Unexpected mode of engagement between enterovirus

Nature Microbiology 4, 414-419 DOI: 10.1038/s41564-018-0319-z

Citation Report

#	Article	IF	CITATIONS
1	Evolutionary and Structural Overview of Human Picornavirus Capsid Antibody Evasion. Frontiers in Cellular and Infection Microbiology, 2019, 9, 283.	1.8	22
2	Multifunctionality of structural proteins in the enterovirus life cycle. Future Microbiology, 2019, 14, 1147-1157.	1.0	5
3	Intra-host emergence of an enterovirus A71 variant with enhanced PSGL1 usage and neurovirulence. Emerging Microbes and Infections, 2019, 8, 1076-1085.	3.0	10
4	Monoclonal antibodies point to Achilles' heel in picornavirus capsid. PLoS Biology, 2019, 17, e3000232.	2.6	9
5	Hand-foot-and-mouth disease virus receptor KREMEN1 binds the canyon of Coxsackie Virus A10. Nature Communications, 2020, 11, 38.	5.8	28
6	Hepatitis C Virus Structure: Defined by What It Is Not. Cold Spring Harbor Perspectives in Medicine, 2020, 10, a036822.	2.9	14
7	Molecular basis of Coxsackievirus A10 entry using the two-in-one attachment and uncoating receptor KRM1. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 18711-18718.	3.3	18
8	Structural and functional analysis of protective antibodies targeting the threefold plateau of enterovirus 71. Nature Communications, 2020, 11, 5253.	5.8	11
9	Serotype specific epitopes identified by neutralizing antibodies underpin immunogenic differences in Enterovirus B. Nature Communications, 2020, 11, 4419.	5.8	13
10	Structures of Echovirus 30 in complex with its receptors inform a rational prediction for enterovirus receptor usage. Nature Communications, 2020, 11, 4421.	5.8	18
11	Emergence of genotype C1 Enterovirus A71 and its link with antigenic variation of virus in Taiwan. PLoS Pathogens, 2020, 16, e1008857.	2.1	13
12	A Single Mutation in the VP1 Gene of Enterovirus 71 Enhances Viral Binding to Heparan Sulfate and Impairs Viral Pathogenicity in Mice. Viruses, 2020, 12, 883.	1.5	11
13	Inhibition of Enterovirus 71 by Selenium Nanoparticles Loaded with siRNA through Bax Signaling Pathways. ACS Omega, 2020, 5, 12495-12500.	1.6	25
14	Rosmarinic acid exhibits broad anti-enterovirus A71 activity by inhibiting the interaction between the five-fold axis of capsid VP1 and cognate sulfated receptors. Emerging Microbes and Infections, 2020, 9, 1194-1205.	3.0	36
15	Heparan sulfate attachment receptor is a major selection factor for attenuated enterovirus 71 mutants during cell culture adaptation. PLoS Pathogens, 2020, 16, e1008428.	2.1	18
16	Characterization of Plaque Variants and the Involvement of Quasi-Species in a Population of EV-A71. Viruses, 2020, 12, 651.	1.5	5
17	An infectious clone of enterovirus 71(EV71) that is capable of infecting neonatal immune competent mice without adaptive mutations. Emerging Microbes and Infections, 2020, 9, 427-438.	3.0	9
18	Cellular receptors for enterovirus A71. Journal of Biomedical Science, 2020, 27, 23.	2.6	70

CITATION REPORT

#	Article	IF	CITATIONS
19	Identification of Antibodies with Non-overlapping Neutralization Sites that Target Coxsackievirus A16. Cell Host and Microbe, 2020, 27, 249-261.e5.	5.1	24
20	Involvement of VCP/UFD1/Nucleolin in the viral entry of Enterovirus A species. Virus Research, 2020, 283, 197974.	1.1	9
21	Recent advances in the understanding of enterovirus A71 infection: a focus on neuropathogenesis. Expert Review of Anti-Infective Therapy, 2021, 19, 733-747.	2.0	14
22	Novel Naturally Occurring Mutations of Enterovirus 71 Associated With Disease Severity. Frontiers in Microbiology, 2020, 11, 610568.	1.5	6
23	Antivirals blocking entry of enteroviruses and therapeutic potential. Journal of Biomedical Science, 2021, 28, 10.	2.6	25
24	Structures of Small Icosahedral Viruses. , 2021, , 278-289.		0
25	Polymorphisms in the DC-SIGN gene and their association with the severity of hand, foot, and mouth disease caused by enterovirus 71. Archives of Virology, 2021, 166, 1133-1140.	0.9	2
26	Cryo-EM structures reveal the molecular basis of receptor-initiated coxsackievirus uncoating. Cell Host and Microbe, 2021, 29, 448-462.e5.	5.1	19
27	Bioinformatics-based prediction of conformational epitopes for Enterovirus A71 and Coxsackievirus A16. Scientific Reports, 2021, 11, 5701.	1.6	7
28	Sulfonated azo dyes enhance the genome release of enterovirus A71 VP1–98K variants by preventing the virions from being trapped by sulfated glycosaminoglycans at acidic pH. Virology, 2021, 555, 19-34.	1.1	1
29	N-Linked Glycosylation on Anthrax Toxin Receptor 1 Is Essential for Seneca Valley Virus Infection. Viruses, 2021, 13, 769.	1.5	6
30	Pharmacological perspectives and molecular mechanisms of coumarin derivatives against virus disease. Genes and Diseases, 2022, 9, 80-94.	1.5	27
31	Functional and structural characterization of a two-MAb cocktail for delayed treatment of enterovirus D68 infections. Nature Communications, 2021, 12, 2904.	5.8	19
32	Adaptation and Virulence of Enterovirus-A71. Viruses, 2021, 13, 1661.	1.5	10
33	Characterization of SR-B2a and SR-B2b genes and their ability to promote GCRV infection in grass carp (Ctenopharyngodon idellus). Developmental and Comparative Immunology, 2021, 124, 104202.	1.0	2
35	Gangliosides are essential endosomal receptors for quasi-enveloped and naked hepatitis A virus. Nature Microbiology, 2020, 5, 1069-1078.	5.9	45
36	Molecular Docking of SP40 Peptide towards Cellular Receptors for Enterovirus 71 (EV-A71). Molecules, 2021, 26, 6576.	1.7	3
37	Structural basis for neutralization of enterovirus. Current Opinion in Virology, 2021, 51, 199-206.	2.6	7

#	Article	IF	CITATIONS
38	Internalization and Transport of PEGylated Lipid-Based Mixed Micelles across Caco-2 Cells Mediated by Scavenger Receptor B1. Pharmaceutics, 2021, 13, 2022.	2.0	1
39	Molecular basis of differential receptor usage for naturally occurring CD55-binding and -nonbinding coxsackievirus B3 strains. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	2
40	Conserved Residues Adjacent to ß-Barrel and Loop Intersection among Enterovirus VP1 Affect Viral Replication: Potential Target for Anti-Enteroviral Development. Viruses, 2022, 14, 364.	1.5	3
41	Identification of a novel binding inhibitor that blocks the interaction between hSCARB2 and VP1 of enterovirus 71. , 2022, 1, 100016.		3
42	3,4-Dicaffeoylquinic Acid from the Medicinal Plant <i>Ilex kaushue</i> Disrupts the Interaction Between the Five-Fold Axis of Enterovirus A-71 and the Heparan Sulfate Receptor. Journal of Virology, 2022, 96, e0054221.	1.5	3
43	Type I Interferon-Induced TMEM106A Blocks Attachment of EV-A71 Virus by Interacting With the Membrane Protein SCARB2. Frontiers in Immunology, 2022, 13, 817835.	2.2	3
44	A Single Amino Acid Substitution in Structural Protein VP2 Abrogates the Neurotropism of Enterovirus A-71 in Mice. Frontiers in Microbiology, 2022, 13, 821976.	1.5	2
45	Discovery of aminothiazole derivatives as novel human enterovirus A71 capsid protein inhibitors. Bioorganic Chemistry, 2022, 122, 105683.	2.0	4
46	Atomic Structures of Coxsackievirus B5 Provide Key Information on Viral Evolution and Survival. Journal of Virology, 2022, , e0010522.	1.5	5
47	Neddylation of Enterovirus 71 VP2 Protein Reduces Its Stability and Restricts Viral Replication. Journal of Virology, 2022, 96, e0059822.	1.5	5
48	Chemokine PF4 Inhibits EV71 and CA16 Infections at the Entry Stage. Journal of Virology, 2022, 96, e0043522.	1.5	7
49	Development of an Enzyme-Linked Immunosorbent Assay for Detection of the Native Conformation of Enterovirus A71. MSphere, 2022, 7, .	1.3	5
50	Roles of Non-Coding RNAs in Virus-Host Interaction About Pathogenesis of Hand-Foot-Mouth Disease. Current Microbiology, 2022, 79, .	1.0	1
51	Mouse Scarb2 Modulates EV-A71 Pathogenicity in Neonatal Mice. Journal of Virology, 0, , .	1.5	0
52	Structural basis for the synergistic neutralization of coxsackievirus B1 by a triple-antibody cocktail. Cell Host and Microbe, 2022, 30, 1279-1294.e6.	5.1	3
53	Structure of Human Enterovirus 70 and Its Inhibition by Capsid-Binding Compounds. Journal of Virology, 2022, 96, .	1.5	1
56	Switching of Receptor Binding Poses between Closely Related Enteroviruses. Viruses, 2022, 14, 2625.	1.5	1
57	Molecular mechanism of antibody neutralization of coxsackievirus A16. Nature Communications, 2022, 13, .	5.8	2

CITATION REPORT

#	Article	IF	CITATIONS
58	Inhibitory effects and mechanisms of proanthocyanidins against enterovirus 71 infection. Virus Research, 2023, 329, 199098.	1.1	2
59	Dual blockages of a broad and potent neutralizing <scp>IgM</scp> antibody targeting <scp>GH</scp> loop of <scp>EVâ€As</scp> . Immunology, 2023, 169, 292-308.	2.0	1
60	How the Competition for Cysteine May Promote Infection of SARS-CoV-2 by Triggering Oxidative Stress. Antioxidants, 2023, 12, 483.	2.2	0
61	Antigenic mapping of enterovirus A71 from Taiwan and Southeast Asia. Antiviral Research, 2023, 212, 105569.	1.9	0
62	Current status of hand-foot-and-mouth disease. Journal of Biomedical Science, 2023, 30, .	2.6	28
63	Insights into In Vitro Adaptation of EV71 and Analysis of Reduced Virulence by In Silico Predictions. Vaccines, 2023, 11, 629.	2.1	0
64	EV-A71 Mechanism of Entry: Receptors/Co-Receptors, Related Pathways and Inhibitors. Viruses, 2023, 15, 785.	1.5	3
65	Insights into enterovirus a-71 antiviral development: from natural sources to synthetic nanoparticles. Archives of Microbiology, 2023, 205, .	1.0	0
73	Pathogen–Host Interaction and Its Associated Molecular Mechanism in HFMD Pathology and Immunology. , 2024, , 117-146.		0