Controlling bacteria retention on polymer via replication metal mould

Optics and Laser Technology 111, 530-536

DOI: 10.1016/j.optlastec.2018.10.031

Citation Report

#	Article	IF	CITATIONS
1	Influence of laser surface nanotexturing on the friction behaviour of the silicon/sapphire system. Optics and Laser Technology, 2020, 121, 105767.	4.6	3
2	Antibacterial properties of laser surface-textured TiO2/ZnO ceramic coatings. Ceramics International, 2020, 46, 3949-3959.	4.8	36
3	Effects of mould wear on hydrophobic polymer surfaces replicated using plasma-treated and laser-textured stainless steel inserts. Tribology - Materials, Surfaces and Interfaces, 2020, 14, 240-252.	1.4	5
4	Insight into replication effectiveness of laser-textured micro and nanoscale morphology by injection molding. Journal of Manufacturing Processes, 2021, 65, 445-454.	5.9	10
5	A Comparison of Characteristics of Periodic Surface Micro/Nano Structures Generated Via Single Laser Beam Direct Writing and Particle Lens Array Parallel Beam Processing. Journal of Micro and Nano-Manufacturing, 2021, 9 , .	0.7	1
6	Laser nano-technology of light materials: Precision and opportunity. Optics and Laser Technology, 2021, 139, 106988.	4.6	20
7	Bacterial anti-adhesion surface design: Surface patterning, roughness and wettability: A review. Journal of Materials Science and Technology, 2022, 99, 82-100.	10.7	119
8	Wettability control of polymeric microstructures replicated from laser-patterned stamps. Scientific Reports, 2020, 10, 22428.	3.3	16
9	Lotus-Leaf Inspired Surfaces: Hydrophobicity Evolution of Replicas Due to Mechanical Cleaning and Mold Wear. Journal of Micro and Nano-Manufacturing, 2020, 8, .	0.7	5
10	An Overview for the Design of Antimicrobial Polymers: From Standard Antibiotic-Release Systems to Topographical and Smart Materials. Annual Review of Materials Research, 2022, 52, 1-24.	9.3	6
11	Application and Optimization of the Thin Electric Heater in Micro-Injection Mold for Micropillars. Nanomaterials, 2022, 12, 1751.	4.1	2
12	Modeling of two-scale array microstructure and prediction of apparent contact angle based on WEDM. International Journal of Advanced Manufacturing Technology, 2022, 121, 2699-2719.	3.0	5
13	Oil Retention Properties of Elastomer Based Slippery Liquid Infused Surfaces Under Extreme Conditions. SSRN Electronic Journal, 0, , .	0.4	0
14	Effects of Cavity Thickness on the Replication of Micro Injection Molded Parts with Microstructure Array. Polymers, 2022, 14, 5471.	4.5	1
15	Hydrophilic Modification Strategies to Enhance the Surface Biocompatibility of Poly(dimethylsiloxane)â€Based Biomaterials for Medical Applications. Advanced Materials Interfaces, 2023, 10, .	3.7	10
16	Microtopographic superhydrophobic polymer surface to prevent urinary tract infections causing nosocomial drug-resistant bacterial adhesion. Surfaces and Interfaces, 2023, 41, 103239.	3.0	0
17	Highly stable fluorine-free slippery liquid infused surfaces. Surfaces and Interfaces, 2023, 42, 103296.	3.0	0
18	Fabrication of a Hot-Embossing Metal Micro-Mold through Laser Shock Imprinting. Materials, 2023, 16, 5079.	2.9	O

#	Article	IF	CITATIONS
19	Enhanced Pervaporation of the Poly(dimethylsiloxane) (PDMS) Mixed Matrix Membrane Based on the Self-Assembly of Multidimensional Carbon Nanomaterials. Industrial & Engineering Chemistry Research, 0, , .	3.7	0
20	Biomimetic nano/microfabrication techniques in multiâ€bioinspired superhydrophobic wood: New insight on theory, design and applications. Surfaces and Interfaces, 2024, 48, 104217.	3.0	O