Reduction of Nitro Compounds Using 3d-Non-Noble Me

Chemical Reviews 119, 2611-2680

DOI: 10.1021/acs.chemrev.8b00547

Citation Report

#	Article	IF	CITATIONS
1	Efficient Transfer Hydrogenation of Nitro Compounds to Amines Enabled by Mesoporous N-Stabilized Co-Zn/C. Frontiers in Chemistry, 2019, 7, 590.	1.8	18
2	Hydrogenation of Functionalized Nitroarenes Catalyzed by Singleâ€Phase Pyrite FeS ₂ Nanoparticles on N,Sâ€Codoped Porous Carbon. ChemSusChem, 2019, 12, 4636-4644.	3.6	44
3	Computational study about the derivatives of pyrrole as high-energy-density compounds. Molecular Simulation, 2019, 45, 1459-1464.	0.9	7
4	Reaction-volume dependent chemistry of highly selective photocatalytic reduction of nitrobenzene. Reaction Chemistry and Engineering, 2019, 4, 1752-1756.	1.9	11
5	On the catalytic transfer hydrogenation of nitroarenes by a cubane-type Mo ₃ S ₄ cluster hydride: disentangling the nature of the reaction mechanism. Physical Chemistry Chemical Physics, 2019, 21, 17221-17231.	1.3	6
6	Facile synthesis of supported Ru–Triphos catalysts for continuous flow application in selective nitrile reduction. Chemical Science, 2019, 10, 8195-8201.	3.7	11
7	Catalytic Application of Tactically Aligned Cd(II)â€Based Luminescent 3Dâ€ S upramolecular NetworksÂ. ChemistrySelect, 2019, 4, 7162-7172.	0.7	3
8	4,4′-Bipyridyl-Catalyzed Reduction of Nitroarenes by Bis(neopentylglycolato)diboron. Organic Letters, 2019, 21, 9812-9817.	2.4	40
9	In-situ synthesis of magnetic nanoparticle immobilized heterogeneous catalyst through mussel mimetic approach for the efficient removal of water pollutants. Colloids and Interface Science Communications, 2019, 33, 100218.	2.0	52
10	Chemoselective hydrogenation of 3-nitrostyrene over Ag/TiO2-SiO2 catalyst in a flow reactor. Mendeleev Communications, 2019, 29, 553-555.	0.6	6
11	Aqueous Cathodic Exfoliation Strategy toward Solution-Processable and Phase-Preserved MoS ₂ Nanosheets for Energy Storage and Catalytic Applications. ACS Applied Materials & Interfaces, 2019, 11, 36991-37003.	4.0	43
12	Amphiphilic Mesoporous Sandwich-Structured Catalysts for Selective Hydrogenation of 4-Nitrostyrene in Water. ACS Applied Materials & Interfaces, 2019, 11, 39116-39124.	4.0	27
13	Coâ€MOFâ€Derived Hierarchical Mesoporous Yolkâ€shellâ€structured Nanoreactor for the Catalytic Reduction of Nitroarenes with Hydrazine Hydrate. ChemCatChem, 2019, 11, 3327-3338.	1.8	28
14	Oneâ€Pot Synthesis of Heterobimetallic Metal–Organic Frameworks (MOFs) for Multifunctional Catalysis. Chemistry - A European Journal, 2019, 25, 10490-10498.	1.7	99
15	Sustainable Amine Synthesis: Iron Catalyzed Reactions of Hydrosilanes with Imines, Amides, Nitroarenes and Nitriles. ChemistrySelect, 2019, 4, 6753-6777.	0.7	23
16	Borohydride-Assisted Surface Activation of Co ₃ O ₄ /CoFe ₂ O ₄ Composite and Its Catalytic Activity for 4-Nitrophenol Reduction. ACS Omega, 2019, 4, 10129-10139.	1.6	47
17	A Manganese Nâ€Heterocyclic Carbene Catalyst for Reduction of Sulfoxides with Silanes. ChemCatChem, 2019, 11, 3839-3843.	1.8	27
18	PdO/CuO Nanoparticles on Zeolite-Y for Nitroarene Reduction and Methanol Oxidation. ACS Applied Nano Materials, 2019, 2, 3769-3779.	2.4	26

#	Article	IF	CITATIONS
19	Ferrocenyl metal–organic framework hollow microspheres for <i>in situ</i> loading palladium nanoparticles as a heterogeneous catalyst. Dalton Transactions, 2019, 48, 8995-9003.	1.6	23
20	Synthesis of cyclic <i>gem</i> -dinitro compounds <i>via</i> radical nitration of 1,6-diynes with Fe(NO ₃) ₃ ·9H ₂ O. Organic and Biomolecular Chemistry, 2019, 17, 4725-4728.	1.5	6
21	Nâ€Đoped Hierarchical Porous Carbon Embedded Synergistic Bimetallic CoCu NPs with Unparalleled Catalytic Performance. ChemCatChem, 2019, 11, 2415-2422.	1.8	13
22	Creating Coordination Mismatch in MOFs: Tuning from Pore Structure of the Derived Supported Catalysts to Their Catalytic Performance. Industrial & Engineering Chemistry Research, 2019, 58, 5543-5551.	1.8	26
23	A Cobalt Catalyst Permits the Direct Hydrogenative Synthesis of 1 <i>H</i> â€Perimidines from a Dinitroarene and an Aldehyde. ChemSusChem, 2019, 12, 3013-3017.	3.6	26
24	Multiâ€Step Reactions Involving Ironâ€Catalysed Reduction and Hydrogen Borrowing Reactions. European Journal of Inorganic Chemistry, 2019, 2019, 2471-2487.	1.0	21
25	A Broaderâ€scope Analysis of the Catalytic Reduction of Nitrophenols and Azo Dyes with Noble Metal Nanoparticles. ChemCatChem, 2019, 11, 2590-2595.	1.8	32
26	Tiâ^Pd Alloys as Heterogeneous Catalysts for the Hydrogen Autotransfer Reaction and Catalytic Improvement by Hydrogenation Effects. ChemCatChem, 2019, 11, 2432-2437.	1.8	9
27	Generation of Anisotropic Au Nanostructures in Aqueous Carboxymethyl Cellulose Matrix for Potential Catalytic Application. ChemistrySelect, 2019, 4, 14253-14260.	0.7	2
28	Best practices for reporting nanocatalytic performance: lessons learned from nitroarene reduction as a model reaction. New Journal of Chemistry, 2019, 43, 17932-17936.	1.4	12
29	Green reusable Pd nanoparticles embedded in phytochemical resins for mild hydrogenations of nitroarenes. New Journal of Chemistry, 2019, 43, 17383-17389.	1.4	6
30	A visible-light-responsive metal–organic framework for highly efficient and selective photocatalytic oxidation of amines and reduction of nitroaromatics. Journal of Materials Chemistry A, 2019, 7, 27074-27080.	5.2	52
31	State of the Art and Prospects in Metal–Organic Framework (MOF)-Based and MOF-Derived Nanocatalysis. Chemical Reviews, 2020, 120, 1438-1511.	23.0	1,505
32	Potential-tuned selective electrosynthesis of azoxy-, azo- and amino-aromatics over a CoP nanosheet cathode. National Science Review, 2020, 7, 285-295.	4.6	107
33	Differentiation of Ni3C crystalline phase from hexagonal-close-packed Ni phase in ethylene glycol-mediated sol–gel process and excellent catalytic behavior of Ni/N-doped C nanomaterials toward hydrogenation reduction reaction of 4-nitrophenol. Journal of Sol-Gel Science and Technology, 2020, 93, 341-353.	1.1	6
34	Biomimetic and bioinspired molecular electrets. How to make them and why does the established peptide chemistry not always work?. Pure and Applied Chemistry, 2020, 92, 275-299.	0.9	6
35	Support-free 3D hierarchical nanoporous Cu@Cu2O for fast tandem ammonia borane dehydrogenation and nitroarenes hydrogenation under mild conditions. Journal of Alloys and Compounds, 2020, 815, 152372.	2.8	25
36	Bioinspired Hollow Nanoreactor: Catalysts that Carry Gaseous Hydrogen for Enhanced Gasâ€Liquidâ€Solid Threeâ€Phase Hydrogenation Reactions. ChemCatChem, 2020, 12, 459-462.	1.8	11

#	Article	IF	CITATIONS
37	Time-dependent solid-state molecular motion and colour tuning of host-guest systems by organic solvents. Nature Communications, 2020, 11, 77.	5.8	51
38	Tuning acylthiourea ligands in Ru(II) catalysts for altering the reactivity and chemoselectivity of transfer hydrogenation reactions, and synthesis of 3-isopropoxy-1H-indole through a new synthetic approach. Journal of Organometallic Chemistry, 2020, 908, 121087.	0.8	13
39	Halfâ€sandwich ruthenium complexes with <scp>S</scp> chiff base ligands bearing a hydroxyl group: Preparation, characterization and catalytic activities. Applied Organometallic Chemistry, 2020, 34, e5289.	1.7	9
40	Biomass-derived carbon-supported Ni catalyst: an effective heterogeneous non-noble metal catalyst for the hydrogenation of nitro compounds. Reaction Chemistry and Engineering, 2020, 5, 58-65.	1.9	16
41	On-Line Analysis of the Heterogeneous Pd-Catalyzed Transfer Hydrogenation of p-Nitrophenol in Water with Formic Acid in a Flow Reactor. Organic Process Research and Development, 2020, 24, 686-694.	1.3	5
42	Metalâ€Decorated Pickering Emulsion for Continuous Flow Catalysis. Particle and Particle Systems Characterization, 2020, 37, 1900382.	1.2	8
43	Earth-abundant metal catalyzed hydrosilylative reduction of various functional groups. Coordination Chemistry Reviews, 2020, 405, 213110.	9.5	30
44	A Single‣ource Precursor Route toward Small‣ized Nickel Particles Embedded into SiO 2 Sheet as Magnetic Separable Catalyst. ChemistrySelect, 2020, 5, 11708-11712.	0.7	1
45	CO Activation Using Nitrogen-Doped Carbon Nanotubes for Reductive Carbonylation of Nitroaromatics to Benzimidazolinone and Phenyl Urea. ACS Applied Materials & Interfaces, 2020, 12, 48700-48711.	4.0	7
46	Heterogeneous Cu(I)â€5BAâ€15 Mediated Catalytic Reduction of Substituted Nitroarenes. ChemistrySelect, 2020, 5, 11843-11849.	0.7	3
47	Efficient nitrate and oxygen electroreduction over pyrolysis-free mesoporous covalent Co-salophen coordination frameworks on carbon nanotubes. Electrochimica Acta, 2020, 363, 137280.	2.6	15
48	Low density magnetic silicate-nickel alloy composite hollow structures: seed induced direct assembly fabrication and catalytic properties. RSC Advances, 2020, 10, 35287-35294.	1.7	3
49	Generalized Chemoselective Transfer Hydrogenation/Hydrodeuteration. Advanced Synthesis and Catalysis, 2020, 362, 4119-4129.	2.1	31
50	Confinement of Cobalt Species in Mesoporous N-Doped Carbons and the Impact on Nitroarene Hydrogenation. ACS Sustainable Chemistry and Engineering, 2020, 8, 11171-11182.	3.2	25
51	PtN ₃ -Embedded graphene as an efficient catalyst for electrochemical reduction of nitrobenzene to aniline: a theoretical study. Physical Chemistry Chemical Physics, 2020, 22, 17639-17645.	1.3	11
52	Gold(I)â€Thiolate Oligomers for Catalytic Hydrogenation of Nitroaromatics in Aqueous and Organic Medium. ChemCatChem, 2020, 12, 4558-4567.	1.8	5
53	Reduction of Nitroarenes via Catalytic Transfer Hydrogenation Using Formic Acid as Hydrogen Source: A Comprehensive Review. ChemistrySelect, 2020, 5, 13054-13075.	0.7	33
54	Terpyridine–Ru Complexes Noncovalently Supported on Cobalt Magnetic Nanoparticles for Nitroarene Transfer Hydrogenation. ACS Applied Nano Materials, 2020, 3, 11811-11818.	2.4	6

#	Article	IF	CITATIONS
55	Composition- and Condition-Dependent Kinetics of Homogeneous Ester Hydrogenation by a Mn-Based Catalyst. Journal of Physical Chemistry C, 2020, 124, 26990-26998.	1.5	7
56	HKUST-1 derived Cu@CuO _x /carbon catalyst for base-free aerobic oxidative coupling of benzophenone imine: high catalytic efficiency and excellent regeneration performance. RSC Advances, 2020, 10, 36111-36118.	1.7	5
57	Molybdenum Carbide-Promoted Cobalt as an Efficient Catalyst for Selective Hydrogenation. Industrial & Engineering Chemistry Research, 2020, 59, 14267-14277.	1.8	12
58	lonothermal Synthesis of an Antimonomolybdate Cluster, [Sb ₈ Mo ^{VI} ₁₃ Mo ^V ₅ O ₆₆] ^{5â€ and Its Catalytic Behavior to the Reduction of Nitrobenzene. Inorganic Chemistry, 2020, 59, 11213-11217.}	ʻa/ s up>,	13
59	Autogenous growth of the hierarchical V-doped NiFe layer double metal hydroxide electrodes for an enhanced overall water splitting. Dalton Transactions, 2020, 49, 11217-11225.	1.6	26
60	Catalytic reductive aminations using molecular hydrogen for synthesis of different kinds of amines. Chemical Society Reviews, 2020, 49, 6273-6328.	18.7	240
61	PtNi/C bimetallic nanocatalyst with high catalytic performance and stability for 1-nitronaphthalene hydorgenation to 1-naphthylamine. Molecular Catalysis, 2020, 494, 111151.	1.0	3
62	Synthesis of Functional Chemicals from Ligninâ€derived Monomers by Selective Organic Transformations. Advanced Synthesis and Catalysis, 2020, 362, 5143-5169.	2.1	42
63	Transition-Metal-Catalyzed Denitrative Coupling of Nitroarenes. ACS Catalysis, 2020, 10, 9856-9871.	5.5	67
64	Copper-based nanocatalysts for nitroarene reduction-A review of recent advances. Inorganic Chemistry Communication, 2020, 121, 108181.	1.8	38
65	Iron oxide modified N-doped porous carbon derived from porous organic polymers as a highly-efficient catalyst for reduction of nitroarenes. Molecular Catalysis, 2020, 498, 111249.	1.0	13
66	Carbon-Supported Cobalt Nanoparticles as Catalysts for the Selective Hydrogenation of Nitroarenes to Arylamines and Pharmaceuticals. ACS Applied Nano Materials, 2020, 3, 11070-11079.	2.4	38
67	CO-free, aqueous mediated, instant and selective reduction of nitrobenzene <i>via</i> robustly stable chalcogen stabilised iron carbonyl clusters (Fe ₃ E ₂ (CO) ₉ , E = S,) Tj ETQqO (D D 7rgBT	O ¥e rlock 10
68	A Walk through Recent Nitro Chemistry Advances. Molecules, 2020, 25, 3680.	1.7	22
69	Synthesis of Tetrahydroquinolines via Borrowing Hydrogen Methodology Using a Manganese PN ³ Pincer Catalyst. Organic Letters, 2020, 22, 7964-7970.	2.4	20
70	Role of dissolved oxygen in nitroarene reduction by a heterogeneous silver textile catalyst in water. New Journal of Chemistry, 2020, 44, 17780-17790.	1.4	7
71	Coupling without Coupling Reactions: En Route to Developing Phenols as Sustainable Coupling Partners via Dearomatization–Rearomatization Processes. Accounts of Chemical Research, 2020, 53, 2395-2413.	7.6	53
72	A Mechanism for Reversible Solid-State Transitions Involving Nitro Torsion. Chemistry of Materials, 2020, 32, 7754-7765.	3.2	29

CITATION REPORT

#	Article	IF	CITATIONS
73	Organocatalytic Reduction of Nitroarenes with Phenyl(2â€quinolyl)methanol. ChemistrySelect, 2020, 5, 10511-10515.	0.7	5
74	Insights into the Pt (111) Surface Aid in Predicting the Selective Hydrogenation Catalyst. Catalysts, 2020, 10, 1473.	1.6	3
75	Preparation of N-acetyl-para-aminophenol via a flow route of a clean amination and acylation of p-nitrophenol catalyzing by core-shell Cu2O@CeO2. Arabian Journal of Chemistry, 2020, 13, 8613-8625.	2.3	3
76	Highly Efficient Mesoporous Core-Shell Structured Ag@SiO2 Nanosphere as an Environmentally Friendly Catalyst for Hydrogenation of Nitrobenzene. Nanomaterials, 2020, 10, 883.	1.9	13
77	MOF-Derived Cu-Nanoparticle Embedded in Porous Carbon for the Efficient Hydrogenation of Nitroaromatic Compounds. Catalysis Letters, 2020, 150, 3394-3401.	1.4	17
78	Homogeneous <i>vs.</i> heterogeneous: mechanistic insights into iron group metal-catalyzed reductions from poisoning experiments. Catalysis Science and Technology, 2020, 10, 3502-3514.	2.1	35
79	Synthesis, characterization, and catalytic activity of halfâ€sandwich ruthenium complexes with pyridine/phenylene bridged NHC = E (NHC = Nâ€heterocyclic carbene, E = S, Se) ligands. Applied Organometallic Chemistry, 2020, 34, e5651.	1.7	6
80	Synthesis and practical applications of 2-(2-nitroalkyl)pyrroles. Organic and Biomolecular Chemistry, 2020, 18, 4533-4546.	1.5	13
81	Copper(II) complex with oxazoline ligand: Synthesis, structures and catalytic activity for nitro compounds reduction. Journal of Molecular Structure, 2020, 1217, 128349.	1.8	6
82	Selective mono-N-methylation of nitroarenes with methanol catalyzed by atomically dispersed NHC-Ir solid assemblies. Journal of Catalysis, 2020, 389, 337-344.	3.1	36
83	Iron Pyrite Nanocrystals: A Potential Catalyst for Selective Transfer Hydrogenation of Functionalized Nitroarenes. ACS Omega, 2020, 5, 14104-14110.	1.6	8
84	Iron/N-doped graphene nano-structured catalysts for general cyclopropanation of olefins. Chemical Science, 2020, 11, 6217-6221.	3.7	12
85	Preparation of Metal Oxides Containing ppm Levels of Pd as Catalysts for the Reduction of Nitroarene and Evaluation of Their Catalytic Activity by the Fluorescence-Based High-Throughput Screening Method. Catalysts, 2020, 10, 542.	1.6	2
86	Biomass-derived Fe-NC hybrid for hydrogenation with formic acid: control of Fe-based nanoparticle distribution. RSC Advances, 2020, 10, 10689-10694.	1.7	10
87	Synthetic application of gold complexes on magnetic supports. Applied Organometallic Chemistry, 2020, 34, e5626.	1.7	12
88	Sustainable Hydrogenation of Nitroarenes to Anilines with Highly Active <i>inâ€situ</i> Generated Copper Nanoparticles. ChemCatChem, 2020, 12, 2833-2839.	1.8	14
89	Metal-Free Chemoselective Hydrogenation of Nitroarenes by N-Doped Carbon Nanotubes via In Situ Polymerization of Pyrrole. ACS Omega, 2020, 5, 7519-7528.	1.6	17
90	Integration of Metal Single Atoms on Hierarchical Porous Nitrogen-Doped Carbon for Highly Efficient Hydrogenation of Large-Sized Molecules in the Pharmaceutical Industry. ACS Applied Materials & Interfaces, 2020, 12, 17651-17658.	4.0	27

#	Article	IF	CITATIONS
91	Chemoselective Hydrogenation of Functionalized Nitroarenes into Anilines by Supported Molybdenum Catalysts. ChemistrySelect, 2020, 5, 7249-7253.	0.7	4
92	Bio-waste chitosan-derived N-doped CNT-supported Ni nanoparticles for selective hydrogenation of nitroarenes. Dalton Transactions, 2020, 49, 10431-10440.	1.6	40
93	Earth-Abundant d-Block Metal Nanocatalysis for Coupling Reactions in Polyols. Molecular Catalysis, 2020, , 249-280.	1.3	2
94	Homogeneous cobalt-catalyzed deoxygenative hydrogenation of amides to amines. Catalysis Science and Technology, 2020, 10, 6116-6128.	2.1	15
95	Fe Single Atoms and Fe ₂ O ₃ Clusters Liberated from N-Doped Polyhedral Carbon for Chemoselective Hydrogenation under Mild Conditions. ACS Applied Materials & Interfaces, 2020, 12, 34122-34129.	4.0	47
96	Efficient Nitrate Reduction over Novel Covalent Ag-Salophen Polymer-Derived "Vein-Leaf-Apple―like Ag@Carbon Structures. ACS Applied Materials & Interfaces, 2020, 12, 33186-33195.	4.0	28
97	Towards high-performance heterogeneous palladium nanoparticle catalysts for sustainable liquid-phase reactions. Reaction Chemistry and Engineering, 2020, 5, 1556-1618.	1.9	21
98	Graphene-TiO2-polyaniline nanocomposite: A new green and efficient catalyst as a alternative for noble metal and NaBH4 induced the reduction of 4-nitro phenol. FlatChem, 2020, 22, 100179.	2.8	16
99	A "competitive occupancy―strategy toward Co–N ₄ single-atom catalysts embedded in 2D TiN/rGO sheets for highly efficient and stable aromatic nitroreduction. Journal of Materials Chemistry A, 2020, 8, 4807-4815.	5.2	19
100	Inâ€situ Construction of Graphiteâ€Supported Magnetic Carbocatalysts from a Metalloâ€Supramolecular Polymer: High Performance for Catalytic Transfer Hydrogenation. ChemNanoMat, 2020, 6, 629-638.	1.5	4
101	Multifunctional porous organic polymers (POPs): Inverse adsorption of hydrogen over nitrogen, stabilization of Pd(0) nanoparticles, and catalytic cross-coupling reactions and reductions. Journal of Catalysis, 2020, 384, 61-71.	3.1	32
102	Commercially Available CuO Catalyzed Hydrogenation of Nitroarenes Using Ammonia Borane as a Hydrogen Source. ChemCatChem, 2020, 12, 2426-2430.	1.8	27
103	High performance of nitrogen-doped carbon-supported cobalt catalyst for the mild and selective synthesis of primary amines. Arabian Journal of Chemistry, 2020, 13, 4916-4925.	2.3	10
104	Cobalt Nanoparticles Encapsulated in Nitrogen-Doped Carbon Shells: Efficient and Stable Catalyst for Nitrobenzene Reduction. Industrial & Engineering Chemistry Research, 2020, 59, 4367-4376.	1.8	55
105	Well-constructed Ni@CN material derived from di-ligands Ni-MOF to catalyze mild hydrogenation of nitroarenes. Molecular Catalysis, 2020, 485, 110838.	1.0	36
106	Simultaneous degradation and reduction of multiple organic compounds by poly(vinyl imidazole) cryogel-templated Co, Ni, and Cu metal nanoparticles. New Journal of Chemistry, 2020, 44, 4417-4425.	1.4	10
107	A Common, Facile and Ecoâ€Friendly Method for the Reduction of Nitroarenes, Selective Reduction of Polyâ€Nitroarenes and Deoxygenation of <i>N</i> â€Oxide Containing Heteroarenes Using Elemental Sulfur. European Journal of Organic Chemistry, 2020, 2020, 1853-1865.	1.2	12
108	Selectivity Regulation in Au-Catalyzed Nitroaromatic Hydrogenation by Anchoring Single-Site Metal Oxide Promoters. ACS Catalysis, 2020, 10, 2837-2844.	5.5	42

#	Article	IF	Citations
109	Highly Dispersed Pt Nanoparticles on N-Doped Ordered Mesoporous Carbon as Effective Catalysts for Selective Hydrogenation of Nitroarenes. Catalysts, 2020, 10, 374.	1.6	8
110	Tuneable Copper Catalysed Transfer Hydrogenation of Nitrobenzenes to Aniline or Azo Derivatives. Advanced Synthesis and Catalysis, 2020, 362, 2689-2700.	2.1	15
111	Highly Active Hydrogenation Catalysts Based on Pd Nanoparticles Dispersed along Hierarchical Porous Silica Covered with Polydopamine as Interfacial Glue. Catalysts, 2020, 10, 449.	1.6	9
112	Metal–Organic Framework-Based Catalysts with Single Metal Sites. Chemical Reviews, 2020, 120, 12089-12174.	23.0	692
113	Room temperature selective reduction of nitroarenes to azoxy compounds over Ni-TiO2 catalyst. Molecular Catalysis, 2020, 490, 110943.	1.0	14
114	Pd/[C2NH2mim][Br] Thin Film Versus Pd/[C8mim][Cl] or Pd/[C8mim][BF4]: Catalytic Applications in Electrooxidation of Methanol, p-Nitrophenol Reduction and C–C Coupling Reaction. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30, 3448-3475.	1.9	5
115	Co,N-Codoped Porous Carbon-Supported Co _{<i>y</i>>} ZnS with Superior Activity for Nitroarene Hydrogenation. ACS Sustainable Chemistry and Engineering, 2020, 8, 6118-6126.	3.2	38
116	Ultrasound-assisted rapid reduction of nitroaromatics to anilines using gallium metal. Synthetic Communications, 2020, 50, 1404-1407.	1.1	1
117	Chemoselective Hydrogenation of Nitroaromatics at the Nanoscale Iron(III)–OH–Platinum Interface. Angewandte Chemie - International Edition, 2020, 59, 12736-12740.	7.2	94
118	Heterogeneous iron-containing nanocatalysts – promising systems for selective hydrogenation and hydrogenolysis. Catalysis Science and Technology, 2020, 10, 3160-3174.	2.1	23
119	Chemoselective Hydrogenation of Nitroaromatics at the Nanoscale Iron(III)–OH–Platinum Interface. Angewandte Chemie, 2020, 132, 12836-12840.	1.6	7
120	MIL-53 (Al) derived single-atom Rh catalyst for the selective hydrogenation of m-chloronitrobenzene into m-chloroaniline. Chinese Journal of Catalysis, 2021, 42, 824-834.	6.9	9
121	N-Radical enabled cyclization of 1,n-enynes. Chinese Journal of Catalysis, 2021, 42, 731-742.	6.9	33
122	H ₂ Activation with Co Nanoparticles Encapsulated in Nâ€Doped Carbon Nanotubes for Green Synthesis of Benzimidazoles. ChemSusChem, 2021, 14, 709-720.	3.6	23
123	General Synthesis of Secondary Alkylamines by Reductive Alkylation of Nitriles by Aldehydes and Ketones. Chemistry - A European Journal, 2021, 27, 1609-1614.	1.7	13
124	Synthesis of Nitro Alcohols by Riboflavin Promoted Tandem Nefâ€Henry Reactions on Nitroalkanes. Advanced Synthesis and Catalysis, 2021, 363, 742-746.	2.1	5
125	Gas–Liquid–Solid Triphase Interfacial Chemical Reactions Associated with Gas Wettability. Advanced Materials Interfaces, 2021, 8, 2001636.	1.9	17
126	Chemoselective hydroborative reduction of nitro motifs using a transition-metal-free catalyst. Organic Chemistry Frontiers, 2021, 8, 4554-4559.	2.3	54

#	Article	IF	CITATIONS
127	Sol–gel preparation of crystalline Ni ₁₂ P ₅ /N-doped carbon and amorphous Ni–P–C catalysts and their high catalytic performances toward hydrogenation reduction reaction of 4-nitrophenol. New Journal of Chemistry, 2021, 45, 15801-15807.	1.4	7
128	Homogeneous and heterogeneous catalysts for hydrogenation of CO ₂ to methanol under mild conditions. Chemical Society Reviews, 2021, 50, 4259-4298.	18.7	167
129	Selective Reduction of Nitroarenes to Arylamines by the Cooperative Action of Methylhydrazine and a Tris(<i>N</i> -heterocyclic thioamidate) Cobalt(III) Complex. Journal of Organic Chemistry, 2021, 86, 2895-2906.	1.7	12
130	Applications of MAX phases and MXenes as catalysts. Journal of Materials Chemistry A, 2021, 9, 19589-19612.	5.2	59
131	Pd/C-catalyzed transfer hydrogenation of aromatic nitro compounds using methanol as a hydrogen source. Journal of the Indian Chemical Society, 2021, 98, 100014.	1.3	9
132	Metal–organic framework (MOF)-derived catalysts for chemoselective hydrogenation of nitroarenes. New Journal of Chemistry, 2021, 45, 18268-18276.	1.4	18
133	Electrochemical oxidation of biomass derived 5-hydroxymethylfurfural (HMF): pathway, mechanism, catalysts and coupling reactions. Green Chemistry, 2021, 23, 4228-4254.	4.6	191
134	Chromium-Catalyzed Deoxygenative Hydroboration of Nitro Compounds. Chinese Journal of Organic Chemistry, 2021, 41, 1255.	0.6	3
135	Gold nanoparticles grown on a hydrophobic and texturally tunable PDMS-like framework. New Journal of Chemistry, 2021, 45, 10232-10239.	1.4	2
136	Silver nanomaterials: synthesis and (electro/photo) catalytic applications. Chemical Society Reviews, 2021, 50, 11293-11380.	18.7	79
137	Half-Sandwich Ruthenium Complexes of Amide-Phosphine Based Ligands: H-Bonding Cavity Assisted Binding and Reduction of Nitro-substrates. Inorganic Chemistry, 2021, 60, 2009-2022.	1.9	24
138	2D thin sheets composed of Co _{5.47} N–MgO embedded in carbon as a durable catalyst for the reduction of aromatic nitro compounds. Materials Chemistry Frontiers, 2021, 5, 2798-2809.	3.2	7
139	Origin of the Activity of Co–N–C Catalysts for Chemoselective Hydrogenation of Nitroarenes. ACS Catalysis, 2021, 11, 3026-3039.	5.5	105
140	Designing Highâ€Valence Metal Sites for Electrochemical Water Splitting. Advanced Functional Materials, 2021, 31, 2009779.	7.8	195
141	Pd–Fe _{<i>x</i>} O _{<i>y</i>} Hybrid Nanoparticles Encaged Hollow Mesoporous Silica Nanoreactors for Reduction of Nitroarenes to Aminoarenes. Journal of Physical Chemistry C, 2021, 125, 4001-4009.	1.5	7
142	Palladium Nanoparticles Immobilized on a Resorcin[4]arene-Based Metal–Organic Framework for Hydrogenation of Nitroarenes. ACS Applied Nano Materials, 2021, 4, 2278-2284.	2.4	17
143	Metal-based Heterogeneous Catalysts for One-Pot Synthesis of Secondary Anilines from Nitroarenes and Aldehydes. Molecules, 2021, 26, 1120.	1.7	10
144	Simple RuCl ₃ â€catalyzed <i>N</i> â€Methylation of Amines and Transfer Hydrogenation of Nitroarenes using Methanol. ChemCatChem, 2021, 13, 1722-1729.	1.8	41

#	Article	IF	CITATIONS
145	Green Approach for the Fabrication of Au/ZnO Nanoflowers: A Catalytic Aspect. Journal of Physical Chemistry C, 2021, 125, 6619-6631.	1.5	28
146	Aluminum Metal–Organic Framework-Ligated Single-Site Nickel(II)-Hydride for Heterogeneous Chemoselective Catalysis. ACS Catalysis, 2021, 11, 3943-3957.	5.5	28
147	Feâ€Catalyzed Anaerobic Mukaiyamaâ€Type Hydration of Alkenes using Nitroarenes. Angewandte Chemie - International Edition, 2021, 60, 8313-8320.	7.2	43
148	Feâ€Catalyzed Anaerobic Mukaiyamaâ€Type Hydration of Alkenes using Nitroarenes. Angewandte Chemie, 2021, 133, 8394-8401.	1.6	8
149	Insights into the Interfacial Effects in Heterogeneous Metal Nanocatalysts toward Selective Hydrogenation. Journal of the American Chemical Society, 2021, 143, 4483-4499.	6.6	106
150	Metal/N-doped carbon (MetalÂ=ÂAg, Cu, Ni) nanocatalysts for selective hydrogenation of 4-nitrophenol. Catalysis Communications, 2021, 151, 106280.	1.6	17
151	Hydrogenation of nitroarenes in continuous flow with TPP/Raney Ni. Journal of Flow Chemistry, 2021, 11, 823-830.	1.2	6
152	Chemoselective Hydrogenation of Nitroarenes Using an Air-Stable Base-Metal Catalyst. Organic Letters, 2021, 23, 2742-2747.	2.4	47
153	Development of sustainable and efficient nanocatalyst based on polyoxometalate/nickel oxide nanocomposite: A simple and recyclable catalyst for reduction of nitroaromatic compounds. Journal of the Chinese Chemical Society, 2021, 68, 1487-1495.	0.8	7
154	Development and Application of Efficient Agâ€based Hydrogenation Catalysts Prepared from Rice Husk Waste. ChemCatChem, 2021, 13, 2583-2591.	1.8	9
155	Selective and Additiveâ€Free Hydrogenation of Nitroarenes Mediated by a DMSOâ€Tagged Molecular Cobalt Corrole Catalyst. European Journal of Organic Chemistry, 2021, 2021, 2114-2120.	1.2	7
156	Electron-Enriched Pd Nanoparticles for Selective Hydrogenation of Halonitrobenzenes to Haloanilines. Catalysts, 2021, 11, 543.	1.6	5
157	Selfâ€Template Construction of Highâ€Performance Co, Nâ€Decorated Carbon Nanotubes from a Novel Cobalt Dicyandiamide Molecule. ChemCatChem, 2021, 13, 2609-2617.	1.8	4
158	Non-Precious Metal Electrocatalysts: Synthesis, Characterization and Application. Catalysts, 2021, 11, 647.	1.6	0
159	Nickel–Ruthenium Bimetallic Species on Hydrotalcite Support: A Potential Hydrogenation Catalyst. Catalysis Letters, 2022, 152, 848-862.	1.4	6
160	ZIF-67 derived CoSx/NC catalysts for selective reduction of nitro compounds. Journal of Central South University, 2021, 28, 1279-1290.	1.2	4
161	Enhanced reduction of p-nitrophenol by zerovalent iron modified with carbon quantum dots. Applied Catalysis B: Environmental, 2021, 285, 119829.	10.8	46
162	Nitroarene and dye reduction with 2:1 Co/Al layered double hydroxide catalysts – Is gold still necessary?. Inorganica Chimica Acta, 2021, 521, 120336.	1.2	1

#	Article	IF	CITATIONS
163	Nitroarene hydrogenation catalysts based on Pd nanoparticles glued with PDA on inorganic supports: Multivariate Curve Resolution as an useful tool to compare the catalytic activity in multi-step reactions. Applied Catalysis A: General, 2021, 619, 118125.	2.2	2
164	Visibleâ€Lightâ€Driven Competitive Stereo―and Regioisomerization of (<i>E</i>)â€Î²â€Nitroenones. ChemPhotoChem, 2021, 5, 871-875.	1.5	7
165	Facile Seed-Mediated Growth of Ultrathin AuCu Shells on Pd Nanocubes and Their Enhanced Nitrophenol Degradation Reactions. Journal of Physical Chemistry C, 2021, 125, 13759-13769.	1.5	8
166	Chemoselective Hydrogenation of Nitroarenes Using Niâ^'Fe Alloy Catalysts at Ambient Pressure. ChemistrySelect, 2021, 6, 5538-5544.	0.7	7
167	Glucose-oxidase like catalytic mechanism of noble metal nanozymes. Nature Communications, 2021, 12, 3375.	5.8	163
168	Nal/PPh ₃ -Mediated Photochemical Reduction and Amination of Nitroarenes. Organic Letters, 2021, 23, 5349-5353.	2.4	40
169	Ceria-Based Materials for Thermocatalytic and Photocatalytic Organic Synthesis. ACS Catalysis, 2021, 11, 9618-9678.	5.5	146
170	Incorporation of copper nanoparticles into the nitrogenâ€doped carbon derived from nitrile functionalized ionic liquid as the nonâ€precious heterogeneous catalytic system toward nitro compounds reduction reaction, a first principle calculation. Journal of Chemical Technology and Biotechnology. 2021. 96. 2802-2812.	1.6	8
171	Hydrophilic nickel phosphate nanoparticles: An efficient catalyst for the hydrogenation of nitroarenes. Synthetic Communications, 2021, 51, 2613-2627.	1.1	2
172	A Concise Route to Cyclic Amines from Nitroarenes and Ketoacids under Ironâ€Catalyzed Hydrosilylation Conditions. Advanced Synthesis and Catalysis, 2021, 363, 3859-3865.	2.1	18
173	Organoselenium ligand-stabilized copper nanoparticles: Development of a magnetically separable catalytic system for efficient, room temperature and aqueous phase reduction of nitroarenes. Inorganica Chimica Acta, 2021, 522, 120267.	1.2	21
174	Synthesis of 1,3-diketones from esters via liberation of hydrogen. Chem Catalysis, 2021, 1, 681-690.	2.9	25
175	Combined Spectroscopic and Computational Study of Nitrobenzene Activation on Non-Noble Metals-Based Mono- and Bimetallic Catalysts. Nanomaterials, 2021, 11, 2037.	1.9	5
176	Zinc modification of Ni-Ti as efficient NixZnyTi1 catalysts with both geometric and electronic improvements for hydrogenation of nitroaromatics. Frontiers of Chemical Science and Engineering, 0, , 1.	2.3	2
177	Ultra-high loading single CoN3 sites in N-doped graphene-like carbon for efficient transfer hydrogenation of nitroaromatics. Journal of Catalysis, 2021, 400, 40-49.	3.1	26
178	Maghemite/ZnO nanocomposites: A highly efficient, reusable and non-noble metal catalyst for reduction of 4-nitrophenol. Advanced Powder Technology, 2021, 32, 2905-2915.	2.0	14
179	Mo–Catalyzed Oneâ€Pot Synthesis of <i>N</i> â€Polyheterocycles from Nitroarenes and Glycols with Recycling of the Waste Reduction Byproduct. Substituentâ€Tuned Photophysical Properties. Chemistry - A European Journal, 2021, 27, 13613-13623.	1.7	12
180	First-Principles Study on the Mechanism of Nitrobenzene Reduction to Aniline Catalyzed by a N-Doped Carbon-Supported Cobalt Single-Atom Catalyst. Journal of Physical Chemistry C, 2021, 125, 19171-19182.	1.5	15

#	Article	IF	CITATIONS
181	Copper nanoparticles (CuNPs) catalyzed chemoselective reduction of nitroarenes in aqueous medium. Journal of Chemical Sciences, 2021, 133, 1.	0.7	6
182	Precise Synthesis of Hollow Mesoporous Palladium–Sulfur Alloy Nanoparticles for Selective Catalytic Hydrogenation. CCS Chemistry, 2022, 4, 2854-2863.	4.6	23
183	Noble metal nanoparticles supported on titanate nanotubes as catalysts for selective hydrogenation of nitroarenes. Catalysis Today, 2022, 392-393, 93-104.	2.2	14
184	Preparation of thermal stable supported metal (Cu, Au, Pd) nanoparticles via cross-linking cellulose gel confinement strategy. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 624, 126809.	2.3	10
185	Ruthenium (II) complexes with C- and C-symmetric bis-(+)-camphopyrazole ligands and their evaluation in catalytic transfer hydrogenation of aldehydes. Inorganica Chimica Acta, 2021, 524, 120429.	1.2	3
186	Highly Selective Monoalkylation of Active Methylene and Related Derivatives using Alkylsilyl Peroxides by a Catalytic Culâ€ÐMAP System. Asian Journal of Organic Chemistry, 2021, 10, 2625.	1.3	7
188	Catalystâ€Free Hydrogen Proton Transfer Reduction of Nitrobenzamides to Aminobenzamides with i PrOH/KOH System. Asian Journal of Organic Chemistry, 0, , .	1.3	2
189	Insight into the selectivity of nano-catalytic nitroarenes reduction over other active groups by exploring hydrogen sources and metal components. Applied Catalysis A: General, 2021, 626, 118339.	2.2	20
190	Recent developments in reductive N-methylation with base-metal catalysts. Tetrahedron, 2021, 98, 132414.	1.0	16
191	Recent advances in homogeneous base-metal-catalyzed transfer hydrogenation reactions. Tetrahedron, 2021, 98, 132435.	1.0	32
192	Hyperporous magnetic catalyst foam for highly efficient and stable adsorption and reduction of aqueous organic contaminants. Journal of Hazardous Materials, 2021, 420, 126622.	6.5	7
193	Nanosheet array-like Cu@Cu2O-CuNiAl(O)/rGO composites for highly efficient reduction of nitrophenol: Electronic and structure promotion effect of nickel. Chemical Engineering Journal, 2022, 427, 131659.	6.6	27
194	Solid catalysts for environmentally benign synthesis. , 2022, , 23-80.		0
195	Bimetallic Au–Pd nanoparticles supported on silica with a tunable core@shell structure: enhanced catalytic activity of Pd(core)–Au(shell) over Au(core)–Pd(shell). Nanoscale Advances, 2021, 3, 5399-5416.	2.2	4
196	Biorenewable carbon-supported Ru catalyst for <i>N</i> -alkylation of amines with alcohols and selective hydrogenation of nitroarenes. New Journal of Chemistry, 2021, 45, 14687-14694.	1.4	13
197	Unsaturated Mo in Mo ₄ O ₄ N ₃ for efficient catalytic transfer hydrogenation of nitrobenzene using stoichiometric hydrazine hydrate. Green Chemistry, 2021, 23, 8545-8553.	4.6	24
198	Cyclic (Alkyl)(amino)carbene Ligand-Promoted Nitro Deoxygenative Hydroboration with Chromium Catalysis: Scope, Mechanism, and Applications. Journal of the American Chemical Society, 2021, 143, 1618-1629.	6.6	56
199	Recent progresses in graphene-based (photo)catalysts for reduction of nitro compounds. Molecular Catalysis, 2020, 484, 110758.	1.0	50

#	Article	IF	CITATIONS
200	Sustainable utilization of chlorine via converting HCl to Cl2 over a robust copper catalyst. Molecular Catalysis, 2020, 492, 110977.	1.0	7
201	Electrostatic Interaction-Controlled Formation of Pickering Emulsion for Continuous Flow Catalysis. ACS Applied Materials & amp; Interfaces, 2021, 13, 1872-1882.	4.0	16
202	Architectural and catalytic aspects of designer materials built using metalloligands of pyridine-2,6-dicarboxamide based ligands. Dalton Transactions, 2020, 49, 14731-14748.	1.6	14
203	General and selective synthesis of primary amines using Ni-based homogeneous catalysts. Chemical Science, 2020, 11, 4332-4339.	3.7	29
204	Supercritical fluids in chemistry. Russian Chemical Reviews, 2020, 89, 1337-1427.	2.5	62
205	Iron Oxide Nanoparticles: An Efficient Nano-catalyst. Current Organic Chemistry, 2019, 23, 994-1004.	0.9	15
206	Palladium supported on magnesium hydroxyl fluoride: an effective acid catalyst for the hydrogenation of imines and N-heterocycles. New Journal of Chemistry, 2021, 45, 19572-19583.	1.4	5
207	Selective Production of Secondary Amine by the Photocatalytic Cascade Reaction Between Nitrobenzene and Benzyl Alcohol over Nanostructured Bi ₂ MoO ₆ and Pd Nanoparticles Decorated with Bi ₂ MoO ₆ . Chemistry - an Asian Journal, 2021, 16, 3790-3803.	1.7	13
208	Generation of a Sulfinamide Species from Facile N–O Bond Cleavage of Nitrosobenzene by a Thiolate-Bridged Diiron Complex. Journal of the American Chemical Society, 2021, 143, 17374-17387.	6.6	6
209	Highly Selective Hydrogenation of Phenols to Cyclohexanone Derivatives Using a Palladium@N-Doped Carbon/SiO ₂ Catalyst. Organic Process Research and Development, 2021, 25, 2425-2431.	1.3	3
210	Cobaltâ€Catalyzed Dehydrogenative Câ^'H Silylation of Alkynylsilanes. Chemistry - A European Journal, 2022, 28, .	1.7	21
211	Highly Efficient and Chemoselective Hydrogenation of Nitro Compounds into Amines by Nitrogen-Doped Porous Carbon-Supported Co/Ni Bimetallic Nanoparticles. Inorganic Chemistry, 2021, 60, 16834-16839.	1.9	10
212	Biochar-supported nanosized zero-valent iron (nZVI/BC) composites for removal of nitro and chlorinated contaminants. Chemical Engineering Journal, 2022, 431, 133187.	6.6	57
213	Facile fabrication of graphene encapsulating 3d transition metal nanoparticles as highly active and anti-poisoning catalysts for selective hydrogenation of nitroaromatics. Journal of Colloid and Interface Science, 2022, 608, 1278-1285.	5.0	7
214	A Selective and General Cobalt atalyzed Hydroaminomethylation of Olefins to Amines. Angewandte Chemie - International Edition, 2022, 61, e202112597.	7.2	20
215	A Selective and General Cobaltâ€Catalyzed Hydroaminomethylation of Olefins to Amines. Angewandte Chemie, 2022, 134, .	1.6	4
216	Cobaltâ€Catalyzed Deoxygenative Hydroboration of Nitro Compounds and Applications to Oneâ€Pot Synthesis of Aldimines and Amides. Advanced Synthesis and Catalysis, 2022, 364, 601-611.	2.1	6
217	Facile Synthesis of Large Wrinkled Gold Nanoparticles Using Anthraceneâ€Terminated Tripodal Amine Ligand and their Catalytic Efficiency. European Journal of Inorganic Chemistry, 2020, 2020, 4516-4522.	1.0	0

#	Article	IF	CITATIONS
218	Highly efficient hydrogenation reduction of aromatic nitro compounds using MOF derivative Co–N/C catalyst. New Journal of Chemistry, 2021, 45, 22908-22914.	1.4	8
219	Metal-free regioselective nitration of quinoxalin-2(1 <i>H</i>)-ones with <i>tert</i> -butyl nitrite. Organic and Biomolecular Chemistry, 2021, 19, 10554-10559.	1.5	4
220	Hydrazine Hydrate Accelerates Neocuproine–Copper Complex Generation and Utilization in Alkyne Reduction, a Significant Supplement Method for Catalytic Hydrogenation. Journal of Organic Chemistry, 2021, 86, 17696-17709.	1.7	3
221	Development of an Intrinsically Safer Methanolysis/Aromatic Nitro Group Reduction for Step 1 and 2 of Talazoparib Tosylate. Organic Process Research and Development, 0, , .	1.3	2
222	Automated synthesis and data accumulation for fast production of high-performance Ni nanocatalysts. Journal of Industrial and Engineering Chemistry, 2022, 106, 449-459.	2.9	6
223	Ni(II)-Catalyzed Asymmetric Nitration of Oxindoles: Construction of Cipargamin Analogues. ACS Catalysis, 2021, 11, 14829-14835.	5.5	8
224	Electrochemical Reductive N-Methylation with CO ₂ Enabled by a Molecular Catalyst. Journal of the American Chemical Society, 2021, 143, 19983-19991.	6.6	50
225	N,N-Chelate nickel(II) complexes bearing Schiff base ligands as efficient hydrogenation catalysts for amine synthesis. Journal of Organometallic Chemistry, 2022, 959, 122187.	0.8	2
226	Nitro to amine reductions using aqueous flow catalysis under ambient conditions. IScience, 2021, 24, 103472.	1.9	10
227	Ultrafine and well-dispersed Pd-Ni bimetallic catalyst stabilized by dendrimer-grafted magnetic graphene oxide for selective reduction of toxic nitroarenes under mild conditions. Journal of Hazardous Materials, 2022, 424, 127717.	6.5	22
228	Chemo-, site-selective reduction of nitroarenes under blue-light, catalyst-free conditions. Chinese Chemical Letters, 2022, 33, 2420-2424.	4.8	19
229	Implication of a Silyl Cobalt Dihydride Complex as a Useful Catalyst for the Hydrosilylation of Imines. ACS Catalysis, 2021, 11, 14262-14273.	5.5	22
230	C–N coupling reactions with arenes through C–H activation: the state-of-the-art versus the principles of green chemistry. Catalysis Science and Technology, 0, , .	2.1	12
231	Metal-Free, Rapid, and Highly Chemoselective Reduction of Aromatic Nitro Compounds at Room Temperature. Journal of Organic Chemistry, 2022, 87, 910-919.	1.7	27
232	A Podâ€like Coreâ€Shell Catalyst with High Reduction Performance Under Mild Conditions. European Journal of Inorganic Chemistry, 0, , e202100996.	1.0	1
233	Rational design of metal/N-doped carbon nanocatalysts via sol-gel method for obtaining high catalytic activity toward reduction reactions of 4-nitrophenol and Rhodamine B. Applied Catalysis A: General, 2022, 631, 118479.	2.2	7
234	Highly dispersed rhodium atoms supported on defect-rich Co(OH) ₂ for the chemoselective hydrogenation of nitroarenes. New Journal of Chemistry, 2022, 46, 1158-1167.	1.4	7
235	Industrial Cunninghamia lanceolata carbon supported FeO(OH) nanoparticles-catalyzed hydrogenation of nitroarenes. Catalysis Communications, 2022, 162, 106398.	1.6	5

#	Article	IF	CITATIONS
236	Efficient and recyclable bimetallic Co–Cu catalysts for selective hydrogenation of halogenated nitroarenes. Journal of Alloys and Compounds, 2022, 897, 163143.	2.8	13
237	Plasmonic MoO ₂ embedded MoNi ₄ nanosheets prepared by NiMoO ₄ transformation for visible-light-enhanced 4-nitrophenol reduction. Dalton Transactions, 2021, 50, 17235-17240.	1.6	2
238	hcp-phased Ni nanoparticles with generic catalytic hydrogenation activities toward different functional groups. Science China Materials, 2022, 65, 1252-1261.	3.5	5
239	Facile fabrication of cobalt (Co) nanoparticles anchored magnetic porous carbon for efficient catalytic reduction of nitrophenols. Composites Communications, 2022, 29, 101029.	3.3	12
240	The synthesis and characterization of a magnetic histidine Schiff base palladium complex and its efficiency investigation in the nitroarene pollutants reduction and dyes degradation. Applied Organometallic Chemistry, 0, , .	1.7	1
241	Oxygen-implanted MoS ₂ nanosheets promoting quinoline synthesis from nitroarenes and aliphatic alcohols <i>via</i> an integrated oxidation transfer hydrogenation–cyclization mechanism. Green Chemistry, 2022, 24, 1704-1713.	4.6	7
242	Polar hydrogen species mediated nitroarenes selective reduction to anilines over an [FeMo]S _{<i>x</i>} catalyst. Dalton Transactions, 2022, 51, 1553-1560.	1.6	3
243	A General Concurrent Template Strategy for Ordered Mesoporous Intermetallic Nanoparticles with Controllable Catalytic Performance. Angewandte Chemie, 2022, 134, .	1.6	3
244	Synthesis and Use in Catalysis of Hematite Nanoparticles Obtained from a Polymer Supported Fe(III) Complex. European Journal of Inorganic Chemistry, 2022, 2022, .	1.0	10
245	A General Concurrent Template Strategy for Ordered Mesoporous Intermetallic Nanoparticles with Controllable Catalytic Performance. Angewandte Chemie - International Edition, 2022, 61, .	7.2	35
246	Recent advances in the application of different electrode materials for the determination of 4-hydroxy-nitrobenzene: Review. Inorganic Chemistry Communication, 2022, 138, 109216.	1.8	1
247	Zeolite-Encaged Isolated Platinum Ions Enable Heterolytic Dihydrogen Activation and Selective Hydrogenations. Journal of the American Chemical Society, 2021, 143, 20898-20906.	6.6	66
248	Highly active heterogeneous hydrogenation catalysts prepared from cobalt complexes and rice husk waste. Catalysis Science and Technology, 2022, 12, 3123-3136.	2.1	7
249	Kinetics-controlled synthesis of gold–silver nanosheets with abundant in-plane cracking and their trimetallic derivatives for plasmon-enhanced catalysis. CrystEngComm, 2022, 24, 2451-2463.	1.3	3
250	A "Trojan horse―strategy towards robust Co–N ₄ active sites accommodated in micropore defect-rich carbon nanosheets for boosting selective hydrogenation of nitroarenes. Journal of Materials Chemistry A, 2022, 10, 9435-9444.	5.2	12
251	Transfer hydrogenation of nitroarenes using cellulose filter paper-supported Pd/C by filtration as well as sealed methods. RSC Advances, 2022, 12, 10933-10949.	1.7	7
252	Nickel foam supported porous copper oxide catalysts with noble metal-like activity for aqueous phase reactions. Catalysis Science and Technology, 2022, 12, 3804-3816.	2.1	7
253	Hyperbranched Polymer Immobilized Palladium Nanoparticles as an Efficient and Reusable Catalyst for Cyanation of Aryl Halides and Reduction of Nitroarenes. SSRN Electronic Journal, 0, , .	0.4	0

			CITATION RE	PORT	
#	Article			IF	CITATIONS
254	Palladium-catalyzed denitrative <i>N</i> -arylation of nitroarenes with pyrroles, indoles carbazoles. Organic Chemistry Frontiers, 2022, 9, 2351-2356.	s, and		2.3	6
	Ru ^{ll} complexes of 1,2,3-triazole appended tertiary phosphines,				
255					

#	Article	IF	CITATIONS
273	Carbohydrate-based nanostructured catalysts: applications in organic transformations. Materials Today Chemistry, 2022, 24, 100869.	1.7	10
275	Interfacing single-atom catalysis with continuous-flow organic electrosynthesis. Chemical Society Reviews, 2022, 51, 3898-3925.	18.7	50
276	Facile Sol-Gel Route for Designing of Co3o4/N-Doped Carbon and Co-Co3o4/N-Doped Carbon Nanomaterials with Unexpected High Catalytic Performances Toward Hydrogenation Reduction of 4-Nitrophenol. SSRN Electronic Journal, 0, , .	0.4	1
277	The copper-catalyzed oxidation of arylmethyl triazines with H ₂ O toward the oxidant-free synthesis of aroyl triazines. Organic and Biomolecular Chemistry, 2022, 20, 5406-5411.	1.5	4
278	ZIF-8@ZIF-67 Derived Co/NPHC Catalysts for Efficient and Selective Hydrogenation of Nitroarenes. Catalysis Letters, 2023, 153, 824-835.	1.4	9
279	Atomically Dispersed Co–S–N Active Sites Anchored on Hierarchically Porous Carbon for Efficient Catalytic Hydrogenation of Nitro Compounds. ACS Catalysis, 2022, 12, 5786-5794.	5.5	54
280	Size Dependence of Pd-Catalyzed Hydrogenation of 2,6-Diamino-3,5-dinitropyridine. Industrial & Engineering Chemistry Research, 2022, 61, 6427-6435.	1.8	5
281	Precisely Tailoring Selectivity via Target Group's Steered Adsorption on Cu ₂ 0/Tantalate Catalysts for Hydrogenation of 3â€Nitrostyrene. ChemCatChem, 2022, 14, .	1.8	2
282	Application and Development of Selective Catalytic Reduction Technology for Marine Low-Speed Diesel Engine: Trade-Off among High Sulfur Fuel, High Thermal Efficiency, and Low Pollution Emission. Atmosphere, 2022, 13, 731.	1.0	39
283	Hyperbranched polymer immobilized palladium nanoparticles as an efficient and reusable catalyst for cyanation of aryl halides and reduction of nitroarenes. Journal of Organometallic Chemistry, 2022, 970-971, 122359.	0.8	2
284	Defective MNiFeO (MÂ=ÂCu, Zn, Co, Mn) NRs derived from cation-exchanged Fe2Ni-MOFs for catalytic nitroarene hydrogenation. Journal of Colloid and Interface Science, 2022, 623, 63-76.	5.0	9
285	Nickel carbide (Ni ₃ C) nanoparticles for catalytic hydrogenation of model compounds in solvent. Catalysis Science and Technology, 2022, 12, 4572-4583.	2.1	9
286	Synergy between homogeneous and heterogeneous catalysis. Catalysis Science and Technology, 2022, 12, 6623-6649.	2.1	29
287	Controllable Synthesis of Cobalt-Containing Nanosheet Array-Like Ternary CuCoAl-LDH/rGO Hybrids To Boost the Catalytic Efficiency for 4-Nitrophenol Reduction. ACS Applied Materials & Interfaces, 2022, 14, 24265-24280.	4.0	17
288	Synthesis of 3,4â€Dihydroâ€2Hâ€pyrroles from Ketones, Aldehydes, and Nitro Alkanes via Hydrogenative Cyclization. Chemistry - A European Journal, 0, , .	1.7	3
289	Facile Synthesis of MOFâ€Derived Oneâ€Dimensional Nitrogenâ€doped Carbon/Ni Composites and their Application as Catalysts and Protein Adsorbents. ChemistrySelect, 2022, 7, .	0.7	0
290	Lignin Residue-Derived Carbon-Supported Nanoscale Iron Catalyst for the Selective Hydrogenation of Nitroarenes and Aromatic Aldehydes. ACS Omega, 2022, 7, 19804-19815.	1.6	11
291	A review on catalytic reduction/degradation of organic pollution through silver-based hydrogels. Arabian Journal of Chemistry, 2022, 15, 104023.	2.3	11

		CITATION RI	EPORT	
#	Article		IF	CITATIONS
292	Selective reduction of aromatic halonitroarene to corresponding amine with Ru-gC3N4 as in presence of sodium hypophosphite as a hydrogen source. Results in Chemistry, 2022, 4,	a catalyst 100410.	0.9	3
293	Ruâ€P Nanoalloy from Elemental Phosphorus as Pâ€Source: Synthesis, Characterization an Evaluation. ChemCatChem, 2022, 14, .	d Catalytic	1.8	3
294	Highly-efficient RuNi single-atom alloy catalysts toward chemoselective hydrogenation of nitroarenes. Nature Communications, 2022, 13, .		5.8	68
295	Synthesis of Saturated Nâ€Heterocycles via a Catalytic Hydrogenation Cascade. Advanced Catalysis, 2022, 364, 3366-3371.	Synthesis and	2.1	10
296	Nickel-catalyzed hydrogenative coupling of nitriles and amines for general amine synthesis. 2022, 376, 1433-1441.	. Science,	6.0	46
297	Hierarchical-Structured Pd Nanoclusters Catalysts <i>x</i> -PdNCs/CoAl(O)/rGO- <i>T</i> by Captopril-Capped Pd Cluster Precursor Method for the Highly Efficient 4-Nitrophenol Reduc Applied Materials & amp; Interfaces, 2022, 14, 27775-27790.		4.0	12
298	Cotton-derived carbon fiber-supported Ni nanoparticles as nanoislands to anchor single-ato efficient catalytic reduction of 4-nitrophenol. Applied Catalysis A: General, 2022, 643, 1187		2.2	11
299	A PtPdCoCuNi high-entropy alloy nanocatalyst for the hydrogenation of nitrobenzene. RSC 2022, 12, 19869-19874.	Advances,	1.7	3
300	An Adaptive Rhodium Catalyst to Control the Hydrogenation Network of Nitroarenes. Ange Chemie, 0, , .	ewandte	1.6	0
301	High-density atomically dispersed CoNx catalysts supported on nitrogen-doped mesoporou materials for efficient hydrogenation of nitro compounds. Catalysis Today, 2022, 405-406,		2.2	4
302	An Adaptive Rhodium Catalyst to Control the Hydrogenation Network of Nitroarenes. Ange Chemie - International Edition, 2022, 61, .	ewandte	7.2	14
303	Mesoporous silica dispersed Co ₃ O ₄ -CuO nanocomposite and its reduction of 4-nitrophenol. Materials Research Express, 2022, 9, 075006.	scatalytic	0.8	2
304	Selective Reduction of Nitroarenes Catalyzed by In-Situ Generated Nanoscale Hematite. Ca Letters, 2023, 153, 1495-1504.	talysis	1.4	1
305	In-suit growth of NiS quantum dots embedded in ultra-thin N,O,S-tri-doped carbon porous on carbon cloth for high-efficient HMF oxidation coupling hydrogen evolution. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 650, 129597.	nanosheets	2.3	5
306	Fabrication of monodisperse gold-copper nanocubes and AuCu-cuprous sulfide heterodime step-wise polyol reduction. Journal of Colloid and Interface Science, 2022, 626, 136-145.	ers by a	5.0	5
307	Palladium-Catalyzed Intramolecular Heck/Aminocarbonylation of Alkene-Tethered Iodobenz Nitro Compounds: Synthesis of Carbamoyl-Substituted Benzoheterocycles. Journal of Orga Chemistry, 2023, 88, 5097-5107.		1.7	8
308	Magnetic graphene oxide-anchored Ni/Cu nanoparticles with a Cu-rich surface for transfer hydrogenation of nitroaromatics. Chinese Journal of Chemical Engineering, 2022, 50, 235-2	246.	1.7	3
309	High yield and selective electrocatalytic reduction of nitroarenes to anilines using redox me Cell Reports Physical Science, 2022, 3, 100914.	ediators.	2.8	15

#	Article	IF	CITATIONS
310	Designing of Co3O4/N-doped carbon and Co-Co3O4/N-doped carbon nanomaterials via sol-gel route with unexpected high catalytic performances toward hydrogenation reduction of 4-Nitrophenol. Journal of Alloys and Compounds, 2022, 923, 166403.	2.8	10
311	Solvent-free synthesis of Co@NC catalyst with Co—N species as active sites for chemoselective hydrogenation of nitro compounds. Science China Materials, 0, , .	3.5	1
312	Diverse synthesis of α-tertiary amines and tertiary alcohols via desymmetric reduction of malonic esters. Nature Communications, 2022, 13, .	5.8	11
313	Facile Synthesis of Micro-Mesoporous Copper Phyllosilicate Supported on a Commercial Carrier and Its Application for Catalytic Hydrogenation of Nitro-Group in Trinitrobenzene. Molecules, 2022, 27, 5147.	1.7	3
314	Recent advances in organic electrosynthesis using heterogeneous catalysts modified electrodes. Chinese Chemical Letters, 2023, 34, 107735.	4.8	13
315	Synthesis of Ag nanoparticles by Celery leaves extract supported on magnetic biochar substrate, as a catalyst for the reduction reactions. Scientific Reports, 2022, 12, .	1.6	5
316	Tuning electron delocalization and surface area in COFs derived N, B co-doped carbon materials for efficient selective hydrogenation of nitroarenes. Chinese Chemical Letters, 2023, 34, 107770.	4.8	1
317	Mild and Efficient Heterogeneous Hydrogenation of Nitroarenes Facilitated by a Pyrolytically Activated Dinuclear Ni(II)-Ce(III) Diimine Complex. International Journal of Molecular Sciences, 2022, 23, 8742.	1.8	1
318	A Reusable FeCl3â^™6H2O/Cationic 2,2′-Bipyridyl Catalytic System for Reduction of Nitroarenes in Water. Catalysts, 2022, 12, 924.	1.6	2
319	One-Pot Reductive Methylation of Nitro- and Amino-Substituted (Hetero)Aromatics with DMSO/HCOOH: Concise Synthesis of Fluorescent Dimethylamino-Functionalized Bibenzothiazole Ligands with Tunable Emission Color upon Complexation. Journal of Organic Chemistry, 2022, 87, 10613-10629.	1.7	5
320	Tartaric Acid-Assisted Synthesis of Well-Dispersed Ni Nanoparticles Supported on Hydroxyapatite for Efficient Phenol Hydrogenation. ACS Sustainable Chemistry and Engineering, 2022, 10, 10526-10536.	3.2	2
321	Effect of the annealing temperature of multi-elemental oxides (FeCoNiCuZn)yOx on the electrocatalytic hydrogenation of nitrobenzene at room temperature. Electrochimica Acta, 2022, 428, 140975.	2.6	9
322	Near infrared optically responsive Ag-Cu bimetallic 2D nanocrystals with controllable spatial structures. Journal of Colloid and Interface Science, 2022, 628, 660-669.	5.0	3
323	Special direct route for efficient transfer hydrogenation of nitroarenes at room temperature by monatomic Zr tuned α-Fe2O3. Journal of Catalysis, 2022, 414, 245-256.	3.1	11
324	Mo2N as a high-efficiency catalyst for transfer hydrogenation of nitrobenzene using stoichiometric hydrazine hydrate. Molecular Catalysis, 2022, 531, 112684.	1.0	1
325	Highly selective IrMo/TiO2 catalyst for hydrogenation of nitroarenes. Molecular Catalysis, 2022, 531, 112705.	1.0	1
326	Recent advances in transition-metal phosphide electrocatalysts: Synthetic approach, improvement strategies and environmental applications. Coordination Chemistry Reviews, 2022, 473, 214811.	9.5	57
327	Sustainable removal of nitrite waste to value-added ammonia on Cu@Cu2O core–shell nanostructures by pulsed laser technique. Environmental Research, 2022, 215, 114154.	3.7	15

#	Article	IF	CITATIONS
328	β-Ni(OH)2 supported over g-C3N4: A novel catalyst for para-nitrophenol reduction and supercapacitor electrode. Results in Chemistry, 2022, 4, 100498.	0.9	8
329	Catalysts' evolution in the asymmetric conjugate addition of nitroalkanes to electron-poor alkenes. Organic Chemistry Frontiers, 2022, 9, 6077-6113.	2.3	4
330	Stable and reusable Ni-based nanoparticles for general and selective hydrogenation of nitriles to amines. Chemical Science, 2022, 13, 10914-10922.	3.7	10
331	Fe-Catalyzed Denitrative Cyanoalkylation of Nitroalkenes with Cycloketone Oxime Esters via Reductive C-C Bond Formation. Organic Chemistry Frontiers, 0, , .	2.3	1
332	Understanding the electrocatalytic mechanism of self-template formation of hierarchical Co ₉ S ₈ /Ni ₃ S ₂ heterojunctions for highly selective electroreduction of nitrobenzene. Chemical Science, 2022, 13, 11639-11647.	3.7	9
333	From haemoglobin to single-site hydrogenation catalyst. Green Chemistry, 2022, 24, 7574-7583.	4.6	2
334	A simple synthesis of surfactant-free polycrystalline CuO nanoparticles supported on carbon nanofibers for regioselective hydroboration of alkynes. RSC Advances, 2022, 12, 24998-25005.	1.7	1
335	Surface-active site engineering: Synergy of photo- and supermolecular catalysis in hydrogen transfer enables biomass upgrading and H2 evolution. Chemical Engineering Journal, 2023, 452, 139477.	6.6	22
336	From N–H Nitration to Controllable Aromatic Mononitration and Dinitration─The Discovery of a Versatile and Powerful <i>N</i> -Nitropyrazole Nitrating Reagent. Jacs Au, 2022, 2, 2152-2161.	3.6	11
337	Aluminiumâ€Catalyzed Selective Reduction of Heteroallenes Through Hydroboration: Amide/Thioamide/Selenoamide Bond Construction and C=X (X=O, S, Se) Bond Activation**. European Journal of Organic Chemistry, 2022, 2022, .	1.2	5
338	Theoretical Study on Nitrobenzene Hydrogenation by N-Doped Carbon-Supported Late Transition Metal Single-Atom Catalysts. ACS Catalysis, 2022, 12, 11518-11529.	5.5	18
339	Gold nanoparticles supported on NiO and CuO: The synergistic effect toward enhanced reduction of nitroarenes and A3-coupling reaction. Molecular Catalysis, 2022, 530, 112601.	1.0	4
340	Environment Molecules Boost the Chemoselective Hydrogenation of Nitroarenes on Cobalt Single-Atom Catalysts. ACS Catalysis, 2022, 12, 11960-11973.	5.5	22
341	Chemoselective Hydrogenation of Nitro Compounds by MoS ₂ via Introduction of Independent Active Hydrogen-Donating Sites. ACS Catalysis, 2022, 12, 12170-12178.	5.5	7
342	Selective Nitro Reduction of Ester Substituted Nitroarenes by NaBH4-FeCl2. Pharmaceutical Fronts, 2022, 04, e151-e156.	0.4	2
343	Pdâ€catalyzed Mizorokiâ€Heck Annulation and Equivalent Aminocarbonylation Reactions Enabled by Mo(CO)6â€Mediated Direct Reduction of Nitro Compounds. Asian Journal of Organic Chemistry, 0, , .	1.3	Ο
344	Microenvironment engineering of supported metal nanoparticles for chemoselective hydrogenation. Chemical Science, 2022, 13, 13291-13302.	3.7	9
345	Cobalt-catalyzed synthesis of silyl ethers via cross-dehydrogenative coupling between alcohols and hydrosilanes. Green Chemistry Letters and Reviews, 2022, 15, 757-764.	2.1	7

#	Article	IF	CITATIONS
346	Aluminiumâ€Catalyzed Selective Hydroboration of Esters and Epoxides to Alcohols: Câ^'O Bond Activation. Chemistry - A European Journal, 2023, 29, .	1.7	7
347	Bis-Boric Acid-Mediated Regioselective Reductive Aminolysis of 3,4-Epoxy Alcohols. Journal of Organic Chemistry, 2022, 87, 15653-15660.	1.7	1
348	Research Progress and Prospects of Spinel Ferrite Nanostructures for the Removal of Nitroaromatics from Wastewater. ACS Applied Nano Materials, 2022, 5, 16000-16026.	2.4	21
349	Room-temperature hydrogenation of halogenated nitrobenzenes over metal—organic-framework-derived ultra-dispersed Ni stabilized by N-doped carbon nanoneedles. Frontiers of Chemical Science and Engineering, 2022, 16, 1782-1792.	2.3	2
350	A Review on Chemoselective Reduction of Nitroarenes for Wastewater Remediation Using Biochar Supported Metal Catalysts: Kinetic and Mechanistic Studies. Chemistry Africa, 2023, 6, 561-578.	1.2	5
351	Preparation of Coâ€based Nâ€doped Mesoâ€microporous Carbon for Hydrogenation of Nitroarenes. ChemistrySelect, 2022, 7, .	0.7	1
353	Electrochemical reduction of nitrobenzene via redox-mediated chronoamperometry. STAR Protocols, 2022, 3, 101817.	0.5	4
354	Light-switched selective catalysis with NADH mimic functionalized metal–organic capsules. Chemical Communications, 2022, 59, 71-74.	2.2	2
355	Palladium-catalyzed C–Si bond formation <i>via</i> denitrative cross-coupling of nitroarenes with hexamethyldisilane. Organic Chemistry Frontiers, 2023, 10, 524-530.	2.3	7
356	Selective reduction of nitroarenes using Ru/C and CaH ₂ . Organic and Biomolecular Chemistry, 2022, 21, 187-194.	1.5	3
357	Ni Particles Fabricated by a Bioâ€Polymerâ€Assistant Strategy toward the Efficient Reduction of Nitroarenes at Ambient Temperature. ChemistrySelect, 2022, 7, .	0.7	0
358	Highly Selective Electrocatalytic Reduction of Substituted Nitrobenzenes to Their Aniline Derivatives Using a Polyoxometalate Redox Mediator. ACS Organic & Inorganic Au, 2023, 3, 51-58.	1.9	3
359	Electrochemical-Induced Cascade Reaction of 2-Formyl Benzonitrile with Anilines: Synthesis of N-Aryl Isoindolinones. Molecules, 2022, 27, 8199.	1.7	4
360	Manganese-Catalyzed Chemoselective Hydrosilylation of Nitroarenes: Sustainable Route to Aromatic Amines. Organic Letters, 2022, 24, 9179-9183.	2.4	13
361	Simple and straightforward method to prepare highly dispersed Ni sites for selective nitrobenzene coupling to Azo/Azoxy compounds. Chemical Engineering Journal, 2023, 460, 141068.	6.6	5
362	In Situ Construction of Single-Site Ti Active Centers on Carbon Nitride for Photocatalytic Chemoselective Hydrogen Transfer Reduction. Chemistry of Materials, 2022, 34, 10982-10994.	3.2	6
363	Photochemical Synthesis of Anilines via Ni-Catalyzed Coupling of Aryl Halides with Ammonium Salts. ACS Catalysis, 2022, 12, 15590-15599.	5.5	23
364	Hydrogenation of Epoxides to Antiâ€ <i>Markovnikov</i> Alcohols over a Nickel Heterogenous Catalyst Prepared from Biomass (Rice) Waste. Helvetica Chimica Acta, 2023, 106, .	1.0	1

#	Article	IF	CITATIONS
365	Nitrogen and Phosphorus Dual-Coordinated Single-Atom Mn: MnN ₂ P Active Sites for Catalytic Transfer Hydrogenation of Nitroarenes. ACS Applied Materials & Interfaces, 2022, 14, 55568-55576.	4.0	7
366	Morphological and heterojunctional engineering of two-dimensional porous Mo-Ni based catalysts for highly effective catalytic reduction of aromatic nitro compounds. Chinese Chemical Letters, 2023, 34, 108128.	4.8	3
367	A metal-free protocol for the preparation of amines using ammonia borane under mild conditions. Organic Chemistry Frontiers, 2023, 10, 970-976.	2.3	4
368	Micro-total process system machine (μ-TPSM) for rapid synthesis of antiretroviral darunavir. Reaction Chemistry and Engineering, 0, , .	1.9	0
369	Quantifying nitroaromatics via terminating their photoreduction catalyzed by Eosin Y. Applied Catalysis B: Environmental, 2023, 325, 122363.	10.8	0
370	Photochemical Nitration of Protected Anilines by <scp>5â€Methyl</scp> â€1,4â€dinitroimidazole. Chinese Journal of Chemistry, 2023, 41, 1589-1593.	2.6	4
371	Pd/Chitosan Nanoparticle Catalysts Prepared by Solid Mortar Grinding for Hydrogenation of Nitroarenes. ACS Sustainable Chemistry and Engineering, 2023, 11, 1643-1654.	3.2	4
372	Chemoselective reduction of imines and azobenzenes catalyzed by silver N-heterocyclic carbene complexes. Organic Chemistry Frontiers, 2023, 10, 2287-2293.	2.3	3
373	Room-temperature synthesis of primary amines by selective hydrogenation of nitriles over ZnAlOx supported Ni catalysts. Applied Catalysis A: General, 2023, 655, 119115.	2.2	2
374	Coordination number engineering of Zn single-atom sites for enhanced transfer hydrogenation performance. Chemical Engineering Journal, 2023, 465, 142920.	6.6	6
375	Binuclear Mn(III) and Fe(III) porphyrin nanostructured materials in catalytic reduction of 4-nitrophenol. Catalysis Today, 2023, 418, 114149.	2.2	3
376	Growth mechanism of graphite-carbon encapsulated nickel catalysts and curvature effect of carbon layer on the performance of catalytic hydrogenation. Applied Catalysis B: Environmental, 2023, 331, 122738.	10.8	4
377	Heterogeneous cobalt-catalyzed degradation of azo compounds using alcohols as the stoichiometric hydrogen source. Journal of Environmental Chemical Engineering, 2023, 11, 109607.	3.3	4
378	Pure phase Ni12P5 anchored on N, P-codoped carbon nanosheet: A stable and highly efficient catalyst to reduce toxic organic compounds for continuous-flow application. Applied Surface Science, 2023, 625, 157196.	3.1	3
379	Mitigation of Ship Emissions: Overview of Recent Trends. Industrial & Engineering Chemistry Research, 2023, 62, 1707-1724.	1.8	6
380	Sodium dithionite in the regioselective reduction of the ortho-positioned nitro group in 1-R-2,4-dinitrobenzenes. Mendeleev Communications, 2023, 33, 121-123.	0.6	1
381	Methanol as a Potential Hydrogen Source for Reduction Reactions Enabled by a Commercial Pt/C Catalyst. Journal of Organic Chemistry, 2023, 88, 2245-2259.	1.7	14
382	Electrochemical transformation of biomass-derived oxygenates. Science China Chemistry, 2023, 66, 1011-1031.	4.2	3

	Сіт	TATION REF	PORT		
			IF	CITATIONS	
d Synthe nthesis a	sis of Primary nd Catalysis,		2.1	5	

383	Recent Developments in Manganese, Iron and Cobalt Homogeneous Catalyzed Synthesis of Primary Amines via Reduction of Nitroarenes, Nitriles and Carboxamides. Advanced Synthesis and Catalysis, 2023, 365, 948-964.	2.1	5
384	Hydrogenation of Dinitrobenzenes to Corresponding Diamines Over Cu–Al Oxide Catalyst in a Flow Reactor. Catalysis Letters, 2024, 154, 295-302.	1.4	1
385	Reduction of Nitro Group by Sulfide and Its Applications in Amine Synthesis. Chinese Journal of Organic Chemistry, 2023, 43, 491.	0.6	2
386	Mechanochemistry Frees Thiourea Dioxide (TDO) from the â€~Veils' of Solvent, Exposing All Its Reactivity. Molecules, 2023, 28, 2239.	1.7	2
387	An improved cobalt-catalysed alkoxycarbonylation of olefins using secondary phosphine oxide promotors. Catalysis Science and Technology, 2023, 13, 2475-2479.	2.1	1
389	Iron/B2pin2 catalytic system enables the generation of alkyl radicals from inert alkyl C-O bonds for amine synthesis. Chinese Chemical Letters, 2024, 35, 108303.	4.8	2
390	Synergistic effect of acid-base and redox properties of nano Au/CeO2-cube on selective hydrogenation of nitrobenzene to aniline. Molecular Catalysis, 2023, 540, 113045.	1.0	2
391	<scp>Oneâ€pot</scp> synthesis of <scp>CuO</scp> / <scp>TiO₂</scp> nanocomposites for improved photocatalytic hydrogenation of <scp>4â€nitrophenol</scp> to <scp>4â€aminophenol</scp> under direct sunlight. Journal of the Chinese Chemical Society, 2023, 70, 848-856.	0.8	1
392	Recent advances in electrocatalytic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid: Mechanism, catalyst, coupling system. Nanotechnology Reviews, 2023, 12, .	2.6	3
393	Cobalt catalyzed chemoselective reduction of nitroarenes: hydrosilylation under thermal and photochemical reaction conditions. Chemical Communications, 2023, 59, 4527-4530.	2.2	5
394	Nitration of Pyrrolo[2,1- <i>a</i>]isoquinolines. Journal of Organic Chemistry, 2023, 88, 4649-4661.	1.7	2
395	Modulating the Electronic Structure of α-Fe ₂ O ₃ by Doping Atomically Dispersed Ce for the Transfer Hydrogenation of Nitroaromatics Using Stoichiometric Hydrazine Hydrate. ACS Sustainable Chemistry and Engineering, 2023, 11, 5195-5205.	3.2	10
396	An Efficient Continuous Flow Synthesis for the Preparation of N-Arylhydroxylamines: Via a DMAP-Mediated Hydrogenation Process. Molecules, 2023, 28, 2968.	1.7	2
397	Transition Metalâ€free Seleniumâ€mediated Aryl Amines via Reduction of Nitroarenes. ChemSusChem, 2023, 16, .	3.6	0
398	Structure-controlled graphene-encapsulated nickel nanoparticle with tailored work function to steer chemoselective hydrogenation of nitroarenes. Materials Today Chemistry, 2023, 29, 101458.	1.7	2
399	Nanostructured Ni-MoCx: An efficient non-noble metal catalyst for the chemoselective hydrogenation of nitroaromatics. Nano Research, 2023, 16, 8919-8928.	5.8	11
400	PCP Pincer Carbene Nickel(II) Chloride, Hydride, and Thiolate Complexes: Hydrosilylation of Aldehyde, Ketone, and Nitroarene by the Thiolate Complex. Organometallics, 2023, 42, 732-744.	1.1	7
401	Robust Ruthenium Phosphide Catalyst for Hydrogenation of Sulfur-Containing Nitroarenes. ACS Catalysis, 2023, 13, 5744-5751.	5.5	13

ARTICLE

#

#	Article	IF	CITATIONS
402	Co-oxide nanostructured catalysts tailored from layered double hydroxides for highly efficient hydrogenation of nitroarenes. Applied Clay Science, 2023, 239, 106948.	2.6	1
403	Ru(II) and Ru(III) complexes containing <i>N</i> â€acylthiourea ligands: Supramolecular structures and synthons, reduction, and reaction pathway of aromatic nitro compounds. Applied Organometallic Chemistry, 2023, 37, .	1.7	1
412	Ni(II)-Catalyzed Transfer Hydrogenation of Azoarenes with NH ₃ BH ₃ . Organic Letters, 2023, 25, 4198-4202.	2.4	2
434	Metal-Free Supramolecular Reduction of Nitro Compounds into the Cucurbit[7]uril Cavity: Testing the Enabling Technique in Aqueous Media. ACS Sustainable Chemistry and Engineering, 2023, 11, 8406-8412.	3.2	5
458	Advances of graphdiyne-supported metal catalysts in thermocatalytic reactions. Nano Research, 0, , .	5.8	0
471	Visible-light-induced iron-catalyzed reduction of nitroarenes to anilines. Chemical Communications, 2023, 59, 14177-14180.	2.2	0
483	Homogenous nickel-catalyzed chemoselective transfer hydrogenation of functionalized nitroarenes with ammonia–borane. Chemical Communications, 2023, 59, 14709-14712.	2.2	1
486	Waste Based Solutions for Preventing Water Pollution by Nitroarenes. , 2023, , .		0