Role of miRâ€223â€8p in pulmonary arterial hypertens: ECM pathway

Cell Proliferation 52, e12550

DOI: 10.1111/cpr.12550

Citation Report

#	ARTICLE	IF	Citations
1	miRâ€223â€3p promotes autoreactive T _h 17 cell responses in experimental autoimmune uveitis (EAU) by inhibiting transcription factor FOXO3 expression. FASEB Journal, 2019, 33, 13951-13965.	0.2	29
2	Effect of platelet-rich plasma on implant bone defects in rabbits through the FAK/PI3K/AKT signaling pathway. Open Life Sciences, 2019, 14, 311-317.	0.6	3
3	Role of miRâ€223â€3p in pulmonary arterial hypertension <i>via</i> targeting <i>ITGB3</i> in the ECM pathway. Cell Proliferation, 2019, 52, e12550.	2.4	46
4	miR-223-3p promotes cell proliferation and invasion by targeting <italic>Arid1a</italic> in gastric cancer. Acta Biochimica Et Biophysica Sinica, 2020, 52, 150-159.	0.9	30
5	CircATP2B4 promotes hypoxia-induced proliferation and migration of pulmonary arterial smooth muscle cells via the miR-223/ATR axis. Life Sciences, 2020, 262, 118420.	2.0	13
6	Docosahexaenoic acid inhibits Ca ²⁺ influx and downregulates CaSR by upregulating microRNAâ€16 in pulmonary artery smooth muscle cells. Journal of Biochemical and Molecular Toxicology, 2020, 34, e22573.	1.4	3
7	Micro-RNA Analysis in Pulmonary Arterial Hypertension. JACC Basic To Translational Science, 2020, 5, 1149-1162.	1.9	24
8	DDClâ€01, a novel long acting phospdiesteraseâ€5Âinhibitor, attenuated monocrotalineâ€induced pulmonary hypertension in rats. Pulmonary Circulation, 2020, 10, 1-10.	0.8	O
9	Restoring the Platelet miR-223 by Calpain Inhibition Alleviates the Neointimal Hyperplasia in Diabetes. Frontiers in Physiology, 2020, 11, 742.	1.3	8
10	miRâ€20aâ€5p promotes pulmonary artery smooth muscle cell proliferation and migration by targeting ABCA1. Journal of Biochemical and Molecular Toxicology, 2020, 34, e22589.	1.4	11
11	MiRâ€193â€3p attenuates the vascular remodeling in pulmonary arterial hypertension by targeting PAK4. Pulmonary Circulation, 2020, 10, 1-12.	0.8	3
12	Inhibition of RELM- \hat{l}^2 prevents hypoxia-induced overproliferation of human pulmonary artery smooth muscle cells by reversing PLC-mediated KCNK3 decline. Life Sciences, 2020, 246, 117419.	2.0	16
13	MiRNAs, IncRNAs, and circular RNAs as mediators in hypertension-related vascular smooth muscle cell dysfunction. Hypertension Research, 2021, 44, 129-146.	1.5	24
14	Identification of aberrantly expressed circular RNAs in hyperlipidemia-induced retinal vascular dysfunction in mice. Genomics, 2021, 113, 593-600.	1.3	3
15	Targeting Molecular and Cellular Mechanisms of Pulmonary Arterial Hypertension., 2021,, 407-434.		0
16	MiR-223-3p in Cardiovascular Diseases: A Biomarker and Potential Therapeutic Target. Frontiers in Cardiovascular Medicine, 2020, 7, 610561.	1.1	26
17	Extracellular Vesicles and Their miRNA Content in Amniotic and Tracheal Fluids of Fetuses with Severe Congenital Diaphragmatic Hernia Undergoing Fetal Intervention. Cells, 2021, 10, 1493.	1.8	10
18	Circular RNA Expression: Its Potential Regulation and Function in Abdominal Aortic Aneurysms. Oxidative Medicine and Cellular Longevity, 2021, 2021, 1-21.	1.9	12

#	Article	IF	CITATIONS
19	miRNA-223 as a regulator of inflammation and NLRP3 inflammasome, the main fragments in the puzzle of immunopathogenesis of different inflammatory diseases and COVID-19. Naunyn-Schmiedeberg's Archives of Pharmacology, 2021, 394, 2187-2195.	1.4	28
20	Quercetin improves atrial fibrillation through inhibiting TGF-β/Smads pathway via promoting MiR-135b expression. Phytomedicine, 2021, 93, 153774.	2.3	24
21	STAT1 and its related molecules as potential biomarkers in <i>Mycobacterium tuberculosis</i> infection. Journal of Cellular and Molecular Medicine, 2020, 24, 2866-2878.	1.6	45
22	Targeting epigenetic mechanisms as an emerging therapeutic strategy in pulmonary hypertension disease. Vascular Biology (Bristol, England), 2020, 2, R17-R34.	1.2	21
23	A novel prognostic signature for idiopathic pulmonary fibrosis based on five-immune-related genes. Annals of Translational Medicine, 2021, 9, 1570-1570.	0.7	9
24	Transgenerational inheritance of promoter methylation changes in extrauterine growth restriction-induced pulmonary arterial pressure disorders. Annals of Translational Medicine, 2021, 9, 1551-1551.	0.7	0
25	MiR-223/NFAT5 signaling suppresses arterial smooth muscle cell proliferation and motility in vitro. Aging, 2020, 12, 26188-26198.	1.4	3
26	Integrative analysis of transcriptome-wide association study and mRNA expression profile identified candidate genes and pathways associated with aortic aneurysm and dissection. Gene, 2022, 808, 145993.	1.0	4
27	Non-Coding RNA Networks in Pulmonary Hypertension. Frontiers in Genetics, 2021, 12, 703860.	1.1	8
29	The role of TGF- \hat{I}^2 or BMPR2 signaling pathway-related miRNA in pulmonary arterial hypertension and systemic sclerosis. Arthritis Research and Therapy, 2021, 23, 288.	1.6	10
30	Effects of microRNAs in hypertension disease. The European Research Journal, 2022, 8, 131-138.	0.1	0
31	FGF21 attenuates pulmonary arterial hypertension via downregulation of miRâ€130, which targets PPARγ. Journal of Cellular and Molecular Medicine, 2022, 26, 1034-1049.	1.6	7
33	Targeting the cytoskeleton and extracellular matrix in cardiovascular disease drug discovery. Expert Opinion on Drug Discovery, 2022, 17, 443-460.	2.5	5
37	The Cellular and Molecular Effects of Fetoscopic Endoluminal Tracheal Occlusion in Congenital Diaphragmatic Hernia. Frontiers in Pediatrics, 0, 10 , .	0.9	9
38	The key roles of non-coding RNAs in the pathophysiology of hypertension. European Journal of Pharmacology, 2022, 931, 175220.	1.7	4
39	Targeting integrin pathways: mechanisms and advances in therapy. Signal Transduction and Targeted Therapy, 2023, 8, .	7.1	95
40	MiR-223-3p Aggravates Ocular Inflammation in Sjögren's Syndrome. Endocrine, Metabolic and Immune Disorders - Drug Targets, 2023, 23, 1087-1095.	0.6	2