Machining performance of vegetable oil with phosphon liquids via MQL technique

Journal of Cleaner Production 209, 947-964

DOI: 10.1016/j.jclepro.2018.10.317

Citation Report

#	Article	IF	CITATIONS
1	Performance Evaluation of MQCL Hard Milling of SKD 11 Tool Steel Using MoS2 Nanofluid. Metals, 2019, 9, 658.	1.0	37
2	Performance Evaluation of Vegetable Oil-Based Nano-Cutting Fluids in Environmentally Friendly Machining of Inconel-800 Alloy. Materials, 2019, 12, 2792.	1.3	84
3	Experimental Evaluation of the Lubrication Performance in MQL Grinding of Nano SiC Reinforced Al Matrix Composites. Silicon, 2019, 11, 2987-2999.	1.8	30
4	Performance Evaluation of MQL Parameters Using Al2O3 and MoS2 Nanofluids in Hard Turning 90CrSi Steel. Lubricants, 2019, 7, 40.	1.2	62
5	A Brief Review on Ionic Fluids and its Application in Machining. Materials Today: Proceedings, 2019, 18, 4441-4448.	0.9	4
6	Experimental evaluation of an eco-friendly grinding process combining minimum quantity lubrication and graphene-enhanced plant-oil-based cutting fluid. Journal of Cleaner Production, 2020, 244, 118747.	4.6	54
7	In-situ removal of toluene as a biomass tar model compound using NiFe2O4 for application in chemical looping gasification oxygen carrier. Energy, 2020, 190, 116360.	4.5	44
8	Effects of eco-friendly cooling strategy on machining performance in micro-scale diamond turning of Ti–6Al–4V. Journal of Cleaner Production, 2020, 243, 118526.	4.6	32
9	Nonedible vegetable oil-based cutting fluids for machining processes – a review. Materials and Manufacturing Processes, 2020, 35, 1-32.	2.7	75
10	Evaluating the sustainability pillars of energy and environment considering carbon emissions under machining ofTi-3Al-2.5ÂV. Sustainable Energy Technologies and Assessments, 2020, 42, 100806.	1.7	28
11	Vegetable oil-based nanofluid minimum quantity lubrication turning: Academic review and perspectives. Journal of Manufacturing Processes, 2020, 59, 76-97.	2.8	210
12	Chemical modification of juliflora oil with trimethylolpropane (TMP) and effect of TiO2 nanoparticles concentration during tribological investigation. Fuel, 2020, 280, 118704.	3.4	13
13	Preparation and analysis of the thermal properties of non-toxic eco-friendly vegetable based oils. IOP Conference Series: Materials Science and Engineering, 2020, 954, 012017.	0.3	0
14	Shorea Robusta (Sal): A Novel Feedstock for Bio Based Lubricant Application with Effect of SiO2 Nanoparticles. Journal of Bio- and Tribo-Corrosion, 2020, 6, 1.	1.2	5
15	A celebration of academic and industry collaboration: The Royal National Lifeboat Institution and Maritime Engineering innovation. Proceedings of the Institution of Mechanical Engineers Part M: Journal of Engineering for the Maritime Environment, 2020, , 147509022093790.	0.3	1
16	Influence of CO2-snow and subzero MQL on thermal aspects in the machining of Ti-6Al-4V. Applied Thermal Engineering, 2020, 177, 115480.	3.0	44
17	Improvement in the Hard Milling of AISI D2 Steel under the MQCL Condition Using Emulsion-Dispersed MoS2 Nanosheets. Lubricants, 2020, 8, 62.	1.2	6
18	Effect of MQL flow rate on machinability of AISI 4140 steel. Machining Science and Technology, 2020, 24, 663-687.	1.4	13

#	Article	IF	CITATIONS
19	Study of Ionic Liquids (AIL and PIL) Viscosity and its Functional Groups under Heat Treatment on Cutting Tool Surface Using Fourier-Transform Infrared Spectroscopy (FTIR). Materials Science Forum, 0, 981, 98-103.	0.3	1
20	Green Metalworking Fluids for sustainable machining applications: A review. Journal of Cleaner Production, 2020, 257, 120552.	4.6	92
21	Energy-based cost integrated modelling and sustainability assessment of Al-GnP hybrid nanofluid assisted turning of AISI52100 steel. Journal of Cleaner Production, 2020, 257, 120502.	4.6	87
22	Eco-Friendly Cutting Fluids in Minimum Quantity Lubrication Assisted Machining: A Review on the Perception of Sustainable Manufacturing. International Journal of Precision Engineering and Manufacturing - Green Technology, 2021, 8, 249-280.	2.7	165
24	Friction and wear characterization of chemically treated Styrax officinalis L vegetable oil. Materials Today: Proceedings, 2021, 46, 10507-10509.	0.9	3
25	<scp><i>Brucea Javanica</i></scp> : A novel nonedible feedstock for bioâ€based lubricant application with the effect of <scp>ZrO₂</scp> nanoparticles. Environmental Progress and Sustainable Energy, 2021, 40, e13602.	1.3	2
26	Effect of End Mill Geometry and Coolant Strategies on Machining Performance of Nickel Based Alloy Inconel 718. Lecture Notes in Mechanical Engineering, 2021, , 311-318.	0.3	0
27	Experimental Study on the Performance of the New Milling Tools When Machining Pre-hardened Material. Lecture Notes in Mechanical Engineering, 2021, , 203-208.	0.3	0
28	Calophyllum-Inophyllum from Pahang Malaysia as Biolubricant Feedstock for Industrial Application. Lecture Notes in Mechanical Engineering, 2021, , 441-449.	0.3	4
29	SiO2 nanoparticles effect to the Mahua oil for friction and wear characterization. Materials Today: Proceedings, 2021, 46, 10492-10495.	0.9	2
31	Cooling techniques to improve the machinability and sustainability of light-weight alloys: A state-of-the-art review. Journal of Manufacturing Processes, 2021, 62, 179-201.	2.8	98
32	A review on cutting fluids used in machining processes. Engineering Research Express, 2021, 3, 012002.	0.8	27
33	Temperature of Grinding Carbide With Castor Oil-Based MoS2 Nanofluid Minimum Quantity Lubrication. Journal of Thermal Science and Engineering Applications, 2021, 13, .	0.8	79
34	Optimization of Parameters and Sustainability Assessment Under Minimum Quantity Solid Lubrication-Assisted Machining of Inconel 718. Process Integration and Optimization for Sustainability, 2021, 5, 625-644.	1.4	12
35	Experimental investigations into thermophysical, wettability and tribological characteristics of ionic liquid based metal cutting fluids. Journal of Manufacturing Processes, 2021, 65, 190-205.	2.8	19
36	Bibliometric Analysis of Specific Energy Consumption (SEC) in Machining Operations: A Sustainable Response. Sustainability, 2021, 13, 5617.	1.6	43
37	A new optimized predictive model based on political optimizer for eco-friendly MQL-turning of AISI 4340 alloy with nano-lubricants. Journal of Manufacturing Processes, 2021, 67, 562-578.	2.8	97
38	A comprehensive review on research developments of vegetable-oil based cutting fluids for sustainable machining challenges. Journal of Manufacturing Processes, 2021, 67, 286-313.	2.8	99

#	Article	IF	CITATIONS
39	Recent advances on high performance machining of aerospace materials and composites using vegetable oil-based metal working fluids. Journal of Cleaner Production, 2021, 310, 127459.	4.6	27
41	Comparative evaluation of crude Tamanu oil performance as metalworking fluids. Materials Today: Proceedings, 2022, 48, 1783-1788.	0.9	5
42	A comprehensive study of amino acids based ionic liquids as green lubricants for various contacts. Tribology International, 2021, 162, 107137.	3.0	11
43	Evaluation of End Mill Geometry When Machining Nickel Based Alloys. Lecture Notes in Mechanical Engineering, 2021, , 289-298.	0.3	1
44	Nano-enhanced biolubricant in sustainable manufacturing: From processability to mechanisms. Friction, 2022, 10, 803-841.	3.4	144
45	Ionic liquid lubricants: when chemistry meets tribology. Chemical Society Reviews, 2020, 49, 7753-7818.	18.7	220
46	Micro/Meso-Scale Mechanical Machining 2020: A Two-Decade State-of-the-Field Review. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2020, 142, .	1.3	18
47	A review on tribological performance of ionic liquids as additives to bio lubricants. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 0, , 135065012097380.	1.0	24
48	Recent progress and evolution of coolant usages in conventional machining methods: a comprehensive review. International Journal of Advanced Manufacturing Technology, 2022, 119, 3-40.	1.5	26
49	Effects of lubricooling conditions on machining forces and surface roughness in radial grooving. ITEGAM- Journal of Engineering and Technology for Industrial Applications (ITEGAM-JETIA), 2021, 7, .	0.1	0
50	Experimental investigations into sustainable machining of Hastelloy C-276 under different lubricating strategies. Journal of Manufacturing Processes, 2022, 75, 138-153.	2.8	20
51	Advanced cooling-lubrication technologies in metal machining. , 2022, , 67-92.		8
52	Application of nanofluids as cutting fluids in machining operations: a brief review. Applied Nanoscience (Switzerland), 2023, 13, 4247-4278.	1.6	9
53	Cutting fluid corrosion inhibitors from inorganic to organic: Progress and applications. Korean Journal of Chemical Engineering, 2022, 39, 1107-1134.	1.2	91
54	A critical review on the progress of MQL in machining hardened steels. Advances in Materials and Processing Technologies, 2022, 8, 3834-3858.	0.8	6
55	Thermophysical Investigations of Mango Seed Oil as a Novel Cutting Fluid: A Sustainable Approach Toward Waste to Value Addition. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2022, 144, .	1.3	5
56	Investigation of the Effects of Cooling and Lubricating Strategies on Tribological Characteristics in Machining of Hybrid Composites. Lubricants, 2022, 10, 63.	1.2	35
57	Prospects of Plant-Based Trimethylolpropane Esters in the Biolubricant Formulation for Various Applications: A Review. Frontiers in Mechanical Engineering, 2022, 8, .	0.8	10

CITATION REPORT

#	Article	IF	CITATIONS
58	Experimental Study of an Eco-friendly Turning Process of Nimonic 75 Combining Minimum Quantity Lubrication and Hexagonal Boron Nitride-Enhanced Neem and Jatropha Oil Nanofluids. Journal of the Institution of Engineers (India): Series C, 2022, 103, 785-812.	0.7	3
59	<scp>Synthesis</scp> of environmentâ€friendly, sustainable, and nontoxic bioâ€lubricants: A critical review of advances and a path forward. Biofuels, Bioproducts and Biorefining, 2022, 16, 1172-1195.	1.9	6
60	Understandings the tribological mechanism of Inconel 718 alloy machined under different cooling/lubrication conditions. Tribology International, 2022, 174, 107677.	3.0	33
61	Enhancing tribo-rheological performance of solid lubricants mixed bio-based emulsions applied through minimum quantity cooling lubrication technique. Sadhana - Academy Proceedings in Engineering Sciences, 2022, 47, .	0.8	1
62	Experimental investigations into tribological and machining characteristics of Al2O3 and ZrO dispersed Jatropha oil-based nanofluids. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2022, 44, .	0.8	5
63	Machining studies on Monel K â^ 500 using TiAlN coated tungsten carbide inserts under Ag nanoparticles incorporated modified pongamia pinnata oil lubrication. Materials Research Express, 2022, 9, 076512.	0.8	1
64	A Novel Calophyllum-Inophyllum Oil from Pahang Malaysia as a Green Metalworking Fluid. Lecture Notes in Mechanical Engineering, 2022, , 217-226.	0.3	1
65	Design and Development of a Pneumatic Non-explosive Quick-Stop Device for CNC Turning. Lecture Notes in Mechanical Engineering, 2022, , 285-293.	0.3	0
66	Green Metalworking Fluids for Sustainable Machining Operations and Other Sustainable Systems: A Review. Metals, 2022, 12, 1466.	1.0	9
67	Sustainable Grinding Performances of Nano-Sic Reinforced Al Matrix Composites under MQL: An Integrated Box–Behnken Design Coupled with Artificial Bee Colony (ABC) Algorithm. Sustainable Chemistry, 2022, 3, 482-510.	2.2	2
68	Tribological and vibration characteristics of the palm-mineral blend as a sustainable lubricant in steel-steel contacts. Biomass Conversion and Biorefinery, 0, , .	2.9	0
69	Characteristics of Hybrid Nanolubricants for MQL Cooling Lubrication Machining Application. Lubricants, 2022, 10, 350.	1.2	7
70	Hard Turning Performance Investigation of AISI D2 Steel under a Dual Nozzle MQL Environment. Lubricants, 2023, 11, 16.	1.2	9
71	Sustainable manufacturing strategies in machining. , 2023, , 113-154.		2
72	A critical review on halogen-free ionic liquids as potential metalworking fluid additives. Journal of Molecular Liquids, 2023, 380, 121727.	2.3	9
73	Current status of CO2 capture with ionic liquids: Development and progress. Fuel, 2023, 344, 128102.	3.4	23
74	An internal cooling grinding wheel: From design to application. Chinese Journal of Aeronautics, 2023, 36, 465-482.	2.8	6
79	Material Removal Rate Optimization Under ANN and QRCCD. Studies in Systems, Decision and Control, 2023, , 233-262.	0.8	0

#	Article	IF	CITATIONS
80	Review on biolubricants and nanoparticles as additives in machining process. AIP Conference Proceedings, 2023, , .	0.3	0
85	Cutting Fluid and Its Application with Different Delivering Machining Techniques. Studies in Systems, Decision and Control, 2023, , 25-39.	0.8	0
89	Nanoparticle-enhanced coolants in machining: mechanism, application, and prospects. Frontiers of Mechanical Engineering, 2023, 18, .	2.5	6
91	Orthogonal Cutting Performance of Vegetable-Based Lubricants via Minimum Quantity Lubrication Technique on AISI 316L. Springer Proceedings in Materials, 2024, , 199-210.	0.1	0