Methanol as a fuel for internal combustion engines

Progress in Energy and Combustion Science 70, 43-88 DOI: 10.1016/j.pecs.2018.10.001

Citation Report

#	Article	IF	CITATIONS
1	Exhaust Emissions and Physicochemical Properties of n-Butanol/Diesel Blends with 2-Ethylhexyl Nitrate (EHN) or Hydrotreated Used Cooking Oil (HUCO) as Cetane Improvers. Energies, 2018, 11, 3413.	1.6	3
2	Parametric study of a diesel engine fueled with directly injected methanol and pilot diesel. Fuel, 2019, 256, 115882.	3.4	24
3	Potential of e-Fischer Tropsch diesel and oxymethyl-ether (OMEx) as fuels for the dual-mode dual-fuel concept. Applied Energy, 2019, 253, 113622.	5.1	35
4	Introducing, evaluation and exergetic performance assessment of a novel hybrid system composed of MCFC, methanol synthesis process, and a combined power cycle. Energy Conversion and Management, 2019, 197, 111878.	4.4	61
5	Copper zinc oxide nanocatalysts grown on cordierite substrate for hydrogen production using methanol steam reforming. International Journal of Hydrogen Energy, 2019, 44, 22936-22946.	3.8	43
6	Noise Source Separation of an Internal Combustion Engine Based on a Single-Channel Algorithm. Shock and Vibration, 2019, 2019, 1-19.	0.3	3
7	Effect of excess air/fuel ratio and methanol addition on the performance, emissions, and combustion characteristics of a natural gas/methanol dual-fuel engine. Fuel, 2019, 255, 115799.	3.4	35
8	The Electron Impact Ionization Cross Sections of Methanol, Ethanol and 1-Propanol. Atoms, 2019, 7, 60.	0.7	5
9	Investigation of environmental, operational and economic performance of methanol partially premixed combustion atÂslowÂspeed operation of a marine engine. Journal of Cleaner Production, 2019, 235, 1006-1019.	4.6	52
10	Numerical investigation of intake oxygen enrichment effects on radicals, combustion and unregulated emissions during cold start in a DISI methanol engine. Fuel, 2019, 253, 1406-1413.	3.4	22
11	Effects of the Initial Gel Fuel Temperature on the Ignition Mechanism and Characteristics of Oil-Filled Cryogel Droplets in the High-Temperature Oxidizer Medium. Energy & Fuels, 2019, 33, 11812-11820.	2.5	9
12	Experimental investigation on performance and emission characteristics of a CI diesel engine fueled with fusel oil/diesel fuel blends. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 0, , 1-16.	1.2	13
13	Self-recuperative high temperature co-electrolysis-based methanol production with vortex search-based exergy efficiency enhancement. Journal of Cleaner Production, 2019, 239, 118029.	4.6	17
14	The utilization of n-butanol/diesel blends in Acetylene Dual Fuel Engine. Energy Reports, 2019, 5, 1030-1040.	2.5	23
15	The knock study of high compression ratio SI engine fueled with methanol in combination with different EGR rates. Fuel, 2019, 257, 116098.	3.4	56
16	The effect of electron ambipolar diffusion on the ion current signals in a premixed methane flame. Fuel, 2019, 256, 115813.	3.4	11
17	The performance of turbocharged diesel engine with injected calophyllum inophyllum methyl ester blends and inducted babul wood gaseous fuels. Fuel, 2019, 257, 116060.	3.4	14
18	Properties of gasoline-ethanol-methanol ternary fuel blend compared with ethanol-gasoline and methanol-gasoline fuel blends. Egyptian Journal of Petroleum, 2019, 28, 371-376.	1.2	28

#	Article	IF	CITATIONS
19	Permittivity of gasoline/methanol blends. Application to blend composition estimation. Fuel, 2019, 258, 116169.	3.4	3
20	Influence of ignition timing on performance and emission characteristics of an SI engine fueled with equi-volume blend of methanol and gasoline. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2019, , 1-15.	1.2	7
21	Comparative study on combustion and emissions between methanol port-injection engine and methanol direct-injection engine with H2-enriched port-injection under lean-burn conditions. Energy Conversion and Management, 2019, 200, 112096.	4.4	146
22	Comparative study of combustion process and cycle-by-cycle variations of spark-ignition engine fueled with pure methanol, ethanol, and n-butanol at various air–fuel ratios. Fuel, 2019, 254, 115683.	3.4	44
23	Combustion characteristics of high pressure direct-injected methanol ignited by diesel in a constant volume combustion chamber. Fuel, 2019, 254, 115598.	3.4	31
24	Effects of diluents on cycle-by-cycle variations in a spark ignition engine fueled with methanol. Energy, 2019, 182, 1132-1140.	4.5	26
25	A comparative study on the combustion and emissions of dual-fuel engine fueled with natural gas/methanol, natural gas/ethanol, and natural gas/n-butanol. Energy Conversion and Management, 2019, 192, 11-19.	4.4	56
26	Methanol as an octane booster for gasoline fuels. Fuel, 2019, 248, 76-84.	3.4	47
27	Ignition delay time and H2O measurements during methanol oxidation behind reflected shock waves. Combustion and Flame, 2019, 203, 143-156.	2.8	23
28	Diversity in transportation: Why a mix of propulsion technologies is the way forward for the future fleet. Results in Engineering, 2019, 4, 100060.	2.2	93
29	Effects of spark timing and methanol addition on combustion characteristics and emissions of dual-fuel engine fuelled with natural gas and methanol under lean-burn condition. Energy Conversion and Management, 2019, 181, 519-527.	4.4	82
30	Investigation on a high-stratified direct injection spark ignition (DISI) engine fueled with methanol under a high compression ratio. Applied Thermal Engineering, 2019, 148, 352-362.	3.0	32
31	Investigation of methanol ignition phenomena using a rapid compression machine. Combustion and Flame, 2020, 211, 147-157.	2.8	14
32	Experimental investigation of equivalence ratio effects on combustion and emissions characteristics of an H2/methanol dual-injection engine under different spark timings. Fuel, 2020, 262, 116463.	3.4	130
33	The role of ethanol as a cosolvent for isooctane-methanol blend. Fuel, 2020, 262, 116465.	3.4	8
34	Emission and performance analysis of DI diesel engines fueled by biodiesel blends via CFD simulation of spray combustion and different spray breakup models: a numerical study. Journal of Thermal Analysis and Calorimetry, 2020, 139, 2527-2539.	2.0	10
35	Theoretical partial ionization cross sections by electron impact for production of cations from CH3OH, CO2 and NH3. Chemical Physics Letters, 2020, 740, 137071.	1.2	7
36	Numerical modeling of plasma-assisted combustion effects on firing and intermediates in the combustion process of methanol–air mixtures. Energy, 2020, 192, 116598.	4.5	11

#	Article	IF	CITATIONS
37	Optimal Design and Energy-Saving Investigation of the Triple CO ₂ Feeds for Methanol Production System by Combining Steam and Dry Methane Reforming. Industrial & Engineering Chemistry Research, 2020, 59, 1596-1606.	1.8	20
38	A spectral-splitting photovoltaic-thermochemical system for energy storage and solar power generation. Applied Energy, 2020, 260, 113631.	5.1	35
39	Experimental investigation on the potential of biogas/ethanol dual-fuel spark-ignition engine for power generation: Combustion, performance and pollutant emission analysis. Applied Energy, 2020, 261, 114438.	5.1	55
40	Analysis of nitrogen oxide emissions from modern vehicles using hydrogen or other natural and synthetic fuels in combustion chamber. International Journal of Hydrogen Energy, 2020, 45, 1151-1157.	3.8	9
41	Effects of molar expansion ratio of fuels on engine efficiency. Fuel, 2020, 263, 116743.	3.4	13
42	An efficient technique for improving methanol yield using dual CO2 feeds and dry methane reforming. Frontiers of Chemical Science and Engineering, 2020, 14, 614-628.	2.3	11
43	Renewable Methanol with Ignition Improver Additive for Diesel Engines. Energy & Fuels, 2020, 34, 379-388.	2.5	10
44	Experimental and numerical evaluation of low-temperature combustion of bio-syngas. International Journal of Hydrogen Energy, 2020, 45, 1084-1095.	3.8	17
45	The highly efficient cathode of framework structural Fe2O3/Mn2O3 in passive direct methanol fuel cells. Applied Energy, 2020, 259, 114154.	5.1	10
46	Performance and emission characterization of a common-rail compression-ignition engine fuelled with ternary mixtures of rapeseed oil, pyrolytic oil and diesel. Renewable Energy, 2020, 148, 739-755.	4.3	24
47	Carbon dioxide mitigation using renewable power. Current Opinion in Chemical Engineering, 2020, 29, 51-58.	3.8	6
48	Techno-economic and environmental assessment of methanol steam reforming for H2 production at various scales. International Journal of Hydrogen Energy, 2020, 45, 24146-24158.	3.8	38
49	A chemical kinetics based investigation on laminar burning velocity and knock occurrence in a spark-ignition engine fueled with ethanol–water blends. Fuel, 2020, 280, 118587.	3.4	15
50	Exploration of suitable injector configuration for dual-mode dual-fuel engine with diesel and OMEx as high reactivity fuels. Fuel, 2020, 280, 118670.	3.4	16
51	RON and MON chemical kinetic modeling derived correlations with ignition delay time for gasoline and octane boosting additives. Combustion and Flame, 2020, 219, 359-372.	2.8	9
52	Copper–Zinc Alloy-Free Synthesis of Methanol from Carbon Dioxide over Cu/ZnO/Faujasite. ACS Catalysis, 2020, 10, 14240-14244.	5.5	35
53	Alcohol lean burn in heavy duty engines: Achieving 25 bar IMEP with high efficiency in spark ignited operation. International Journal of Engine Research, 2020, , 146808742097289.	1.4	10
54	Modeling Viscosity and Density of Ethanol-Diesel-Biodiesel Ternary Blends for Sustainable Environment. Sustainability, 2020, 12, 5186.	1.6	81

#	Article	IF	CITATIONS
55	Biogas-based fuels as renewable energy in the transport sector: an overview of the potential of using CBG, LBG and other vehicle fuels produced from biogas. Biofuels, 2022, 13, 587-599.	1.4	36
56	Heavy-Duty-, On- und Off-Highway-Motoren 2019. Proceedings, 2020, , .	0.2	0
57	Transition Metal Carbides (TMCs) Catalysts for Gas Phase CO2 Upgrading Reactions: A Comprehensive Overview. Catalysts, 2020, 10, 955.	1.6	29
58	Alcohol Fuels for Spark-Ignition Engines: Performance, Efficiency, and Emission Effects at Mid to High Blend Rates for Ternary Mixtures. Energies, 2020, 13, 6390.	1.6	10
59	Investigation on Combustion Characteristics of Methanol-Syngas Fuel. IOP Conference Series: Earth and Environmental Science, 2020, 558, 022015.	0.2	1
60	In-depth comparison between pure diesel and diesel methanol dual fuel combustion mode. Applied Energy, 2020, 278, 115664.	5.1	41
61	OMEx-diesel blends as high reactivity fuel for ultra-low NOx and soot emissions in the dual-mode dual-fuel combustion strategy. Fuel, 2020, 275, 117898.	3.4	33
62	Methane dehydrogenation on 3d 13-atom transition-metal clusters: A density functional theory investigation combined with Spearman rank correlation analysis. Fuel, 2020, 275, 117790.	3.4	14
63	lonization cross-sections for C2H2 and C2H5OH by electron- impact. Radiation Physics and Chemistry, 2020, 173, 108877.	1.4	7
64	A review on alternative fuels in future energy system. Renewable and Sustainable Energy Reviews, 2020, 128, 109927.	8.2	207
65	A 480ÂkW/liter direct injection jet ignition rotary valve super-turbocharged positive ignition methanol engine. Case Studies in Thermal Engineering, 2020, 21, 100676.	2.8	3
66	Gaseous emissions (regulated and unregulated) and particulate characteristics of a medium-duty CRDI transportation diesel engine fueled with diesel-alcohol blends. Fuel, 2020, 278, 118269.	3.4	47
67	Techno-economic barriers of an industrial-scale methanol CCU-plant. Journal of CO2 Utilization, 2020, 39, 101166.	3.3	62
68	Investigation to meet China II emission legislation for marine diesel engine with diesel methanol compound combustion technology. Journal of Environmental Sciences, 2020, 96, 99-108.	3.2	10
69	Progress and Prospective of Nitrogen-Based Alternative Fuels. Chemical Reviews, 2020, 120, 5352-5436.	23.0	165
70	Development of port fuel injected methanol (M85)-fuelled two-wheeler for sustainable transport. Journal of Traffic and Transportation Engineering (English Edition), 2020, 7, 298-311.	2.0	6
71	Novel Polyester Amide Membranes Containing Biquinoline Units and Complex with Cu(I): Synthesis, Characterization, and Approbation for n-Heptane Isolation from Organic Mixtures. Polymers, 2020, 12, 645.	2.0	10
72	Conversion and storage of solar energy in the forms of liquid fuel and electricity in a hybrid energy storage system using methanol and phase change materials. Energy Conversion and Management, 2020, 209, 112669.	4.4	32

#	Article	IF	CITATIONS
73	Methanol production based on methane tri-reforming: Process modeling and optimization. Chemical Engineering Research and Design, 2020, 138, 269-278.	2.7	12
74	Highly Selective Wearable Smartsensors for Vapor/Liquid Amphibious Methanol Monitoring. Analytical Chemistry, 2020, 92, 5897-5903.	3.2	14
75	Parametric study on effects of methanol injection timing and methanol substitution percentage on combustion and emissions of methanol/diesel dual-fuel direct injection engine at full load. Fuel, 2020, 279, 118424.	3.4	45
76	Experimental assessment of lean-burn characteristics for a modified diesel engine operated in methanol direct injection spark ignition (DISI) mode at full throttle condition. Fuel, 2020, 279, 118455.	3.4	20
77	Effect of the Plasma Jet Ignition and Flame Kernel Under The Combustion Process in a Constant Volume Combustion Chamber. International Journal of Automotive Technology, 2020, 21, 833-842.	0.7	0
78	Evaluating the In-Service Emissions of High-Mileage Dedicated Methanol-Fueled Passenger Cars: Regulated and Unregulated Emissions. Energies, 2020, 13, 2680.	1.6	7
79	Life cycle assessment of a small-scale methanol production system: A Power-to-Fuel strategy for biogas plants. Journal of Cleaner Production, 2020, 271, 122476.	4.6	58
80	Effect of ternary blends on the noise, vibration, and emission characteristics of an automotive spark ignition engine. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 0, , 1-22.	1.2	8
81	Numerical study of twin-spark plug arrangement effects on flame, combustion and emissions of a medium compression ratio direct-injection methanol engine. Fuel, 2020, 279, 118427.	3.4	91
82	Computational study of nozzle spray-line distribution effects on stratified mixture formation, combustion and emissions of a high compression ratio DISI methanol engine under lean-burn condition. Energy, 2020, 205, 118080.	4.5	83
83	Prospective assessment of methanol vehicles in China using FANP-SWOT analysis. Transport Policy, 2020, 96, 60-75.	3.4	32
84	A Review of The Methanol Economy: The Fuel Cell Route. Energies, 2020, 13, 596.	1.6	123
85	Thermodynamic and ecological preselection of synthetic fuel intermediates from biogas at farm sites. Energy, Sustainability and Society, 2020, 10, .	1.7	10
86	Skeletal chemical kinetic mechanism generation for methanol combustion and systematic analysis on the ignition characteristics. Asia-Pacific Journal of Chemical Engineering, 2020, 15, e2434.	0.8	6
87	Exergy loss analysis on diesel methanol dual fuel engine under different operating parameters. Applied Energy, 2020, 261, 114483.	5.1	45
88	A review of ammonia as a compression ignition engine fuel. International Journal of Hydrogen Energy, 2020, 45, 7098-7118.	3.8	388
89	Combustion Process of Canola Oil and n-Hexane Mixtures in Dynamic Diesel Engine Operating Conditions. Applied Sciences (Switzerland), 2020, 10, 80.	1.3	11
90	CO2 hydrogenation to methanol: the structure–activity relationships of different catalyst systems. Energy, Ecology and Environment, 2020, 5, 272-285.	1.9	25

#	Article	IF	CITATIONS
91	A novel technique for detailed and time-efficient combustion modeling of fumigated dual-fuel internal combustion engines. Applied Thermal Engineering, 2020, 174, 115224.	3.0	15
92	Parametric study on effects of excess air/fuel ratio, spark timing, and methanol injection timing on combustion characteristics and performance of natural gas/methanol dual-fuel engine at low loads. Energy Conversion and Management, 2020, 210, 112742.	4.4	105
93	Electricity grid decarbonisation or green methanol fuel? A life-cycle modelling and analysis of today′s transportation-power nexus. Applied Energy, 2020, 265, 114718.	5.1	27
94	Exploring the high load potential of diesel–methanol dual-fuel operation with Miller cycle, exhaust gas recirculation, and intake air cooling on a heavy-duty diesel engine. International Journal of Engine Research, 2021, 22, 2318-2336.	1.4	23
95	Methanol and OMEx as fuel candidates to fulfill the potential EURO VII emissions regulation under dual-fuel combustion. Fuel, 2021, 287, 119548.	3.4	26
96	Optical characterization of methanol compression-ignition combustion in a heavy-duty engine. Proceedings of the Combustion Institute, 2021, 38, 5509-5517.	2.4	15
97	The role of alcohol biofuels in advanced combustion: An analysis. Fuel, 2021, 283, 118915.	3.4	41
98	A critical insight review on homogeneous charge compression ignition engine characteristics powered by biofuels. Fuel, 2021, 285, 119202.	3.4	54
99	Numerical study of cold-start performances of a medium compression ratio direct-injection twin-spark plug synchronous ignition engine fueled with methanol. Fuel, 2021, 285, 119235.	3.4	24
100	Effect of lanthanum group promoters on Cu/(mixture of ZnO and Zn-Al-spinnel-oxides) catalyst for methanol synthesis by hydrogenation of CO and CO2 mixtures. Fuel, 2021, 283, 118987.	3.4	18
101	An optical study on spray and combustion characteristics of ternary hydrogenated catalytic biodiesel/methanol/n-octanol blends; part â: Spray morphology, ignition delay, and flame lift-off length. Fuel, 2021, 289, 119762.	3.4	39
102	A comprehensive review of hydrogen production from methanol thermochemical conversion for sustainability. Energy, 2021, 217, 119384.	4.5	163
103	Methanol synthesis over Cu/CeO ₂ –ZrO ₂ catalysts: the key role of multiple active components. Catalysis Science and Technology, 2021, 11, 349-358.	2.1	18
104	Influence of calophyllum inophyllum and Jojoba oil methyl ester blended with n-pentanol additive upon overall performance, combustion and emission characteristics of a TDI engine operated in natural aspirated mode. Fuel, 2021, 288, 119576.	3.4	17
105	Mitigation strategy of carbon dioxide emissions through multiple muffler design exchange and gasoline-methanol blend replacement. Journal of Cleaner Production, 2021, 286, 125460.	4.6	11
106	Challenges for turbulent combustion. Proceedings of the Combustion Institute, 2021, 38, 121-155.	2.4	48
107	Optimization on timings of injection and spark of a high compression-ratio stratified-charge methanol engine under ultra-lean burn. Fuel, 2021, 285, 119227.	3.4	16
108	A Study on Expandability of the Flame Kernel and the Coldflame of the Ignition System by the Application of AIS Technology in Lean-Burn Condition. International Journal of Automotive Technology, 2021, 22, 1-10.	0.7	1

#	Article	IF	CITATIONS
109	Methanol as an Alternative Fuel in Internal Combustion Engine: Scope, Production, and Limitations. Energy, Environment, and Sustainability, 2021, , 11-36.	0.6	3
110	Methanol—A Sustainable Fuel for SI Engine. Energy, Environment, and Sustainability, 2021, , 103-137.	0.6	2
111	Hydrogen as an Enabler for Sustainable Mobility. Proceedings, 2021, , 1-9.	0.2	0
112	Introduction of Methanol: A Sustainable Transport Fuel for CI Engines. Energy, Environment, and Sustainability, 2021, , 3-7.	0.6	0
113	Technology Options for Methanol Utilization in Large Bore Diesel Engines ofÂRailroad Sector. Energy, Environment, and Sustainability, 2021, , 11-37.	0.6	1
114	Potential Assessment of Methanol to Reduce the Emission in LTC Mode Diesel Engine. Energy, Environment, and Sustainability, 2021, , 271-292.	0.6	7
115	Safety Aspects of Methanol as Fuel. Energy, Environment, and Sustainability, 2021, , 117-138.	0.6	5
116	Challenges in the use of hydrogen for maritime applications. Energy and Environmental Science, 2021, 14, 815-843.	15.6	159
117	Methanol as a Fuel for Marine Diesel Engines. Energy, Environment, and Sustainability, 2021, , 45-85.	0.6	15
118	Impact analysis of partially premixed combustion strategy on the emissions of a compression ignition engine fueled with higher octane number fuels: A review. Materials Today: Proceedings, 2021, 45, 5772-5777.	0.9	11
119	Impact of Methanol on Engine Performance and Emissions. Energy, Environment, and Sustainability, 2021, , 247-269.	0.6	3
120	Synthesis of a fully biobased cellulose-3-(2-hydroxyphenyl) propionate ester with antioxidant activity and UV-resistant properties by the DBU/CO ₂ /DMSO solvent system. Green Chemistry, 2021, 23, 2352-2361.	4.6	17
121	Impacts of octanol and decanol addition on the solubility of methanol/hydrous methanol/diesel/biodiesel/Jet A-1 fuel ternary mixtures. RSC Advances, 2021, 11, 18213-18224.	1.7	5
122	Application of Methanol as a Clean and Efficient Alternative Fuel for Passenger Cars. Energy, Environment, and Sustainability, 2021, , 265-282.	0.6	0
123	Alcohols as Energy Carriers in MILD Combustion. Energy & amp; Fuels, 2021, 35, 7253-7264.	2.5	19
124	Influence of Higher Alcohol Additives in Methanol–Gasoline Blends on the Performance and Emissions of an Unmodified Automotive SI Engine: A Review. Arabian Journal for Science and Engineering, 2021, 46, 7057-7085.	1.7	4
125	Integrating hydrogen production with selective methanol oxidation to value-added formate over a NiS bifunctional electrocatalyst. IOP Conference Series: Earth and Environmental Science, 2021, 651, 042062.	0.2	8
126	Optimization of Performance and Emission Responses for a CIE Run by Meoh/Biodiesel/Diesel Blends Utilizing Response Surface Methodology. IOP Conference Series: Materials Science and Engineering, 2021, 1094, 012121.	0.3	3

#	Article	IF	CITATIONS
128	Emission characteristics and ozone formation potentials of gaseous pollutants from in-use methanol-, CNG- and gasoline-fueled vehiclesÂ. Environmental Monitoring and Assessment, 2021, 193, 164.	1.3	4
130	Advanced biofuels to decarbonise European transport by 2030: Markets, challenges, and policies that impact their successful market uptake. Energy Strategy Reviews, 2021, 34, 100633.	3.3	107
131	A comparative study of combustion and emission characteristics of dual-fuel engine fueled with diesel/methanol and diesel–polyoxymethylene dimethyl ether blend/methanol. Chemical Engineering Research and Design, 2021, 147, 714-722.	2.7	76
132	The CO2 photoconversion over reduced graphene oxide based on Ag/TiO2 photocatalyst in an advanced meso-scale continuous-flow photochemical reactor. Environmental Science and Pollution Research, 2021, 28, 36157-36173.	2.7	26
133	Cold Flow Simulation of a Dual-Fuel Engine for Diesel-Natural Gas and Diesel-Methanol Fuelling Conditions. , 0, , .		1
134	Semi-Predictive Modeling of Diluted Ethanol and Methanol Combustion in Conventional Spark Ignition Operation. , 0, , .		3
135	Modeling of a Methanol Fueled Direct-Injection Spark-Ignition Engine with Reformed-Exhaust Gas Recirculation. , 0, , .		0
136	Evaporating spray characteristics of methanol-in-diesel emulsions. Fuel, 2021, 290, 119730.	3.4	12
137	Partial Oxidation of Methane to Methanol on Cobalt Oxide-Modified Hierarchical ZSM-5. , 0, , .		2
138	Feasibility Assessment of Methanol Fueling in Two-Wheeler Engine Using 1-D Simulations. , 0, , .		3
139	Optical Investigations of an Oxygenated Alternative Fuel in a Single Cylinder DISI Light Vehicle Gasoline Engine. , 0, , .		6
140	A Comparative Environmental Life Cycle Assessment of the Combustion of Ammonia/Methane Fuels in a Tangential Swirl Burner. Frontiers in Chemical Engineering, 2021, 3, .	1.3	7
141	Effect of Anode Material on Electrochemical Oxidation of Low Molecular Weight Alcohols—A Review. Molecules, 2021, 26, 2144.	1.7	37
142	The effect of low reactivity fuels on the dual fuel mode compression ignition engine with exergy and soot analyses. Fuel, 2021, 290, 120031.	3.4	12
143	Investigation of Potential Fuels for Hybrid Molten Carbonate Fuel Cell-Based Aircraft Propulsion Systems. Energy & Fuels, 2021, 35, 10156-10168.	2.5	8
144	Application of reformed exhaust gas recirculation on marine LNG engines for NO emission control. Fuel, 2021, 291, 120114.	3.4	28
145	Cu-Based Nanocatalysts for CO ₂ Hydrogenation to Methanol. Energy & Fuels, 2021, 35, 8558-8584.	2.5	74
146	Drivers and barriers in retrofitting pulp and paper industry with bioenergy for more efficient production of liquid, solid and gaseous biofuels: A review. Biomass and Bioenergy, 2021, 148, 106036.	2.9	30

#	Article	IF	CITATIONS
147	Multiple optical diagnostics on effects of fuel properties on spray flames under oxygen-enriched conditions. Fuel, 2021, 291, 120129.	3.4	34
148	Retrofitting a high-speed marine engine to dual-fuel methanol-diesel operation: A comparison of multiple and single point methanol port injection. Fuel Communications, 2021, 7, 100010.	2.0	22
149	Novel hybrid aircraft propulsion systems using hydrogen, methane, methanol, ethanol and dimethyl ether as alternative fuels. Energy Conversion and Management, 2021, 238, 114172.	4.4	30
150	Experimental study on cycle-to-cycle variations in natural gas/methanol bi-fueled engine under excess air/fuel ratio at 1.6. Energy, 2021, 224, 120233.	4.5	13
151	Fuel performance for stable homogeneous gasoline-methanol-ethanol blends. Fuel, 2021, 294, 120565.	3.4	25
152	Large-eddy simulation of tri-fuel combustion: Diesel spray assisted ignition of methanol-hydrogen blends. International Journal of Hydrogen Energy, 2021, 46, 21687-21703.	3.8	22
153	The effects of innovative blends of petrol with renewable fuels on the exhaust emissions of a GDI Euro 6d-TEMP car. Fuel, 2021, 294, 120483.	3.4	11
154	Autoignition behavior of methanol/diesel mixtures: Experiments and kinetic modeling. Combustion and Flame, 2021, 228, 1-12.	2.8	27
155	Effect of hydrogen enrichment on performance, combustion, and emission of a methanol fueled SI engine. International Journal of Hydrogen Energy, 2021, 46, 25294-25307.	3.8	35
156	Recent advances in CO2 hydrogenation to value-added products — Current challenges and future directions. Progress in Energy and Combustion Science, 2021, 85, 100905.	15.8	134
157	Optimization for hydrogen production from methanol partial oxidation over Ni–Cu/Al2O3 catalyst under sprays. International Journal of Hydrogen Energy, 2022, 47, 40559-40572.	3.8	10
158	Comparative assessment of alternative marine fuels in life cycle perspective. Renewable and Sustainable Energy Reviews, 2021, 144, 110985.	8.2	59
159	Development and assessment of a cleaner locomotive powering system with alternative fuels. Fuel, 2021, 296, 120529.	3.4	17
160	An optical study on spray and combustion characteristics of ternary hydrogenated catalytic biodiesel/methanol/n-octanol blends; part ĐŸ: Liquid length and in-flame soot. Energy, 2021, 227, 120543.	4.5	46
161	A review of dual-fuel combustion mode in spark-ignition engines. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2021, 43, 1.	0.8	1
162	Effects of stroke on spark-ignition combustion with gasoline and methanol. International Journal of Engine Research, 2022, 23, 804-815.	1.4	7
163	Methanol as a renewable energy carrier: An assessment of production and transportation costs for selected global locations. Advances in Applied Energy, 2021, 3, 100050.	6.6	81
164	Low-carbon alcohol fuels for decarbonizing the road transportation industry: a bibliometric analysis 2000–2021. Environmental Science and Pollution Research, 2022, 29, 5577-5604.	2.7	19

#	Article	IF	CITATIONS
165	Limits of compression ratio in spark-ignition combustion with methanol. International Journal of Engine Research, 2022, 23, 793-803.	1.4	12
166	Multiple-objective optimization of a methanol/diesel reactivity controlled compression ignition engine based on non-dominated sorting genetic algorithm-II. Fuel, 2021, 300, 120953.	3.4	11
167	Operational Parameters of a Diesel Engine Running on Diesel–Rapeseed Oil–Methanol–Iso-Butanol Blends. Energies, 2021, 14, 6173.	1.6	6
168	Influence of functional groups on low-temperature combustion chemistry of biofuels. Progress in Energy and Combustion Science, 2021, 86, 100925.	15.8	58
169	Effect of parallel LPG fuelling in a methanol fuelled SI engine under variable compression ratio. Energy, 2022, 239, 122134.	4.5	19
170	Investigation on mixture formation and combustion characteristics of a heavy-duty SI methanol engine. Applied Thermal Engineering, 2021, 196, 117258.	3.0	9
171	Study on Effects of Methanol on Material Compatibility of a Fuel Supply System in a Spark Ignition Engine. , 0, , .		1
172	A numerical study on methanol steam reforming reactor utilizing engine exhaust heat for hydrogen generation. International Journal of Hydrogen Energy, 2021, 46, 38073-38088.	3.8	22
173	Review of Potential CO2-Neutral Fuels in Passenger Cars in Context of a Possible Future Hybrid Powertrain. , 0, , .		5
174	Comparison of Promising Sustainable C1-Fuels Methanol, Dimethyl Carbonate, and Methyl Formate in a DISI Single-Cylinder Light Vehicle Gasoline Engine. , 0, , .		8
175	Moving ahead from hydrogen to methanol economy: scope and challenges. Clean Technologies and Environmental Policy, 0, , 1.	2.1	5
176	Experimental and modeling studies on the removal of tars from coalâ€derived syngas using methyl oleate. Chemical Engineering and Technology, 2021, 44, 2082.	0.9	0
177	Assessment of performance, combustion and emissions characteristics of methanol-diesel dual-fuel compression ignition engine: A review. Journal of Traffic and Transportation Engineering (English) Tj ETQq0 0 0 rg	gB₽ ./ @verlo	ocke910 Tf 50
178	Numerical investigation and experimental validation on the leakage of methanol and formaldehyde in diesel methanol dual fuel engine with different valve overlap. Applied Energy, 2021, 300, 117355.	5.1	12
179	Shock tube and kinetic study on auto-ignition characteristics of methanol/n-heptane mixtures at high temperature. Energy, 2021, 233, 121152.	4.5	4
180	A review of water injection application on spark-ignition engines. Fuel Processing Technology, 2021, 221, 106956.	3.7	30
181	Parametric study of a single-channel diesel/methanol dual-fuel injector on a diesel engine fueled with directly injected methanol and pilot diesel. Fuel, 2021, 302, 121156.	3.4	21
182	An experimental study on methanol as a fuel in large bore high speed engine applications – Port fuel injected spark ignited combustion. Fuel, 2021, 303, 121292.	3.4	18

#	Article	IF	Citations
183	Optimization of performance, combustion and emission characteristics of acetylene aspirated diesel engine with oxygenated fuels: An Experimental approach. Energy Reports, 2021, 7, 1857-1874.	2.5	20
184	Multiple combustion modes existing in the engine operating in diesel methanol dual fuel. Energy, 2021, 234, 121285.	4.5	30
185	Optimize the co-solvent for methanol in diesel with group of oxygen-containing reagents: Molecular structure and intermolecular forces analysis. Fuel Processing Technology, 2021, 222, 106980.	3.7	15
186	Experimental study on the performance of a liquefied petroleum gas engine according to the air fuel ratio. Fuel, 2021, 303, 121330.	3.4	12
187	Does soot form in a spark-ignition engine fuelled with lean methanol and methanol-hydrogen mixtures?. Fuel, 2021, 306, 121728.	3.4	0
188	The determination of the best operating parameters for a small SI engine fueled with methanol gasoline blends. Sustainable Materials and Technologies, 2021, 30, e00340.	1.7	4
189	A comparative study of combustion performance and emissions of dual-fuel engines fueled with natural gas/methanol and natural gas/gasoline. Energy, 2021, 237, 121586.	4.5	27
190	Critical review on combustion phenomena of low carbon alcohols in SI engine with its challenges and future directions. Renewable and Sustainable Energy Reviews, 2021, 152, 111702.	8.2	26
191	Visualization study on lean combustion characteristics of the premixed methanol by the jet ignition of an ignition chamber. Fuel, 2022, 308, 122001.	3.4	19
192	Parametric investigations to establish the potential of methanol based RCCI engine and comparison with the conventional dual fuel mode. Fuel, 2022, 308, 122025.	3.4	24
193	Energy sustainability in the transport sector using synthetic fuels in series hybrid trucks with RCCI dual-fuel engine. Fuel, 2022, 308, 122024.	3.4	9
194	Di-ethyl ether-diesel blends fuelled off-road tractor engine: Part-II: Unregulated and particulate emission characteristics. Fuel, 2022, 308, 121973.	3.4	12
195	Volatility and physicochemical properties of gasoline-ethanol blends with gasoline RON-based 88, 90, and 92. Fuel, 2022, 307, 121850.	3.4	12
196	A Brief Review on Methanol-Fuelled Vehicles (MFV) in China and Implementation Policy. Energy, Environment, and Sustainability, 2021, , 139-159.	0.6	1
197	Shape and Surface Morphology of Copper Nanoparticles under CO2 Hydrogenation Conditions from First Principles. Journal of Physical Chemistry C, 2021, 125, 396-409.	1.5	15
198	Understanding the Effect of Capacitive Discharge Ignition on Plasma Formation and Flame Propagation of Air–Propane Mixture. Journal of Energy Resources Technology, Transactions of the ASME, 2019, 141,	1.4	11
199	A Study Toward Analyzing the Energy, Exergy and Sustainability Index Based on Performance and Exhaust Emission Characteristics of a Spark-Ignition Engine Fuelled with the Binary Blends of Gasoline and Methanol or Ethanol. Uluslararası Muhendislik Arastirma Ve Gelistirme Dergisi, 0, , 529-548.	0.1	6
200	Combustion Characterization of Methanol in a Lean Burn Direct Injection Spark Ignition (DISI) Engine. , 0, , .		12

#	Article	IF	CITATIONS
201	Simulation Based Investigation of Achieving Low Temperature Combustion with Methanol in a Direct Injected Compression Ignition Engine. , 0, , .		6
202	Numerical Investigation of Methanol Ignition Sequence in an Optical PPC Engine with Multiple Injection Strategies. , 0, , .		4
203	Influence of Injection Strategies on Engine Efficiency for a Methanol PPC Engine. SAE International Journal of Advances and Current Practices in Mobility, 0, 2, 653-671.	2.0	15
204	Effects of Fuel Injection Method on Energy Efficiency and Combustion Characteristics of SI Engine Fed with a Hydrogen-Rich Reformate. , 0, , .		9
205	Application of Synthetic Renewable Methanol to Power the Future Propulsion. , 0, , .		8
206	A Comparative Review of Alternative Fuels for the Maritime Sector: Economic, Technology, and Policy Challenges for Clean Energy Implementation. World, 2021, 2, 456-481.	1.0	37
207	Potential of alcohol fuels in active and passive pre-chamber applications in a passenger car spark-ignition engine. International Journal of Engine Research, 2023, 24, 494-505.	1.4	7
208	Enhanced Cell Performance and Improved Catalyst Utilization for a Direct Methanol Fuel Cell with an In-Plane Gradient Loading Catalyst Electrode. Processes, 2021, 9, 1787.	1.3	2
209	Analysis of Nitrogen Oxides Emission by Modern Vehicles when Used Hydrogen or Other Natural and Synthetic Fuels in Combustion Chamber. Alternative Energy and Ecology (ISJAEE), 2019, , 73-84.	0.2	0
210	Comparison of Kinetic Mechanisms for Numerical Simulation of Methanol Combustion in DICI Heavy-Duty Engine. , 0, , .		2
211	A Coupled Tabulated Kinetics and Flame Propagation Model for the Simulation of Fumigated Medium Speed Dual-Fuel Engines. , 0, , .		2
212	Decomposition of Methanol on Supported Pd–Au Catalyst for Recovery of Unused Waste Heat at Low Temperature. Journal of the Japan Petroleum Institute, 2019, 62, 296-302.	0.4	1
213	Numerical Optimization of Compression Ratio for a PPC Engine running on Methanol. , 0, , .		2
215	Direct utilization of CO2 via methanol synthesis for natural gas fields with high CO2 concentration. Journal of Natural Gas Science and Engineering, 2021, 96, 104308.	2.1	3
216	Two-stage integrated process for bio-methanol production coupled with methane and carbon dioxide sequestration: Kinetic modelling and experimental validation. Journal of Environmental Management, 2022, 301, 113927.	3.8	12
217	A preliminary numerical study on the use of methanol as a Mono-Fuel for a large bore marine engine. Fuel, 2022, 310, 122309.	3.4	8
218	Methanol as an electricity-based fuel for plug-in hybrid electric vehicles. Proceedings, 2020, , 31-45.	0.2	0
219	Reducing CO2 emissions in heavy-duty spark ignited engines for electric power using alternative fuels. Proceedings, 2020, , 223-242,	0.2	0

ARTICLE

220 ĐаĐ¼2Đ¾Ñ,,,аĐ·Đ½Ñ‹Đµ Đ¼ĐµĐ ÑŒÑĐ¾Đ ĐµÑ€Đ¶Đ°Ñ‰Đ,е ĐºĐ°Ñ,,аĐ»Đ,заÑ,,Đ¾Ñ€Ñ‹ ĐºĐ¾Đ½D²ĐµÃ€ÑĐ,Đ,ΦjĐž Đ, Đź

221	Control of Ignition Timing and Combustion Phase by Means of Injection Strategy for Jet-Controlled Compression Ignition Mode in a Light Duty Diesel Engine. , 0, , .		Ο
222	Performance, Combustion, and Emission Evaluation of Ethanol-Gasoline Blends Ignited by Diesel in Dual-Fuel Intelligent Charge Compression Ignition (ICCI) Engine. Journal of Energy Resources Technology, Transactions of the ASME, 2022, 144, .	1.4	10
223	Methanol-Based Economy: A Way Forward to Hydrogen. Green Energy and Technology, 2021, , 563-585.	0.4	1
224	Influence of Injection Timing on Equivalence Ratio Stratification of Methanol and Isooctane in a Heavy-Duty Compression Ignition Engine. , 0, , .		5
225	Optimization of spark-ignition engine characteristics fuelled with oxygenated bio-additive (triacetin) using response surface methodology. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 2021, 235, 841-856.	1.4	7
226	Investigation on the ignition delay prediction model of multi-component surrogates based on back propagation (BP) neural network. Combustion and Flame, 2022, 237, 111852.	2.8	50
227	An experimental investigation of gasoline-methanol (M5-M10) blends on performance in SI engine. Fuels, Fire and Combustion in Engineering Journal, 0, , .	0.0	0
228	Numerical analysis of the effect of swirl angle and fuel equivalence ratio on the methanol combustion characteristics in a swirl burner. Chemical Engineering Research and Design, 2022, 158, 320-330.	2.7	19
229	Large-eddy simulation of the injection timing effects on the dual-fuel spray flame. Fuel, 2022, 310, 122445.	3.4	8
230	Parametric study on dual-fuel ignition characteristics under marine engine-relevant conditions. Fuel, 2022, 311, 122611.	3.4	3
231	Experimental study of knock combustion and direct injection on knock suppression in a high compression ratio methanol engine. Fuel, 2022, 311, 122505.	3.4	18
232	Effects of oxygenated biofuel additives on soot formation: A comprehensive review of laboratory-scale studies. Fuel, 2022, 313, 122635.	3.4	31
233	Experimental study on the high load extension of PODE/methanol RCCI combustion mode with optimized injection strategy. Fuel, 2022, 314, 122726.	3.4	30
235	Large-eddy simulation of diesel pilot spray ignition in lean methane-air and methanol-air mixtures at different ambient temperatures. International Journal of Engine Research, 2023, 24, 965-981.	1.4	6
236	Simulation study on in-cylinder combustion and pollutant generation characteristics of PODE/methanol blends. Fuel Processing Technology, 2022, 228, 107165.	3.7	11
237	Catalytic filters for metal oxide gas sensors. Sensors and Actuators B: Chemical, 2022, 356, 131346.	4.0	10
238	Effects of pilot injection strategy on in-cylinder combustion and emission characteristics of PODE/methanol blends. Fuel Processing Technology, 2022, 228, 107168.	3.7	16

#	Article	IF	CITATIONS
239	Experimental and Numerical Investigation on Knock for a Heavy-Duty Spark Ignition Methanol Engine. SSRN Electronic Journal, 0, , .	0.4	0
241	An Investigation of the Kinetic Modeling and Ignition Delay Time of Methanol—Syngas Fuel. Frontiers in Energy Research, 2022, 9, .	1.2	11
242	An overview of some futurist advanced biofuels and their conversion technologies. , 2022, , 1-20.		1
243	Fuel Delivery System for Alternative Fuel Engines: A Review. Energy, Environment, and Sustainability, 2022, , 67-95.	0.6	3
244	Influence of alcohol and gaseous fuels on NOx reduction in IC engines. , 2022, , 347-385.		2
245	Some studies on reducing carbon dioxide emission from a CRDI engine with hydrogen and a carbon capture system. International Journal of Hydrogen Energy, 2022, 47, 26746-26757.	3.8	17
246	Shock-tube study of the influence of oxygenated additives on benzene pyrolysis: Measurement of optical densities, soot inception times and comparison with simulations. Combustion and Flame, 2022, 243, 111985.	2.8	5
247	Performance enhancement of methanol reforming reactor through finned surfaces and diffused entry for on-board hydrogen generation. International Journal of Hydrogen Energy, 2022, 47, 7478-7490.	3.8	8
248	A comprehensive review on the effects of diesel/biofuel blends with nanofluid additives on compression ignition engine by response surface methodology. Energy Conversion and Management: X, 2022, 14, 100177.	0.9	16
249	Waste plastic oil to fuel: An experimental study in thermal barrier coated CI engine with exhaust gas recirculation. Environmental Quality Management, 2022, 32, 125-131.	1.0	17
250	A Review of the External and Internal Residual Exhaust Gas in the Internal Combustion Engine. Energies, 2022, 15, 1208.	1.6	4
251	Effects of hydrogen assisted combustion of EBNOL IN SI engines under variable compression ratio and ignition timing. Energy, 2022, 246, 123364.	4.5	10
252	Esters as a potential renewable fuel: A review of the combustion characteristics. Fuel Processing Technology, 2022, 229, 107185.	3.7	20
253	Study on the performance of diesel-methanol diffusion combustion with dual-direct injection system on a high-speed light-duty engine. Fuel, 2022, 317, 123414.	3.4	20
254	Impacts of methanol fuel on vehicular emissions: A review. Frontiers of Environmental Science and Engineering, 2022, 16, 1.	3.3	10
255	Large-Scale Maritime Transport of Hydrogen: Economic Comparison of Liquid Hydrogen and Methanol. ACS Sustainable Chemistry and Engineering, 2022, 10, 4300-4311.	3.2	17
256	Characteristics of Methanol and Iso-Octane Under Flashing and Non-Flashing Conditions in ECN-G Spray. , 0, , .		1
257	Ducted Fuel Injection: An Experimental Study on Optimal Duct Size. , 0, , .		0

#	Article	IF	Citations
258	Adaptation and Engine Validation of an FTIR Exhaust Gas Analysis Method for C1-Based Potential GHG-Neutral Synthetic Fuels/Gasoline-Blends Containing Dimethyl Carbonate and Methyl Formate. , 0, ,		7
259	Effects of Methanol Application on Carbon Emissions and Pollutant Emissions Using a Passenger Vehicle. Processes, 2022, 10, 525.	1.3	27
260	Adaptability of Laser Textured Liner to the Effects of Methanol Diluting Oil on Tribological Properties. International Journal of Automotive Technology, 2022, 23, 461-470.	0.7	0
261	Novel Superaerophobic Anode with Fernâ€Shaped Pd Nanoarray for Highâ€Performance Direct Formic Acid Fuel Cell. Advanced Functional Materials, 2022, 32, .	7.8	18
262	Comparison of efficiency and emission characteristics in a direct-injection compression ignition engine fuelled with iso-octane and methanol under low temperature combustion conditions. Applied Energy, 2022, 312, 118714.	5.1	13
263	Direct Reduction of Siderite Ore Combined withÂCatalytic CO/CO ₂ Hydrogenation to Methane and Methanol: A Technology Concept. Chemie-Ingenieur-Technik, 2022, 94, 701-711.	0.4	5
264	Investigation on the knock characteristics in a gasoline direct-injection engine port-injected with water-methanol blends. Energy Conversion and Management, 2022, 258, 115415.	4.4	9
265	Modeling the spray characteristics of blended fuels for gasoline direct injection applications. International Journal of Green Energy, 0, , 1-16.	2.1	1
266	Experimental assessment of renewable diesel fuels (HVO/Farnesane) and bioethanol on dual-fuel mode. Energy Conversion and Management, 2022, 258, 115554.	4.4	12
267	Effects of blending dissociated methanol gas with the fuel in gasoline engine. Energy, 2022, 247, 123494.	4.5	21
268	Efficiency of the power-to-gas-to-liquid-to-power system based on green methanol. Applied Energy, 2022, 314, 118933.	5.1	57
269	The nature of gas production patterns associated with methanol degradation in natural aquifer sediments: A microcosm study. Journal of Contaminant Hydrology, 2022, 247, 103988.	1.6	0
270	Experimental study of methanol atomization and spray explosion characteristic under negative pressure. Chemical Engineering Research and Design, 2022, 161, 162-174.	2.7	16
271	Evaluating the effect of variable methanol injection timings in a novel co-axial fuel injection system equipped locomotive engine. Journal of Cleaner Production, 2022, 349, 131452.	4.6	10
272	Synthesis gas as a fuel for internal combustion engines in transportation. Progress in Energy and Combustion Science, 2022, 90, 100995.	15.8	44
273	Fuel injection strategy optimisation and experimental performance and emissions evaluation of diesel displacement by port fuel injected methanol in a retrofitted mid-size genset engine prototype. Energy, 2022, 248, 123593.	4.5	15
274	Effect of negative valve overlap in a heavy-duty methanol-diesel dual-fuel engine: A pathway to improve efficiency. Fuel, 2022, 317, 123522.	3.4	6
275	The effect of methanol production and application in internal combustion engines on emissions in the context of carbon neutrality: A review. Fuel, 2022, 320, 123902.	3.4	91

#	Article	IF	CITATIONS
276	Experimental study on the lower explosion limit and mechanism of methanol pre-mixed spray under negative pressure. Fuel, 2022, 321, 124049.	3.4	12
277	Chemical dynamics of the autoignition of near-stoichiometric and rich methanol/air mixtures. Combustion Theory and Modelling, 2022, 26, 289-319.	1.0	8
278	Methanol as a Fuel for Internal Combustion Engines. Energy, Environment, and Sustainability, 2022, , 281-324.	0.6	1
281	Synthesis of methanol in microchnnel. Journal of Physics: Conference Series, 2021, 2119, 012113.	0.3	1
283	<scp>LCA</scp> comparison analysis for two types of <scp> H ₂ </scp> carriers: Methanol and ammonia. International Journal of Energy Research, 2022, 46, 11818-11833.	2.2	5
284	Greatly Enhanced Methanol Oxidation Reaction of <scp>CoPt</scp> Truncated Octahedral Nanoparticles by External Magnetic Fields. Energy and Environmental Materials, 2023, 6, .	7.3	6
285	Effect of injection timing on combustion, performance and emissions characteristics of methanol fuelled DISI engine: A numerical study. Fuel, 2022, 322, 124167.	3.4	17
286	Oxygenated Fuels Blending Effects on Gasoline Engine Performance: An Experimental Study. SSRN Electronic Journal, 0, , .	0.4	0
287	Measurement of Cyclic Variation of the Air-to-Fuel Ratio of Exhaust Gas in an SI Engine by Laser-Induced Breakdown Spectroscopy. Energies, 2022, 15, 3053.	1.6	3
288	Temperature profile and visible flame length of blended pool fires at quiescent air conditions. Journal of Mechanical Science and Technology, 2022, 36, 2619-2630.	0.7	1
289	Cylinder-to-cylinder variation of knock and effects of mixture formation on knock tendency for a heavy-duty spark ignition methanol engine. Energy, 2022, 254, 124197.	4.5	10
290	Optimal design and evaluation of electrochemical CO2 reduction system with renewable energy generation using two-stage stochastic programming. Journal of CO2 Utilization, 2022, 61, 102026.	3.3	3
291	Life cycle assessment of methanol vehicles from energy, environmental and economic perspectives. Energy Reports, 2022, 8, 5487-5500.	2.5	9
292	The effect of fuel additives on the autoignition dynamics of rich methanol/air mixtures. Fuel, 2022, 323, 124275.	3.4	9
293	Metal-free catalysts for fuel cell applications. , 2022, , 67-109.		1
294	Measurement and scaling of turbulent burning velocity of ammonia/methane/air propagating spherical flames at elevated pressure. Combustion and Flame, 2022, 242, 112183.	2.8	21
295	Techno-economic assessment of long-term methanol production from natural gas and renewables. Energy Conversion and Management, 2022, 266, 115785.	4.4	20
296	A comprehensive review on the material performance affected by gaseous alternative fuels in internal combustion engines. Engineering Failure Analysis, 2022, 139, 106507.	1.8	8

#	Article	IF	CITATIONS
297	A three-dimensional conjugate heat transfer model for methanol synthesis in a modular millireactor. Chemical Engineering Science, 2022, 258, 117765.	1.9	2
298	Evaluation of hydrous ethanol as a fuel for internal combustion engines: A review. Renewable Energy, 2022, 194, 504-525.	4.3	46
299	Effect of low percentage methanol blends in gasoline RON 90 on fuel volatility characteristics and spark ignition engine performance. IOP Conference Series: Earth and Environmental Science, 2022, 1034, 012020.	0.2	0
300	Mixing controlled compression ignition with methanol: An experimental study of injection and EGR strategy. International Journal of Engine Research, 2023, 24, 1961-1972.	1.4	1
301	Evaluation of the Effects of Methanol and Ethanol Additions on Performance and Emissions in a Spark Plug Ignition Engine Fueled with Gasoline. International Journal of Automotive Science and Technology, 2022, 6, 156-164.	0.5	3
302	Virtual Development of a Single-Cylinder Engine for High Efficiency by the Adoption of eFuels, Methanol, Pre-Chamber and Millerization. , 0, , .		5
303	Pathway to a land-neutral expansion of Brazilian renewable fuel production. Nature Communications, 2022, 13, .	5.8	5
304	Characteristics of Evaporating Spray for Direct Injection Methanol Engine: Comparison between Methanol and Diesel Spray. Processes, 2022, 10, 1132.	1.3	2
305	HCCI combustion of methanol along with diesel through novel injection strategies and its potential over conventional dual fuel combustion. Fuel, 2022, 324, 124766.	3.4	8
306	Experimental study on the explosion characteristic and flame propagation of methanol spray at different injection pressures. Fuel, 2022, 325, 124746.	3.4	9
307	Experimental Study on Combustion and Emission Characteristics of Water-Containing N-Butanol/Diesel Blends. SSRN Electronic Journal, 0, , .	0.4	0
308	The Effect of Methanol-Dodecanol Addition on Performance and Smoke Emission in a CI Engine with Diesel Fuel. International Journal of Automotive Science and Technology, 2022, 6, 207-213.	0.5	5
309	Consequences of ignition timing on a hydrogen-fueled engine at various equivalence ratio. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2022, 44, 6556-6567.	1.2	5
310	Temperature dependence of chemical effects of ethanol and dimethyl ether mixing on benzene and PAHs formation in ethylene counter-flow diffusion flames. Energy, 2022, 257, 124809.	4.5	2
311	Investigation on the effects of blending hydrogen-rich gas in the spark-ignition engine. Energy Reports, 2022, 8, 797-803.	2.5	2
312	Recent Progress on Hydrogen Storage and Production Using Chemical Hydrogen Carriers. Energies, 2022, 15, 4964.	1.6	25
313	Optical Diagnostics of Methanol Active-Thermal Atmosphere Combustion in Compression Ignition Engine. SSRN Electronic Journal, 0, , .	0.4	0
314	The Effect of Ignition Timing on the Emission and Combustion Characteristics for a Hydrogen-Fuelled ORP Engine at Lean-Burn Conditions. Processes, 2022, 10, 1534.	1.3	1

#	Article	IF	CITATIONS
315	Methanol fuel production, utilization, and techno-economy: a review. Environmental Chemistry Letters, 2022, 20, 3525-3554.	8.3	40
316	Power-to-X: A review and perspective. Computers and Chemical Engineering, 2022, 165, 107948.	2.0	34
317	Chemical kinetics of cyclic ethers in combustion. Progress in Energy and Combustion Science, 2022, 92, 101019.	15.8	15
318	Diesel/methanol dual-fuel combustion: An assessment of soot nanostructure and oxidation reactivity. Fuel Processing Technology, 2022, 237, 107464.	3.7	29
319	Temperature dependence of ethanol and dimethyl ether chemical mixing effects on soot and gas products in ethylene pyrolysis. Journal of the Energy Institute, 2022, 105, 1-15.	2.7	0
320	Beating neat fuels by dedicated blending: Performance analysis of bio-hybrid fuel blends on a spark-ignition engine for passenger car applications. Fuel, 2023, 331, 125579.	3.4	3
321	Investigations on combustion system optimization of a heavy-duty natural gas engine. Fuel, 2023, 331, 125621.	3.4	3
322	Progress on methanol reforming technologies for highly efficient hydrogen production and applications. International Journal of Hydrogen Energy, 2022, 47, 35757-35777.	3.8	39
323	Comprehensive US database and model for ethanol blend effects on air toxics, particle number, and black carbon tailpipe emissions. Atmospheric Environment: X, 2022, 16, 100185.	0.8	0
324	Optical diagnostics of methanol active-thermal atmosphere combustion in compression ignition engine. Fuel, 2023, 332, 126036.	3.4	16
325	Renewable Methanol Production Using Captured Carbon Dioxide and Hydrogen Generated through Water-Splitting. Engineering, 2022, 14, 339-359.	0.4	1
326	Combustion and Emissions Characteristics of Methanol/Gasoline Cisi Engines Under Different Injection Modes. SSRN Electronic Journal, 0, , .	0.4	0
327	The role of alternative and renewable liquid fuels in environmentally sustainable transport. , 2022, , 19-56.		1
328	Hydrogenation of CO ₂ to methanol over In-doped m-ZrO ₂ : a DFT investigation into the oxygen vacancy size-dependent reaction mechanism. Physical Chemistry Chemical Physics, 2022, 24, 23182-23194.	1.3	4
329	Experimental Investigation of a Methanol Fueled SI Engine at Full Load Using a Central Composite Design. , 0, , .		0
330	Exhaust Gas Analysis of Various Potential GHG-Neutral Synthetic Fuels and Gasoline/Alkylate-Blends Including Variable Injection Timings. , 0, , .		3
331	Low Load Ignitability of Methanol in a Heavy-Duty Compression Ignition Engine. , 0, , .		3
332	Fuels and Transportation. ACS Symposium Series, 0, , 83-129.	0.5	1

#	Article	IF	CITATIONS
333	Cycle-To-Cycle Effects and Knock Prediction using Spark Induced Disturbances on a PFI Methanol HD SI Engine. , 0, , .		0
334	Recent Advances on the Valorization of Glycerol into Alcohols. Energies, 2022, 15, 6250.	1.6	6
335	Combustion Characteristics and Exhaust Emissions of a Direct Injection SI Engine with Pure Ethanol and Methanol in Comparison to Gasoline. , 0, , .		5
336	Experimental study of the macroscopic characteristics of methanol lowâ€pressure injection spray. International Journal of Energy Research, 0, , .	2.2	0
337	Influence of Glycerol on Methanol Fuel Characteristics and Engine Combustion Performance. Energies, 2022, 15, 6585.	1.6	4
339	The Effect of Ethanol and Methanol Blends on the Performance and the Emissions of a Turbocharged GDI Engine Operating in Transient Condition. , 0, , .		1
340	Performance Prediction for a Marine Diesel Engine Waste Heat Absorption Refrigeration System. Energies, 2022, 15, 7070.	1.6	3
341	Quantification and Tuning of Surface Oxygen Vacancies for the Hydrogenation of CO ₂ on Indium Oxide Catalysts. Chemie-Ingenieur-Technik, 2022, 94, 1765-1775.	0.4	7
342	A Discussion on Alternative Fuel Criteria for Maritime Transport. Marine Science and Technology Bulletin, 2022, 11, 352-360.	0.2	1
343	The State-of-the-Art Progress on the Forms and Modes of Hydrogen and Ammonia Energy Utilization in Road Transportation. Sustainability, 2022, 14, 11904.	1.6	7
344	Carbon dioxide utilization: A critical review from multiscale perspective. Energy Science and Engineering, 2022, 10, 4890-4923.	1.9	6
345	Framework for Energy-Averaged Emission Mitigation Technique Adopting Gasoline-Methanol Blend Replacement and Piston Design Exchange. Energies, 2022, 15, 7188.	1.6	1
346	Prospects of low and zero-carbon renewable fuels in 1.5-degree net zero emission actualisation by 2050: A critical review. Carbon Capture Science & Technology, 2022, 5, 100072.	4.9	45
347	Effect of atomic layer deposited zinc promoter on the activity of copper-on-zirconia catalysts in the hydrogenation of carbon dioxide to methanol. Applied Catalysis B: Environmental, 2023, 321, 122046.	10.8	16
348	Effect of Methanol Addition on Combustion and Emissions Characteristics on a Turbocharged GDI Engine. International Journal of Automotive Technology, 2022, 23, 1405-1417.	0.7	1
349	Methanol from solid fuels: A cost-effective route to reduced emissions and enhanced energy security. Energy Conversion and Management, 2022, 270, 116272.	4.4	2
350	Study of biomethanol as sustainable replacement of Autogas at variable ignition timing. Heliyon, 2022, 8, e10865.	1.4	5
351	Real-Time Measurements of Formaldehyde Emissions from Modern Vehicles. Energies, 2022, 15, 7680.	1.6	12

#	Article	IF	CITATIONS
352	Study on volume swell and mechanical properties of fuel system elastomers with Fischer–Tropsch fuel for diesel engines. Journal of Elastomers and Plastics, 2022, 54, 1202-1218.	0.7	0
353	Supercritical CO2 Power Cycle and Ejector Refrigeration Cycle for Marine Dual Fuel Engine Efficiency Enhancement by Utilizing Exhaust Gas and Charge Air Heat. Journal of Marine Science and Engineering, 2022, 10, 1404.	1.2	4
354	Optical investigations on ignition and combustion characteristics of polyoxymethylene dimethyl ethers/methanol blends. International Journal of Green Energy, 0, , 1-10.	2.1	2
355	Explosion Characteristics of NH ₃ /CH ₃ OH/Air Mixtures. Energy & Fuels, 2022, 36, 12737-12749.	2.5	7
356	Cost competitiveness of alternative maritime fuels in the new regulatory framework. Transportation Research, Part D: Transport and Environment, 2022, 113, 103500.	3.2	18
357	Laminar Flame Speed modeling for Low Carbon Fuels using methods of Machine Learning. Fuel, 2023, 333, 126187.	3.4	10
358	Performance and emissions of a high-speed marine dual-fuel engine operating with methanol-water blends as a fuel. Fuel, 2023, 333, 126349.	3.4	10
359	Characterization of ammonia spray combustion and mixture formation under high-pressure, direct injection conditions. Fuel, 2023, 333, 126454.	3.4	21
360	Hybridizing solid oxide fuel cells with internal combustion engines for power and propulsion systems: A review. Renewable and Sustainable Energy Reviews, 2023, 171, 112982.	8.2	33
361	Combustion, performance, and emissions characteristics of methanol-fueled engines. , 2023, , 263-283.		0
362	Methanol reformation-based strategies for using methanol as an internal combustion engine fuel: a brief overview. , 2023, , 61-79.		1
363	Combustion and emissions characteristics of methanol/gasoline CISI engines under different injection modes. Fuel, 2023, 333, 126506.	3.4	11
364	Autocatalytic reduction-assisted synthesis of segmented porous PtTe nanochains for enhancing methanol oxidation reaction. , 2023, 2, e9120041.		20
365	Effect of Exhaust Gas Recirculation and Spark Timing on Combustion and Emission Performance of an Oxygen-Enriched Gasoline Engine. ACS Omega, 0, , .	1.6	0
366	Blending effect of methanol on the formation of polycyclic aromatic hydrocarbons in the oxidation of toluene. Proceedings of the Combustion Institute, 2023, 39, 999-1008.	2.4	3
367	Review of life cycle assessments (LCA) for mobility powertrains. Transportation Engineering, 2022, 10, 100148.	2.3	10
368	Influence of Intake Port Structure on the Performance of a Spark-Ignited Natural Gas Engine. Energies, 2022, 15, 8545.	1.6	0
369	Assessing the prospect of deploying green methanol vehicles in China from energy, environmental and economic perspectives. Energy, 2023, 263, 125967.	4.5	10

#	Article	IF	CITATIONS
370	Low-grade heat utilization in the methanol-fired gas turbines through a thermochemical fuel transformation. Thermal Science and Engineering Progress, 2022, 36, 101537.	1.3	3
371	The effect of structural parameters of pre-chamber with turbulent jet ignition system on combustion characteristics of methanol-air pre-mixture. Energy Conversion and Management, 2022, 274, 116473.	4.4	17
372	Compatibility of High-Density Polyethylene Piping and Associated Elastomers with the Renewable Fuels Ammonia and Dimethyl Ether. Energy & Fuels, 2022, 36, 14500-14511.	2.5	1
373	Investigation on injection strategy affecting the mixture formation and combustion of a heavy-duty spark-ignition methanol engine. Fuel, 2023, 334, 126680.	3.4	5
374	The effect of Al2O3, CeO2, and ZrO2 on the performance of Cu/ZnO catalyst in methanol synthesis from biomass pyrolysis syngas. International Journal of Energy for A Clean Environment, 2022, , .	0.6	0
375	Data-driven ligand field exploration of Fe(<scp>iv</scp>)–oxo sites for C–H activation. Inorganic Chemistry Frontiers, 2023, 10, 1062-1075.	3.0	3
376	Laminar combustion characteristics of methane/methanol/air mixtures: Experimental and kinetic investigations. Case Studies in Thermal Engineering, 2023, 41, 102593.	2.8	5
377	Experimental assessment of biobutanol degradation exposed to automotive components: A material compatibility approach. Chemical Engineering Research and Design, 2023, 170, 215-228.	2.7	2
378	An innovative study on a hybridized ship powering system with fuel cells using hydrogen and clean fuel blends. Applied Thermal Engineering, 2023, 221, 119893.	3.0	10
379	Renewable methanol production from green hydrogen and captured CO2: A techno-economic assessment. Journal of CO2 Utilization, 2023, 68, 102345.	3.3	44
380	Visualization study on combustion characteristics of direct-injected hydrous methanol ignited by diesel in a constant volume combustion chamber. Fuel, 2023, 335, 127063.	3.4	3
381	Effect of diesel/PODE/ethanol blends coupled pilot injection strategy on combustion and emissions of a heavy duty diesel engine. Fuel, 2023, 335, 127024.	3.4	3
382	Hydrogen Internal Combustion Engine Vehicles: A Review. Energies, 2022, 15, 8937.	1.6	18
383	Investigation of a hybridized combined cycle engine with SOFC system for marine applications. Journal of Thermal Analysis and Calorimetry, 0, , .	2.0	1
384	Biogas (a promising bioenergy source): A critical review on the potential of biogas as a sustainable energy source for gaseous fuelled spark ignition engines. International Journal of Hydrogen Energy, 2023, 48, 7747-7769.	3.8	19
385	Effect of methanol blending on the high-temperature auto-ignition of ammonia: An experimental and modeling study. Fuel, 2023, 339, 126911.	3.4	10
386	A Phenomenological Combustion Model for Diesel–Methanol Dual-Fuel Engines. Journal of Energy Resources Technology, Transactions of the ASME, 2023, 145, .	1.4	2
387	A fast feasibility tool for the assessment of fuel switch in the concept design of merchant ships. Procedia Computer Science, 2023, 217, 1386-1395.	1.2	3

#	Article	IF	CITATIONS
388	Transition metal oxide complexes as molecular catalysts for selective methane to methanol transformation: any prospects or time to retire?. Physical Chemistry Chemical Physics, 2023, 25, 5313-5326.	1.3	9
389	Cycle-to-Cycle Variation of the Combustion Process in a Diesel Engine Fueled with Rapeseed Oil—Diethyl Ether Blends. Energies, 2023, 16, 720.	1.6	Ο
390	Progress and prospect of the novel integrated SOFC-ICE hybrid power system: System design, mass and heat integration, system optimization and techno-economic analysis. Energy Conversion and Management: X, 2023, 18, 100350.	0.9	5
391	Experimental analysis and life cycle assessment of green diesel (HVO) in dual-fuel operation with bioethanol. Journal of Cleaner Production, 2023, 389, 135989.	4.6	9
392	Evaluation of alternative marine fuels from dual perspectives considering multiple vessel sizes. Transportation Research, Part D: Transport and Environment, 2023, 115, 103583.	3.2	12
393	Process engineering strategy for improved methanol production in Methylosinus trichosporium through enhanced mass transfer and solubility of methane and carbon dioxide. Bioresource Technology, 2023, 371, 128603.	4.8	7
394	Investigation into the operating range of a dual-direct injection engine fueled with methanol and diesel. Energy, 2023, 267, 126625.	4.5	6
395	Gel Fuels: Preparing, Rheology, Atomization, Combustion. Energies, 2023, 16, 298.	1.6	5
396	Molecular Design of Fuels for Maximum Spark-Ignition Engine Efficiency by Combining Predictive Thermodynamics and Machine Learning. Energy & amp; Fuels, 2023, 37, 2213-2229.	2.5	1
397	Comprehensive assessment of methanol as an alternative fuel for spark-ignition engines. Fuel, 2023, 340, 127627.	3.4	7
398	Effects of 2-ethylhexyl nitrate (EHN) on combustion and emissions on a compression ignition engine fueling high-pressure direct-injection pure methanol fuel. Fuel, 2023, 341, 127684.	3.4	14
399	Renewable Electricity for Decarbonisation of Road Transport: Batteries or E-Fuels?. Batteries, 2023, 9, 135.	2.1	11
400	PAH laser diagnostics and soot particle dynamics in gasoline co-flow flames doped with n-butanol. Energy, 2023, 272, 127108.	4.5	2
401	Characterisation of distributed combustion of reformed methanol blends in a model gas turbine combustor. Energy, 2023, 272, 127149.	4.5	2
402	Convenient construction of porous dendritic Cu-doped Ni@PPy/stainless steel mesh electrode for oxidation of methanol and urea. Applied Surface Science, 2023, 623, 156930.	3.1	3
403	The environmental potential of hydrogen addition as complementation for diesel and biodiesel: A comprehensive review and perspectives. Fuel, 2023, 342, 127794.	3.4	17
404	Experimental Investigation of the Performance and Unburned Methanol, Formaldehyde, and Carbon Dioxide Emissions of a Methanol-Diesel Dual-Fuel Engine. Journal of Energy Engineering - ASCE, 2023, 149, .	1.0	1
405	Using fully variable valve control for cylinder-individual reference tracking with emission-optimal internal exhaust gas recirculation. Control Engineering Practice, 2023, 135, 105526.	3.2	0

#	Article	IF	CITATIONS
406	On the pursuit of emissions-free clean mobility – Electric vehicles versus e-fuels. Science of the Total Environment, 2023, 875, 162688.	3.9	6
407	An introduction of future fuels on working ship for CHGs reduction: Trailing suction hopper dredger case study. Journal of Cleaner Production, 2023, 405, 137008.	4.6	2
408	Evaluation and extension of ignition delay correlations for dual-fuel operation with hydrogen or methanol in a medium speed single cylinder engine. Fuel, 2023, 345, 128254.	3.4	5
409	Statistical and analytical investigation of methanol applications, production technologies, value-chain and economy with a special focus on renewable methanol. Renewable and Sustainable Energy Reviews, 2023, 179, 113281.	8.2	21
410	Experimental study on the effect of hydrogen substitution rate on combustion and emission characteristics of ammonia internal combustion engine under different excess air ratio. Fuel, 2023, 343, 127992.	3.4	18
411	Hydrogen energy in BRICS-US: A whirl succeeding fuel treasure. Applied Energy, 2023, 334, 120670.	5.1	11
412	Spotlighting of the role of catalysis for biomass conversion to green fuels towards a sustainable environment: Latest innovation avenues, insights, challenges, and future perspectives. Chemosphere, 2023, 318, 137954.	4.2	9
414	High-Pressure Pulsing of Ammonia Results in Carbamate as Strongly Inhibiting Adsorbate of Methanol Synthesis over Cu/ZnO/Al ₂ O ₃ . Journal of Physical Chemistry C, 2023, 127, 3497-3505.	1.5	0
415	Recent Advances on Alternative Aviation Fuels/Pathways: A Critical Review. Energies, 2023, 16, 1904.	1.6	7
416	Methane reforming in microchannels: Application to the methanol synthesis. Chemical Engineering and Processing: Process Intensification, 2023, 185, 109316.	1.8	6
417	The Potential of Ethanol/Methanol Blends as Renewable Fuels for DI SI Engines. Energies, 2023, 16, 2791.	1.6	5
418	Metal catalyst for CO2 capture and conversion into cyclic carbonate: Progress and challenges. Materials Today, 2023, 65, 133-165.	8.3	12
419	Mixture formation characteristics and feasibility of methanol as an alternative fuel for gasoline in port fuel injection engines: Droplet evaporation and spray visualization. Energy Conversion and Management, 2023, 283, 116956.	4.4	7
420	Conceptualizing novel CH3OH-based thermochemical energy storage routes via a modeling approach. Cell Reports Physical Science, 2023, 4, 101357.	2.8	Ο
421	Effect of Jet Ignition on Lean Methanol Combustion Using High Compression Ratio. , 0, , .		5
422	Highly Efficient and Clean Combustion Engine for Synthetic Fuels. , 0, , .		3
423	Laminar premixed burning characteristics of methanol/ethanol/air at high temperature and pressure. Thermal Science, 2023, , 65-65.	0.5	0
424	Experimental Investigation of Combustion Characteristics, Performance, and Emissions of a Spark Ignition Engine with 2 nd Generation Bio-Gasoline and Ethanol Fuels. , 0, , .		1

#	ARTICLE	IF	CITATIONS
425	Modeling the emission characteristics of the hydrogen-enriched natural gas engines by multi-output least-squares support vector regression: Comprehensive statistical and operating analyses. Energy, 2023, 276, 127515.	4.5	16
427	Strategies for Efficient Utilization of Methanol in Compression Ignition Engines. Energy, Environment, and Sustainability, 2023, , 161-182.	0.6	0
428	Combustion and Emission Characteristics of Oxygenated Alternative Fuels in Compression Ignition Engines. Energy, Environment, and Sustainability, 2023, , 79-95.	0.6	0
429	Introduction to Renewable Fuels for Sustainable Mobility. Energy, Environment, and Sustainability, 2023, , 3-7.	0.6	1
434	Impact of Fuel Switch to Methanol on the Design of an all Electric Cruise Ship. , 2023, , .		0
435	Bioethanol, internal combustion engines and the development of zero-waste biorefineries: an approach towards sustainable motor spirit. , 0, , .		0
452	Investigation and Examination of LNG, Methanol, and Ammonia Usage on Marine Vessels. Energy, Environment, and Sustainability, 2023, , 65-85.	0.6	1
456	A review on alternative fuels in the Indian transport system. AlP Conference Proceedings, 2023, , .	0.3	0
465	Equilibrium sensitivity analysis of Carbon dioxide hydrogenation to methanol reaction system and comparison with conversions achievable in a simplified packed bed reactor model Computer Aided Chemical Engineering, 2023, , 1149-1154.	0.3	0
472	Methanol Evaporation in an Engine Intake Runner under Various Conditions. , 0, , .		0
473	Experimental Analysis of a Single-Cylinder Large Bore Engine with External Supercharging in Diesel/CNG Dual-Fuel Mode. , 0, , .		1
474	Numerical Investigation of the Ignition Delay and Laminar Flame Speed for Pilot-Ignited Dual Fuel Engine Operation with Hydrogen or Methanol. , 0, , .		0
475	Effect of Intake Conditions (Temperature, Pressure and EGR) on the Operation of a Dual-Fuel Marine Engine with Methanol. , 0, , .		0
476	Development and Evaluation of the Predictive Capabilities of a Dual-Fuel Combustion Model with Methanol or Hydrogen in a Medium Speed Large Bore Engine. , 0, , .		0
477	Renewable Alternatives for Fossil Fuels in Non-Road Mobile Machinery: A Multicriteria Analysis. , 0, , .		0
483	A comprehensive overview of carbon dioxide, including emission sources, capture technologies, and the conversion into value-added products. Clean Technologies and Environmental Policy, 0, , .	2.1	0
493	Methanol fuelled hybrid propulsion system for a charter yacht. , 2023, , .		0
502	Core Challenges and Prospects of Methanol Utilization, Prediction and Optimization for Sustainable Environment. , 0, , .		0

		CITATION REPORT		
#	Article		IF	CITATIONS
504	Applications of bioenergy. , 2024, , 275-293.			0
506	Developments of bioenergy. , 2024, , 245-273.			0
512	Recent advances in methanol production from methanotrophs. World Journal of Micro Biotechnology, 2023, 39, .	biology and	1.7	0
522	Combustion Characteristics and Performance of Methanol. , 2023, , .			0
527	RANS simulation of a multicomponent underexpanded gaseous jet mixing $\hat{a} \in \space{-1}$ injection conditions. , 0, , .	of composition and		1
528	Numerical Study of Dual Fuel Methanol/Diesel Combustion under Engine-like Conditio	n. , 0, , .		1
529	Cold Start Performance of Sustainable Oxygenated Spark Ignition Fuels. , 0, , .			0
543	Improved Combustion Efficiency in Methanol/Renewable Diesel Dual Fuel Combustion Injection Timing and Increased Intake Temperature: Single-Cylinder Experiment. , 0, , .	by Advanced		0
560	Environmental and Cancer Risk Potential Assessment of Unregulated Emissions from N Dual Fuel RCCI Engine. , 0, , .	Лethanol-Diesel		0
561	Experimental and Numerical Investigation of a Single-Cylinder Methanol Port-Fuel Inject Ignition Engine for Heavy-Duty Applications. , 0, , .	tted Spark		0
563	A Comparative Study of Methanol-Gasoline Blends on Performance and Emissions on B Class of Two Wheeler Vehicles. , 0, , .	3S-IV and BS-VI		0
564	Methanol – As a Future Alternative Fuel for Indian Automotive. , 0, , .			0
581	Challenges of Methanol Application in the Fuel Cells. , 2024, , .			0

586 Waste-To-Biofuel Production for the Transportation Sector. Energy, Environment, and Susta 2024, , 99-122.	ainability, 0.6	0
--	-----------------	---