Ternary visible-light photocatalyst for ultrafast treatment of insecticide imidacloprid and methylene blue. Journal of the Taiwan Institute of Chemical Engineers, 2022, 133, 104266.	2.7	17
405	Catharanthus roseus leaf extract mediated Ag-MgO nanocatalyst for photocatalytic degradation of Congo red dye and their antibacterial activity. Journal of Molecular Structure, 2022, 1262, 133005.	1.8	28
406	Synergetic piezo-photocatalytic effect in ultrathin Bi2WO6 nanosheets for decomposing organic dye. Journal of Materials Science: Materials in Electronics, 2022, 33, 9845-9857.	1.1	12
407	Influence of Nd concentrations on the structural, electronic and optical properties of anatase TiO2: A first-principles approach. Computational Condensed Matter, 2022, 31, e00672.	0.9	1
408	Transition-metal doped titanate nanowire photocatalysts boosted by selective ion-exchange induced defect engineering. Applied Surface Science, 2022, 591, 153116.	3.1	10
409	Surface sulfate modified TiO2 visible light active photocatalyst for complex wastewater purification: Preparation, characterization and photocatalytic activity. Journal of Molecular Structure, 2022, 1260, 132860.	1.8	4
410	Step-by-Step Mechanism Insights into the TiO ₂ /Ce ₂ S ₃ S-Scheme Photocatalyst for Enhanced Aniline Production with Water as a Proton Source. ACS Catalysis, 2022, 12, 164-172.	5.5	117
411	Shepherding reaction intermediates to optimize H2 yield using composite-doped TiO2-based photocatalysts. Chemical Engineering Journal, 2022, 442, 136333.	6.6	3
413	One-Pot Synthesis of Homogeneous Biocl/Bi2wo6 Heterojunction with Rapid Charge Separation for Directly Photocatalyzing Toluene Decomposition. SSRN Electronic Journal, 0, , .	0.4	0
414	Construction of Cu2o/Cu Heterojunction with Hierarchical Hollow Sphere Structure as Visible-Light Driven Photocatalyst for Efficient Water Remediation. SSRN Electronic Journal, 0, , .	0.4	0
415	Enhanced H2 evolution of visible light active SnO2@Mg nanoflower. Materials Today: Proceedings, 2022, , .	0.9	2
416	Identifying Key Design Criteria for Large-Scale Photocatalytic Hydrogen Generation from Engineering and Economic Perspectives. ACS ES&T Engineering, 2022, 2, 1130-1143.	3.7	11
417	Insight into Interfacial charge transfer during photocatalytic H2 evolution through Fe, Ni, Cu and Au embedded in a mesoporous TiO2@SiO2 coreâ€shell. ChemCatChem, 0, , .	1.8	7

#	Article	IF	CITATIONS
418	Blue Titania: The Outcome of Defects, Crystalline-Disordered Core-Shell Structure, and Hydrophilicity Change. Nanomaterials, 2022, 12, 1501.	1.9	2
419	Highly Selective Photocatalytic Aerobic Oxidation of Methane to Oxygenates with Water over Wâ€doped TiO ₂ . ChemSusChem, 2022, 15, .	3.6	18
420	Hierarchical Hollow Zinc Oxide Nanocomposites Derived from Morphology‶unable Coordination Polymers for Enhanced Solar Hydrogen Production. Angewandte Chemie, 2022, 134, .	1.6	4
421	Hierarchical Hollow Zinc Oxide Nanocomposites Derived from Morphology‶unable Coordination Polymers for Enhanced Solar Hydrogen Production. Angewandte Chemie - International Edition, 2022, 61, .	7.2	26
422	In-situ exfoliation and assembly of 2D/2D g-C3N4/TiO2(B) hierarchical microflower: Enhanced photo-oxidation of benzyl alcohol under visible light. Carbon, 2022, 196, 401-409.	5.4	38
423	Synergetic photocatalytic and thermocatalytic aqueous phase reforming of methanol for hydrogen production based on noble metal/photosensitive supports catalysts. International Journal of Hydrogen Energy, 2022, 47, 19989-19998.	3.8	7
424	Enhanced Photocatalytic Activity of Nonuniformly Nitrogen-Doped Nb2O5 by Prolonging the Lifetime of Photogenerated Holes. Nanomaterials, 2022, 12, 1690.	1.9	1
425	Electronic structures of hydroxylated low index surfaces of rutile and anatase-type titanium dioxide. Physical Chemistry Chemical Physics, 2022, 24, 15091-15102.	1.3	9
426	Preparation and photocatalytic application of terbium and sulfur co-doped titanium nanomaterials. Environmental Science and Pollution Research, 2022, 29, 71688-71695.	2.7	1
427	MoS ₂ -Modified CdS Hexagonal Pyramid To Form a New Photogenerated Carrier Migration Path with Highly Efficient Photocatalytic H ₂ Performance. Journal of Physical Chemistry C, 2022, 126, 9027-9033.	1.5	6
428	CeO2 as a photocatalytic material for CO2 conversion: A review. Solar Energy, 2022, 240, 443-466.	2.9	43
429	Pt-Modified Interfacial Engineering for Enhanced Photocatalytic Performance of 3D Ordered Macroporous TiO2. Crystals, 2022, 12, 778.	1.0	5
430	Hierarchical Bi2WO6/BiFeWO6 n-n heterojunction as an efficient photocatalyst for water splitting under visible light. Journal of Alloys and Compounds, 2022, 919, 165700.	2.8	23
431	Construction of Plasmonic Metal@Semiconductor Core–Shell Photocatalysts: From Epitaxial to Nonepitaxial Strategies. Small Structures, 2022, 3, .	6.9	13
432	Construction of Cu2O/Cu heterojunction with hierarchical hollow sphere structure as visible-light driven photocatalyst for efficient water remediation. Journal of Environmental Chemical Engineering, 2022, 10, 108020.	3.3	3
433	Dual promotional effect of Cu _{<i>x</i>} O clusters grown with atomic layer deposition on TiO ₂ for photocatalytic hydrogen production. Catalysis Science and Technology, 2022, 12, 4511-4523.	2.1	8
434	Fabrication of Electrospun Xylan-g-PMMA/TiO2 Nanofibers and Photocatalytic Degradation of Methylene Blue. Polymers, 2022, 14, 2489.	2.0	5
435	One-Pot Sol-Gel Synthesis of Doped TiO2 Nanostructures for Photocatalytic Dye Decoloration. Russian Journal of Inorganic Chemistry, 2022, 67, 1324-1337.	0.3	6

#	Article	IF	CITATIONS
436	Water promoted photocatalytic transfer hydrogenation of furfural to furfural alcohol over ultralow loading metal supported on TiO2. Journal of Energy Chemistry, 2022, 73, 259-267.	7.1	14
437	Photocatalytic Hydrogen Production from Formic Acid Solution with Titanium Dioxide with the Aid of Simultaneous Rh Deposition. ChemEngineering, 2022, 6, 43.	1.0	6
438	Plasmon assisted high ultraviolet to visible broad band photosensitivity in lateral Ag NPs-TiO2 nanocomposite film. Surfaces and Interfaces, 2022, 31, 102090.	1.5	3
439	High-efficient mineralization of formaldehyde by three-dimensional "PIZZA―like bismuth molybdate-titania/diatomite composite. Journal of Colloid and Interface Science, 2022, 624, 713-724.	5.0	5
440	Photocatalysis vs adsorption by metal oxide nanoparticles. Journal of Materials Science and Technology, 2022, 131, 122-166.	5.6	68
441	Titanate quantum dots-sensitized Cu2S nanocomposites for superficial H2 production via photocatalytic water splitting. International Journal of Hydrogen Energy, 2022, 47, 40379-40390.	3.8	11
442	Efficient electron extraction by CoS ₂ loaded onto anatase TiO ₂ for improved photocatalytic hydrogen evolution. Journal of Physics Condensed Matter, 2022, 34, 344005.	0.7	2
443	Copper containing 3D polyaniline/phytic acid hydrogels for photocatalytic hydrogen production. Journal of Materials Science, 2022, 57, 12836-12847.	1.7	2
444	Enhancing the Visible Light Photoelectrochemical Water Splitting of TiO ₂ Photoanode <i>via</i> a p–n Heterojunction and the Plasmonic Effect. Journal of Physical Chemistry C, 2022, 126, 11510-11517.	1.5	10
445	Facile synthesis of broom stick like FeOCl/g-C3N5 nanocomposite as novel Z-scheme photocatalysts for rapid degradation of pollutants. Chemosphere, 2022, 307, 135716.	4.2	18
446	Donor-acceptor anchoring nanoarchitectonics in polymeric carbon nitride for rapid charge transfer and enhanced visible-light photocatalytic hydrogen evolution reaction. Carbon, 2022, 197, 378-388.	5.4	11
447	Carbon dioxide splitting and hydrogen production using a chemical looping concept: A review. Journal of CO2 Utilization, 2022, 63, 102139.	3.3	15
448	Novel plate-on-plate hollow structured BiOBr/Bi2MoO6 p-n heterojunctions: In-situ chemical etching preparation and highly improved photocatalytic antibacterial activity. Separation and Purification Technology, 2022, 298, 121666.	3.9	19
449	Controlled fabrication of bismuth vanadate nanotubes for visible light photocatalysis. Materials Letters, 2022, 324, 132742.	1.3	3
450	Room-temperature gas sensor based on in situ grown, etched and W-doped ZnO nanotubes functionalized with Pt nanoparticles for the detection of low-concentration H2S. Journal of Alloys and Compounds, 2022, 922, 166158.	2.8	20
451	Selective Photocatalytic Oxidation of Methane to Oxygenates over Cu–W–TiO ₂ with Significant Carrier Traps. ACS Catalysis, 2022, 12, 9515-9525.	5.5	34
452	Comparison of Anatase and Rutile for Photocatalytic Application: the Short Review. East European Journal of Physics, 2021, , 18-30.	0.1	1
453	Enhanced Photoelectrochemical Activity of TiO2 Nanotubes Decorated with Lanthanide Ions for Hydrogen Production. Catalysts, 2022, 12, 866.	1.6	5

#	ARTICLE	IF	CITATIONS
454	Lowâ€dose Irâ€doped TiO ₂ supported Ptâ€Co bimetallic nanoparticles: A highly active and COâ€tolerant electrocatalyst towards methanol oxidation reaction. International Journal of Energy Research, 2022, 46, 19221-19232.	2.2	3
455	Tuning the co-catalyst loading for the optimization of thermo-photocatalytic hydrogen production over Cu/TiO2. Applied Catalysis A: General, 2022, 643, 118804.	2.2	7
456	Laser Ablation Nanoarchitectonics of Au–Cu Alloys Deposited on TiO ₂ Photocatalyst Films for Switchable Hydrogen Evolution from Formic Acid Dehydrogenation. ACS Omega, 2022, 7, 31260-31270.	1.6	9
457	Well-defined Z-scheme Na2Ti3O7/Ag/CdS multidimensional heterojunctions with enhanced H2 production from seawater under visible light. International Journal of Hydrogen Energy, 2022, 47, 30503-30516.	3.8	8
458	Efficient Photocatalytic Nanocomposites of Anatase/Rutile Mixed-Phase Titania with MWCNTs and WC for Visible and UV-A Ranges. Journal of Cluster Science, 2023, 34, 1595-1604.	1.7	2
459	Progress in the Structural Design of a Titanium Dioxide Membrane and its Photocatalytic Degradation Properties. International Journal of Electrochemical Science, 2022, 17, 220952.	0.5	2
460	Preparation and performance evaluation of BiOI photocatalytic film. Chemical Physics Letters, 2022, 805, 139926.	1.2	1
461	Fabrication of visible-light-driven bimetallic MOF-derived Ag/NiOx/N-TiO2: Photocatalytic hydrogen production mechanism and methanol transformation pathway. Journal of Environmental Chemical Engineering, 2022, 10, 108375.	3.3	3
462	In-situ topotactic construction of novel rod-like Bi2S3/Bi5O7I p-n heterojunctions with highly enhanced photocatalytic activities. Journal of Materials Science and Technology, 2023, 135, 126-141.	5.6	25
463	Porous 3D carbon-based materials: An emerging platform for efficient hydrogen production. Nano Research, 2023, 16, 127-145.	5 . 8	20
464	Surface Bandgap Engineering of Nanostructured Implants for Rapid Photothermal Ion Therapy of Bone Defects. Advanced Healthcare Materials, 2022, 11 , .	3.9	14
465	Photocatalytic activity of nano-sized Ag and Au metal-doped TiO2 embedded in rGO under visible light irradiation. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2022, 286, 116023.	1.7	13
466	Efficiently photocatalytic H2O overall splitting within the strengthened polarized field by reassembling surface single atoms. Applied Catalysis B: Environmental, 2023, 320, 121945.	10.8	15
467	Ni-doped hybrids of TiO2 and two-dimensional Ti3C2 MXene for enhanced photocatalytic performance. Physica E: Low-Dimensional Systems and Nanostructures, 2023, 145, 115476.	1.3	7
468	Mechanism of Titanium Electrochemical Oxidation Via Isotopic Labeling, High Resolution Ion Depth Profiling, and Impedance Spectroscopy. SSRN Electronic Journal, 0, , .	0.4	0
469	Single s-block and p-block metal sites for photocatalytic degradation of organic pollutants and hydrogen evolution. New Journal of Chemistry, 2022, 46, 18157-18164.	1.4	2
470	Dominant role of OH ^{â^'} and Ti ³⁺ defects on the electronic structure of TiO ₂ thin films for water splitting. Dalton Transactions, 2022, 51, 15300-15311.	1.6	6
471	Silver based photocatalysts in emerging applications. Nanoscale, 2022, 14, 11909-11922.	2.8	13

#	Article	IF	CITATIONS
472	Metal-doping of halide perovskite nanocrystals for energy and environmental photocatalysis: challenges and prospects. Journal of Materials Chemistry A, 2022, 10, 22915-22928.	5.2	15
473	One-pot microwave synthesis of Pd modified titanium dioxide nanocrystals for 3D aerogel monoliths with efficient visible-light photocatalytic activity in a heated gas flow reactor. Journal of Materials Chemistry A, 2022, 10, 18383-18395.	5.2	11
474	Understanding the Pulsed Laser-Induced Modification Processes of Tio2 Nanomaterials in Aqueous Solution. SSRN Electronic Journal, 0 , , .	0.4	0
475	TiO2-based photocatalysts for CO2 reduction and solar fuel generation. Chinese Journal of Catalysis, 2022, 43, 2500-2529.	6.9	31
476	New picolinate-functionalized titanium-oxide clusters: syntheses, structures and photocatalytic H ₂ evolution. Dalton Transactions, 2022, 51, 15385-15392.	1.6	4
477	Photocatalytic H ₂ Oâ€toâ€H ₂ O ₂ and â€H ₂ affected by Pdâ€TiO _{2â€Î} /TiO ₂ . International Journal of Energy Research, 0, , .	2.2	1
478	Efficient and Stable MoO _{<i>X</i>} @Mo-BiVO ₄ Photoanodes for Photoelectrochemical Water Oxidation: Optimization and Understanding. ACS Applied Energy Materials, 2022, 5, 11568-11580.	2.5	7
479	Ultralong-lived triplet excitons of room-temperature phosphorescent carbon dots located on g-C3N4 to boost photocatalysis. Science China Materials, 2023, 66, 664-671.	3.5	33
480	Influence of Er and Yb on photoelectrochemical performance of TiO2 thin film. Applied Surface Science, 2023, 608, 155127.	3.1	4
481	Molecularly imprinted photocatalysts: fabrication, application and challenges. Materials Advances, 2022, 3, 8830-8847.	2.6	3
482	Laser-Based Synthesis of TiO2-Pt Photocatalysts for Hydrogen Generation. Materials, 2022, 15, 7413.	1.3	10
483	Effects of Hydroxy Groups in Anthraquinone Dyes on Photocatalytic Activity of Visible-light-sensitized Pt-TiO2 for Hydrogen Evolution. Catalysis Surveys From Asia, 0, , .	1.0	1
484	UV-light-driven conversion of gadoterate meglumine: Insight into the photocatalyst's influence on conversion pathway, transformation products, and release of toxic ionic gadolinium. Catalysis Communications, 2022, 172, 106544.	1.6	0
485	Accelerating Electronâ€Transfer Dynamics by TiO ₂ â€Immobilized Reversible Singleâ€Atom Copper for Enhanced Artificial Photosynthesis of Urea. Advanced Materials, 2022, 34, .	11.1	40
486	A short review on generation of green fuel hydrogen through water splitting. International Journal of Hydrogen Energy, 2023, 48, 523-541.	3.8	54
487	Redox Dynamics of Pt and Cu Nanoparticles on TiO ₂ during the Photocatalytic Oxidation of Methanol under Aerobic and Anaerobic Conditions Studied by In Situ Modulated Excitation X-ray Absorption Spectroscopy. ACS Catalysis, 2022, 12, 12879-12889.	5.5	4
488	Pt Preferential incorporation onto TiO2 IN TiO2-carbon composites for hydrogen production from glycerol photoreforming. Catalysis Today, 2023, 413-415, 113943.	2.2	2
489	Application of Rh/TiO2 Nanotube Array in Photocatalytic Hydrogen Production from Formic Acid Solution. Journal of Composites Science, 2022, 6, 327.	1.4	6

#	Article	IF	CITATIONS
490	Combining density functional theory and CFD-PBM model to predict TiO2 nanoparticle evolution during chemical vapor deposition. Chemical Engineering Journal, 2023, 454, 140174.	6.6	7
491	Mechanism of titanium electrochemical oxidation via isotopic labeling, high resolution ion depth profiling, and impedance spectroscopy. Electrochimica Acta, 2022, 435, 141342.	2.6	1
492	Synthesis and evaluation of photocatalytic properties of Na–TiO2/Sr4All4O25:Eu,Dy phosphor composites. Materials Science in Semiconductor Processing, 2023, 153, 107132.	1.9	0
493	Multifunctional bandgap-reduced ZnO nanocrystals for photocatalysis, self-cleaning, and antibacterial glass surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 656, 130447.	2.3	9
494	ZnO/Chalcogenides Semiconductor Heterostructures for Photoelectrochemical Water Splitting. Materials Horizons, 2022, , 3-35.	0.3	3
495	Synthesis of a multi-functionalized NiCo ₂ O ₄ spinel heterostructure <i>via</i> the hydrothermal route for high-performance photo-electrocatalytic, anti-bacterial and eco-toxicity applications. New Journal of Chemistry, 2023, 47, 571-588.	1.4	9
496	Computational screening of transition metal-doped CdS for photocatalytic hydrogen production. Npj Computational Materials, 2022, 8, .	3.5	8
497	Photocatalytic hydrogen generation using TiO ₂ : a state-of-the-art review. Zeitschrift Fur Physikalische Chemie, 2022, 236, 1697-1728.	1.4	2
498	A facile way to synthesize noble metal free TiO2 based catalysts for glycerol photoreforming. Journal of Industrial and Engineering Chemistry, 2023, 118, 247-258.	2.9	13
499	The Role of Nitrogen-Doped TiO2 Supported by Platinum Catalyst Synthesized via Various Mode Preparations for Photocatalytic Enhancement. Nanomaterials, 2022, 12, 3998.	1.9	0
500	Boundary effect of Ag/TiO2 on catalytic H2O splitting for H2 production: A theoretical account. International Journal of Hydrogen Energy, 2023, 48, 3838-3848.	3.8	5
501	Photocatalytic hydrogen production, dye degradation, and antimicrobial activity by Ag-Fe co-doped TiO2 nanoparticles. Journal of Molecular Liquids, 2023, 369, 120948.	2.3	36
502	A band-to-band transition visible-light-responsive anatase titania photocatalyst by N,F-codoping for water splitting and CO ₂ reduction. Journal of Materials Chemistry A, 2022, 11, 141-148.	5.2	4
503	Colloidal Cu-doped TiO2 nanocrystals containing oxygen vacancies for highly-efficient photocatalytic degradation of benzene and antibacterial. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 658, 130741.	2.3	6
504	Strong redox-capable graphdiyne-based double S-scheme heterojunction 10%GC/Mo for enhanced photocatalytic hydrogen evolution. Journal of Environmental Chemical Engineering, 2023, 11, 109119.	3.3	6
505	Sunlight-active hierarchical Ag@insulator@ZnO core-shell array based on natural diatoms for environmental remediation. Applied Materials Today, 2023, 30, 101698.	2.3	1
506	Perovskite catalysts with different dimensionalities for environmental and energy applications: A review. Separation and Purification Technology, 2023, 307, 122716.	3.9	71
507	Visible light-responsive photocatalytic-based sustainable construction material for environmental remediation. Ceramics International, 2023, 49, 11076-11090.	2.3	2

#	Article	IF	Citations
508	Template-free synthesis of coreâ€"shell Fe3O4@MoS2@mesoporous TiO2 magnetic photocatalyst for wastewater treatment. International Journal of Minerals, Metallurgy and Materials, 2023, 30, 177-191.	2.4	14
509	Light-Induced Defect Formation and Pt Single Atoms Synergistically Boost Photocatalytic H ₂ Production in 2D TiO ₂ -Bronze Nanosheets. ACS Sustainable Chemistry and Engineering, 2022, 10, 17286-17296.	3.2	14
510	Efficient Strategy for U(VI) Photoreduction: Simultaneous Construction of U(VI) Confinement Sites and Water Oxidation Sites. ACS Applied Materials & Samp; Interfaces, 2023, 15, 1063-1072.	4.0	9
511	Identification of Ectoparasites that Infect Mangrove Crabs (Scylla Serrata) in Asahan District, Indonesia. IOP Conference Series: Earth and Environmental Science, 2022, 1118, 012007.	0.2	0
512	Mechanosynthesis of Mesoporous Bi-Doped TiO2: The Effect of Bismuth Doping and Ball Milling on the Crystal Structure, Optical Properties, and Photocatalytic Activity. Crystals, 2022, 12, 1750.	1.0	2
513	Aluminum Cation Doping in Ruddlesden-Popper Sr2TiO4 Enables High-Performance Photocatalytic Hydrogen Evolution. Hydrogen, 2022, 3, 501-511.	1.7	1
514	Influence of substituted acetic acids on "bridge―synthesis of highly photocatalytic active heterophase TiO2 in hydrogen production. Journal of Sol-Gel Science and Technology, 2023, 105, 471-488.	1.1	4
515	Reduced Ti–Nb–O Nanotube Photoanode with Bulk-Phase Nb Doping and Surface Oxygen Vacancy Engineering for Enhanced Photoelectrochemical Water Splitting. Energy & Samp; Fuels, 2023, 37, 592-603.	2.5	8
516	Pristine TiO2 and Sr-Doped TiO2 Nanostructures for Enhanced Photocatalytic and Electrocatalytic Water Splitting Applications. Catalysts, 2023, 13, 93.	1.6	14
517	Easy way to produce iron-doped titania nanoparticles via the solid-state method and investigation their photocatalytic activity. Journal of Materials Research, 2023, 38, 1282-1292.	1.2	7
518	Modulation of the Work Function of TiO ₂ Nanotubes by Nitrogen Doping: Implications for the Photocatalytic Degradation of Dyes. ACS Applied Nano Materials, 2023, 6, 50-60.	2.4	10
519	Preparation of doped TiO2 nanomaterials and their applications in photocatalysis. Bulletin of Materials Science, 2023, 46, .	0.8	4
520	Photocatalytic and antimicrobial activity of sulfur functionalized TiO $<$ sub $>$ 2 $<$ /sub $>$ containing composite films. Chemical Engineering and Technology, 0, , .	0.9	1
521	Recent advances in TiO2/ZnS-based binary and ternary photocatalysts for the degradation of organic pollutants. Science of the Total Environment, 2023, 868, 161525.	3.9	43
522	Photobio-electrocatalytic production of H2 using fluorine-doped tin oxide (FTO) electrodes covered with a NiO-In2S3 p-n junction and NiFeSe hydrogenase. Bioelectrochemistry, 2023, 150, 108361.	2.4	2
523	Insights into hybrid TiO2-g-C3N4 heterostructure composite decorated with rGO sheet: A highly efficient photocatalyst for boosted solar fuel (hydrogen) generation. Chemical Physics Impact, 2023, 6, 100157.	1.7	4
524	Performance of CdS/TNTAs Nanocomposite in Removing Ciprofloxacin and Hydrogen Production using Simultaneously Electrocoagulation-Photocatalysis Process. Bulletin of Chemical Reaction Engineering and Catalysis, 2022, 17, 882-893.	0.5	0
525	Recent Advances in Black TiO2 Nanomaterials for Solar Energy Conversion. Nanomaterials, 2023, 13, 468.	1.9	8

#	Article	IF	CITATIONS
526	Effect of Synthesis Method on Reaction Mechanism for Hydrogen Evolution over CuxOy/TiO2 Photocatalysts: A Kinetic Analysis. International Journal of Molecular Sciences, 2023, 24, 2004.	1.8	1
528	Imbedding Pd Nanoparticles into Porous In2O3 Structure for Enhanced Low-Concentration Methane Sensing. Sensors, 2023, 23, 1163.	2.1	2
529	Color TiO ₂ Materials as Emerging Catalysts for Visible-NIR Light Photocatalysis, A Review. Catalysis Reviews - Science and Engineering, 0, , 1-41.	5.7	7
530	Role of nanocomposites in hydrogen production. , 2023, , 149-173.		0
531	Mechanistic study of B-TiO2/BiVO4 S-scheme heterojunction photocatalyst for tetracycline hydrochloride removal and H2 production. Separation and Purification Technology, 2023, 312, 123398.	3.9	28
532	Influence of gold nanoparticles size for photocatalytic NO oxidation in low loading Au/TiO <mml:math altimg="si56.svg" display="inline" id="d1e1158" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow></mml:mrow><mml:mrow><mml:mrow></mml:mrow></mml:mrow><td>3.0</td><td>3</td></mml:msub></mml:math>	3.0	3
533	rechnology and Innovation, 2025, 30, 103070. Apparent quantum yield – Key role of spatial distribution of irradiation. Applied Catalysis A: General, 2023, 658, 119166.	2.2	6
534	BN/Cs2CO3/TiO2 composite nanofibers to improve hydrogen generation. Journal of Alloys and Compounds, 2023, 945, 169218.	2.8	5
535	Biochar doped carbon nitride to enhance the photocatalytic hydrogen evolution through synergy of nitrogen vacancies and bridging carbon structure: Nanoarchitectonics and first-principles calculation. Carbon, 2023, 209, 117988.	5.4	8
536	Photocatalytic hydrogen evolution from glycerol-water mixture under visible light over zinc indium sulfide (Znln2S4) nanosheets grown on bismuth oxychloride (BiOCl) microplates. Journal of Colloid and Interface Science, 2023, 640, 578-587.	5.0	11
537	Monitoring Ag nanoparticles growth in undoped and Er3+-doped glasses by in-situ UV–Vis spectroscopy and its luminescent properties. Journal of Non-Crystalline Solids, 2023, 609, 122286.	1.5	0
538	Application of a new lignin/cellulose carbon xerogel/ZnO/Bi2O3/Bi° composite photocatalyst for the degradation of bisphenol-A under sunlight. Chemical Physics Impact, 2023, 6, 100182.	1.7	4
539	Amorphous quantum dots co-catalyst: Defect level induced solar-to-hydrogen production. Applied Catalysis B: Environmental, 2023, 330, 122583.	10.8	8
540	Recent progress on photocatalytic evolution of hydrogen gas over TiO2-x-based emerging nanostructures. Materials Science in Semiconductor Processing, 2023, 162, 107444.	1.9	56
541	Rational design of photoâ^'Â/electroâ^'catalytic systems for the transformation of plastic wastes. Applied Catalysis B: Environmental, 2023, 332, 122744.	10.8	10
542	Strong Metal-Support Interaction (SMSI) in Au/TiO2 photocatalysts for environmental remediation applications: Effectiveness enhancement and side effects. Journal of Environmental Chemical Engineering, 2023, 11 , 109947 .	3.3	3
543	Visible-light-driven benzyl alcohol oxidation over Pt/Mn-Bi4Ti3O12 nanosheets: Structure-function relationship of multicomponent photocatalysts. Journal of Catalysis, 2023, 418, 141-150.	3.1	11
544	Selectivity Control of CO2 Reduction over Pt/g -C3N4 Photocatalysts under Visible Light. Catalysts, 2023, 13, 273.	1.6	1

#	ARTICLE	IF	CITATIONS
545	Photo Energy-Enhanced Oxygen Reduction and Evolution Kinetics in Zn-Air Batteries. ACS Applied Materials & Samp; Interfaces, 2023, 15, 6788-6796.	4.0	3
546	Synthesis of 0D/2D CdSe/HSr2Nb3O10 n–n heterojunction with excellent visible-light-driven photocatalytic performance. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2023, 290, 116304.	1.7	O
547	Facile synthesis of Fe-doped Zn-based coordination polymer composite with enhanced visible-light-driven activity for degradation of multiple antibiotics. Separation and Purification Technology, 2023, 311, 123337.	3.9	4
548	Heterophase Polymorph of TiO2 (Anatase, Rutile, Brookite, TiO2 (B)) for Efficient Photocatalyst: Fabrication and Activity. Nanomaterials, 2023, 13, 704.	1.9	57
549	Visibleâ€"Light Driven Systems: Effect of the Parameters Affecting Hydrogen Production through Photoreforming of Organics in Presence of Cu2O/TiO2 Nanocomposite Photocatalyst. Applied Sciences (Switzerland), 2023, 13, 2337.	1.3	О
551	Promotion of dual-reaction pathway in CO2 reduction over Pt0/SrTiO3–Î: Experimental and theoretical verification. Chinese Journal of Catalysis, 2023, 46, 113-124.	6.9	9
552	Photocatalysis: TiO2, ZnO, and species of iron oxides. , 2023, , 101-126.		0
553	Synergistic combination of Au-loaded and the facet of 3D SrTiO3 nanocube-based charge carrier in plasmonic photocatalysis. Chemical Papers, 2023, 77, 3691-3702.	1.0	1
554	Cerium Synchronous Doping in Anatase for Enhanced Photocatalytic Hydrogen Production from Ethanol-Water Mixtures. Molecules, 2023, 28, 2433.	1.7	3
555	Effect of Au nanoparticles in persistent photoconductivity and dielectric relaxations of anatase TiO2. Optical Materials, 2023, 138, 113645.	1.7	6
556	Rapid elimination of antibiotic gemifloxacin mesylate and methylene blue over Pt nanoparticles dispersed chitosan/g-C3N4 ternary visible light photocatalyst. Environmental Science and Pollution Research, 2023, 30, 61710-61725.	2.7	2
557	High-Performance Photocatalytic H ₂ Production Using a Binary Cu/TiO ₂ /SrTiO ₃ Heterojunction. ACS Applied Energy Materials, 2023, 6, 4007-4015.	2.5	5
558	An overview of wastewater treatment using combined heterogeneous photocatalysis and membrane distillation. Chimica Techno Acta, 2023, 10, .	0.3	1
559	Recent Advancements in Light-responsive Supercapacitors. Current Nanoscience, 2024, 20, 74-88.	0.7	3
560	Porphyrin conjugated polymer/Pt-loaded graphite carbon nitride nanocomposites for efficient charge separation and broadband responsive H2 evolution. Nanotechnology, 0, , .	1.3	0
561	Understanding the pulsed laserâ€induced modification processes of <scp>TiO₂</scp> nanomaterials in aqueous solution. Bulletin of the Korean Chemical Society, 2023, 44, 634-644.	1.0	1
562	PiFM and XPS Studies of Porous TiO2 Films for the Photocatalytic Decomposition of Polystyrene. Catalysts, 2023, 13, 725.	1.6	1
563	Non-Noble Nanoparticles Cocatalysts in TiO ₂ for Photocatalytic Hydrogen Production from Water. A review. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2023, 70, 203-212.	0.1	1

#	ARTICLE	IF	CITATIONS
564	In-situ monitoring of plasmon-induced nanoscale photocatalytic activity from Au-decorated TiO ₂ microflowers. Nano Futures, 2023, 7, 025002.	1.0	1
586	Photocatalysis., 2023,, 387-415.		0
631	Revisiting the Underlying Chemistry Enhancing the Activity of Photoelectro- and Photo-Catalysts Concerning H2 Production. Engineering Materials, 2024, , 119-150.	0.3	0
645	Valorizing Glycerol into Valuable Chemicals Through Photocatalytic Processes Utilizing Innovative Nano-Photocatalysts., 2024,, 149-234.		0
669	Photocatalytic production of ammonia. , 2024, , 89-112.		0
673	Graphitic carbon nitride as a metal free photocatalyst for solar water splitting. , 2024, , 347-380.		0