Metal Oxide Nanocomposites: A Perspective from Strain

Advanced Materials 31, e1803241 DOI: 10.1002/adma.201803241

Citation Report

#	Article	IF	CITATIONS
1	Controllable conduction and hidden phase transitions revealed via vertical strain. Applied Physics Letters, 2019, 114, 252901.	3.3	5
2	Competing Interface and Bulk Effect–Driven Magnetoelectric Coupling in Vertically Aligned Nanocomposites. Advanced Science, 2019, 6, 1901000.	11.2	22
3	Atomicâ€Scale Study of Metal–Oxide Interfaces and Magnetoelastic Coupling in Selfâ€Assembled Epitaxial Vertically Aligned Magnetic Nanocomposites. Advanced Materials Interfaces, 2019, 6, 1900549.	3.7	7
4	Semicoherent oxide heterointerfaces: Structure, properties, and implications. APL Materials, 2019, 7, .	5.1	19
5	Strain-driven nanodumbbell structure and enhanced physical properties in hybrid vertically aligned nanocomposite thin films. Applied Materials Today, 2019, 16, 204-212.	4.3	30
6	An anion exchange reaction: an effective approach to prepare alloyed Co–Fe bimetallic disulfide for improving the electrocatalytic activity. Chemical Communications, 2019, 55, 7615-7618.	4.1	3
7	Nanostructured Materials and Interfaces for Advanced Ionic Electronic Conducting Oxides. Advanced Materials Interfaces, 2019, 6, 1900462.	3.7	39
8	Enhanced magnetism in lightly doped manganite heterostructures: strain or stoichiometry?. Nanoscale, 2019, 11, 7364-7370.	5.6	13
9	One-Pot Synthesis of High-Quality Bimagnetic Core/Shell Nanocrystals with Diverse Exchange Coupling. Journal of the American Chemical Society, 2019, 141, 3366-3370.	13.7	26
10	Self-assembled lamellar-type nanostructure in manganite spinel (Co,Mn,Fe)3O4. Applied Physics Letters, 2019, 115, .	3.3	7
11	Selfâ€Assembled Room Temperature Multiferroic BiFeO ₃ â€LiFe ₅ O ₈ Nanocomposites. Advanced Functional Materials, 2020, 30, 1906849.	14.9	14
12	Ptychographic X-ray tomography reveals additive zoning in nanocomposite single crystals. Chemical Science, 2020, 11, 355-363.	7.4	17
13	Noble metal clustering and nanopillar formation in an oxide matrix. Japanese Journal of Applied Physics, 2020, 59, 010501.	1.5	6
14	MOF-Assisted Synthesis of Highly Mesoporous Cr ₂ O ₃ /SiO ₂ Nanohybrids for Efficient Lewis-Acid-Catalyzed Reactions. ACS Applied Materials & Interfaces, 2020, 12, 48691-48699.	8.0	14
15	3D Hybrid Trilayer Heterostructure: Tunable Au Nanorods and Optical Properties. ACS Applied Materials & Interfaces, 2020, 12, 45015-45022.	8.0	9
16	Strain Effects on the Growth of La _{0.7} Sr _{0.3} MnO ₃ (LSMO)–NiO Nanocomposite Thin Films via Substrate Control. ACS Omega, 2020, 5, 23793-23798.	3.5	5
17	Defects in complex oxide thin films for electronics and energy applications: challenges and opportunities. Materials Horizons, 2020, 7, 2832-2859.	12.2	83
18	Order-disorder behavior at thin film oxide interfaces. Current Opinion in Solid State and Materials Science, 2020, 24, 100870.	11.5	5

#	Article	IF	CITATIONS
19	A Lattice Litany for Transition Metal Oxides. Condensed Matter, 2020, 5, 46.	1.8	3
20	Metal-Free Oxide-Nitride Heterostructure as a Tunable Hyperbolic Metamaterial Platform. Nano Letters, 2020, 20, 6614-6622.	9.1	38
21	Regulation of intrinsic physicochemical properties of metal oxide nanomaterials for energy conversion and environmental detection applications. Journal of Materials Chemistry A, 2020, 8, 17326-17359.	10.3	33
22	Anisotropic domains and antiferrodistortive-transition controlled magnetization in epitaxial manganite films on vicinal SrTiO3 substrates. Applied Physics Letters, 2020, 117, .	3.3	11
23	Induced ferroelectric phases in SrTiO ₃ by a nanocomposite approach. Nanoscale, 2020, 12, 18193-18199.	5.6	15
24	Self-assembled nitride–metal nanocomposites: recent progress and future prospects. Nanoscale, 2020, 12, 20564-20579.	5.6	12
25	Revealing the Structure and Oxygen Transport at Interfaces in Complex Oxide Heterostructures via ¹⁷ 0 NMR Spectroscopy. Chemistry of Materials, 2020, 32, 7921-7931.	6.7	5
26	Substrate oxygen sponge effect: A parameter for epitaxial manganite thin film growth. Applied Physics Letters, 2020, 117, .	3.3	10
27	Epitaxial Stabilization of Single-Crystal Multiferroic YCrO3 Thin Films. Nanomaterials, 2020, 10, 2085.	4.1	5
28	Metastability at Defective Metal Oxide Interfaces and Nanoconfined Structures. Advanced Materials Interfaces, 2020, 7, 1902090.	3.7	20
29	Rationalizing the Effect of Oxygen Vacancy on Oxygen Electrocatalysis in Li–O ₂ Battery. Small, 2020, 16, e2001812.	10.0	81
30	Flexible inorganic oxide thin-film electronics enabled by advanced strategies. Journal of Semiconductors, 2020, 41, 041602.	3.7	10
31	Spontaneous Ordering of Oxide-Oxide Epitaxial Vertically Aligned Nanocomposite Thin Films. Annual Review of Materials Research, 2020, 50, 229-253.	9.3	22
32	Integration-Friendly, Chemically Stoichiometric BiFeO ₃ Films with a Piezoelectric Performance Challenging that of PZT. ACS Applied Materials & Interfaces, 2020, 12, 33899-33907.	8.0	30
33	Orientation and lattice matching of CoNi nanowires embedded in SrTiO3: unveiling novel strain relaxation mechanisms in vertically aligned nanocomposites. CrystEngComm, 2020, 22, 4730-4739.	2.6	3
34	Symbiotic, low-temperature, and scalable synthesis of bi-magnetic complex oxide nanocomposites. Nanoscale Advances, 2020, 2, 851-859.	4.6	22
35	Role of Interlayer in 3D Vertically Aligned Nanocomposite Frameworks with Tunable Magnetotransport Properties. Advanced Materials Interfaces, 2020, 7, 1901990.	3.7	7
36	Enhanced magnetocaloric performance in manganite bilayers. Journal of Applied Physics, 2020, 127, .	2.5	7

#	Article	IF	CITATIONS
37	Multiscale Patterning from Competing Interactions and Length Scales. Annual Review of Materials Research, 2020, 50, 207-227.	9.3	1
38	Heterostructured materials: superior properties from hetero-zone interaction. Materials Research Letters, 2021, 9, 1-31.	8.7	505
39	Effective strategy to coupling Zr-MOF/ZnO: Synthesis, morphology and photoelectrochemical properties evaluation. Journal of Solid State Chemistry, 2021, 293, 121794.	2.9	23
40	Symmetry mismatch controlled ferroelastic domain ordering and the functional properties of manganite films on cubic miscut substrates. Physical Chemistry Chemical Physics, 2021, 23, 16623-16628.	2.8	3
41	Towards bi-magnetic nanocomposites as permanent magnets through the optimization of the synthesis and magnetic properties of SrFe ₁₂ O ₁₉ nanocrystallites. Journal Physics D: Applied Physics, 2021, 54, 124004.	2.8	17
42	Magnetoelectricity in vertically aligned nanocomposites: Past, present, and future. MRS Bulletin, 2021, 46, 123-130.	3.5	5
43	Approaches to enhance low-field magnetoresistance effect at room temperature of self-assembled manganite nanocomposite films via microstructure design. MRS Bulletin, 2021, 46, 131-135.	3.5	3
44	Nanopillar composite electrodes for solar-driven water splitting. MRS Bulletin, 2021, 46, 142-151.	3.5	3
45	Lithium-based vertically aligned nanocomposites for three-dimensional solid-state batteries. MRS Bulletin, 2021, 46, 152-158.	3.5	6
46	Tailoring physical functionalities of complex oxides by vertically aligned nanocomposite thin-film design. MRS Bulletin, 2021, 46, 159-167.	3.5	23
47	A pathway to desired functionalities in vertically aligned nanocomposites and related architectures. MRS Bulletin, 2021, 46, 115-122.	3.5	19
48	Spontaneous phase segregation of Sr ₂ NiO ₃ and SrNi ₂ O ₃ during SrNiO ₃ heteroepitaxy. Science Advances, 2021, 7, .	10.3	12
49	Ferroelectric/multiferroic self-assembled vertically aligned nanocomposites: Current and future status. APL Materials, 2021, 9, .	5.1	15
51	A high-entropy manganite in an ordered nanocomposite for long-term application in solid oxide cells. Nature Communications, 2021, 12, 2660.	12.8	37
52	Self-biased magnetoelectric switching at room temperature in three-phase ferroelectric–antiferromagnetic–ferrimagnetic nanocomposites. Nature Electronics, 2021, 4, 333-341.	26.0	18
53	Interfacialâ€Strainâ€Controlled Ferroelectricity in Selfâ€Assembled BiFeO ₃ Nanostructures. Advanced Functional Materials, 2021, 31, 2102311.	14.9	11
54	Opportunities from Doping of Nonâ€Critical Metal Oxides in Last Generation Lightâ€Conversion Devices. Advanced Energy Materials, 2021, 11, 2101041.	19.5	29
55	Spatial correlation of embedded nanowires probed by X-ray off-Bragg scattering of the host matrix. Journal of Applied Crystallography, 2021, 54, 1173-1178.	4.5	0

#	Article	IF	CITATIONS
56	A perspective on effect by Ag addition to corrosion evolution of Pb-free Sn solder. Materials Letters, 2021, 297, 129935.	2.6	13
57	Epitaxial pillar–matrix nanocomposite thin films of Bi–Ti–Fe–O and CoFe2O4 grown on SrTiO3 (110). Journal of Applied Physics, 2021, 130, 084101.	2.5	1
58	Roadmap on Magnetoelectric Materials and Devices. IEEE Transactions on Magnetics, 2021, 57, 1-57.	2.1	43
59	Strong Interfacial Coupling of Tunable Ni–NiO Nanocomposite Thin Films Formed by Self-Decomposition. ACS Applied Materials & Interfaces, 2021, 13, 39730-39737.	8.0	7
60	Subâ€Nanometer Thick Waferâ€6ize NiO Films with Roomâ€Temperature Ferromagnetic Behavior. Angewandte Chemie - International Edition, 2021, 60, 25020-25027.	13.8	12
61	Carrier Dynamics in Alloyed Chalcogenide Quantum Dots and Their Lightâ€Emitting Devices. Advanced Energy Materials, 2021, 11, 2101693.	19.5	29
62	Subâ€Nanometer Thick Waferâ€Size NiO Films with Roomâ€Temperature Ferromagnetic Behavior. Angewandte Chemie, 2021, 133, 25224-25231.	2.0	1
63	Reconfigurable lateral anionic heterostructures in oxide thin films via lithographically defined topochemistry. Physical Review Materials, 2019, 3, .	2.4	7
64	Nanoscale magnetization inhomogeneity within single phase nanopillars. Physical Review Materials, 2019, 3, .	2.4	5
65	Elucidating the Strain–Vacancy–Activity Relationship on Structurally Deformed Co@CoO Nanosheets for Aqueous Phase Reforming of Formaldehyde. Small, 2021, 17, e2102970.	10.0	29
66	Epitaxial ferroelectric interfacial devices. Applied Physics Reviews, 2021, 8, .	11.3	15
68	Control of nanostructures by cooling rate in spinel-type manganese oxide ZnMnGaO ₄ . Japanese Journal of Applied Physics, 2020, 59, 105002.	1.5	2
69	The Use of a Novel Three-Electrode Impulse Underwater Discharge for the Synthesis of W-Mo Mixed Oxide Nanocomposites. Plasma Chemistry and Plasma Processing, 2022, 42, 191-209.	2.4	5
70	Hierarchical morphologies in co-sputter deposited thin films. Physical Review Materials, 2020, 4, .	2.4	3
71	Exsolution Synthesis of Nanocomposite Perovskites with Tunable Electrical and Magnetic Properties. Advanced Functional Materials, 2022, 32, 2108005.	14.9	20
72	Highly Flexible Freestanding BaTiO ₃ â€CoFe ₂ O ₄ Heteroepitaxial Nanostructure Selfâ€Assembled with Roomâ€Temperature Multiferroicity. Small, 2022, 18, e2104213.	10.0	20
73	Exploring the Spatial Control of Topotactic Phase Transitions Using Vertically Oriented Epitaxial Interfaces. Nano-Micro Letters, 2022, 14, 2.	27.0	3
74	The Role of Oxygen Transfer in Oxide Heterostructures on Functional Properties. Advanced Materials Interfaces, 2022, 9, .	3.7	1

#	Article	IF	CITATIONS
75	Robust ferromagnetic insulating and large exchange bias in LaMnO3:CoO composite thin films. Journal Physics D: Applied Physics, 0, , .	2.8	1
76	Achieving a Record-High Capacitive Energy Density on Si with Columnar Nanograined Ferroelectric Films. ACS Applied Materials & Interfaces, 2022, 14, 7805-7813.	8.0	11
77	Metastable Antimonyâ€Doped SnO ₂ Quantum Wires for Ultrasensitive Gas Sensors. Advanced Electronic Materials, 2022, 8, .	5.1	6
78	Strain Engineering: A Pathway for Tunable Functionalities of Perovskite Metal Oxide Films. Nanomaterials, 2022, 12, 835.	4.1	13
79	Bifunctional WCâ€Supported RuO ₂ Nanoparticles for Robust Water Splitting in Acidic Media. Angewandte Chemie - International Edition, 2022, 61, .	13.8	89
80	Bifunctional WCâ€Supported RuO ₂ Nanoparticles for Robust Water Splitting in Acidic Media. Angewandte Chemie, 2022, 134, .	2.0	11
81	Strain Engineering: A Boosting Strategy for Photocatalysis. Advanced Materials, 2022, 34, e2200868.	21.0	82
82	Laser modification of Au–CuO–Au structures for improved electrical and electro-optical properties. Nanotechnology, 2022, 33, 245205.	2.6	6
83	Reducing Leakage Current and Enhancing Polarization in Multiferroic 3D Super-nanocomposites by Microstructure Engineering. Nanotechnology, 2022, , .	2.6	0
84	A generalized 3D elastic model for nanoscale, self-assembled oxide-metal thin films with pillar-in-matrix configurations. Acta Materialia, 2022, 228, 117779.	7.9	5
85	Strain Engineering in Electrocatalysts: Fundamentals, Progress, and Perspectives. Advanced Energy Materials, 2022, 12, .	19.5	72
86	Ferroelectricity and Piezoelectric Response of (Sc,Y)N/(Al,Ga,In)N Monolayer Alternating Stacked Structures by Firstâ€Principles Calculations. Physica Status Solidi (B): Basic Research, 2022, 259, .	1.5	6
87	Self-assembled growth and magnetic properties of Fe and FeTiO3 core–Sr(Ti,Fe)O3 shell nanocomposites. Applied Surface Science, 2022, 593, 153332.	6.1	1
88	Tunable Three-Phase Co–CeO ₂ –BaTiO ₃ Hybrid Metamaterials with Nano-Mushroom-Like Structure for Tailorable Multifunctionalities. ACS Applied Nano Materials, 2022, 5, 6297-6304.	5.0	7
89	Strain-induced ferroelectricity and piezoelectricity in centrosymmetric binary oxides. Physical Review B, 2022, 106, .	3.2	1
90	Structural and Optical Properties of High Entropy (La,Lu,Y,Gd,Ce)AlO ₃ Perovskite Thin Films. Advanced Science, 2022, 9, .	11.2	15
91	NH2-MIL-125(Ti) nanoparticles decorated over ZnO microrods: An efficient bifunctional material for degradation of levofloxacin and detection of Cu(II). Journal of Alloys and Compounds, 2022, 928, 166909.	5.5	11
92	Nanostructured La _{0.75} Sr _{0.25} Cr _{0.5} Mn _{0.5} O ₃ –Ce _{0.8< Heterointerfaces as All-Ceramic Functional Layers for Solid Oxide Fuel Cell Applications. ACS Applied Materials &: Interfaces. 2022. 14. 42178-42187.}	/sub>Sm <s< td=""><td>subzo.2</td></s<>	subzo.2

#	Article	IF	CITATIONS
93	Self-Assembled Multiphase Nanocomposite SrCo _{1–<i>x</i>} Fe <i>_x</i> O _{3-Î} Thin Films with Voltage-Controlled Magnetism for Spintronic Applications. ACS Applied Nano Materials, 2022, 5, 14646-14653.	5.0	1
94	Recent Status and Developments of Vacancies Modulation in the ABO ₃ Perovskites for Catalytic Applications. Chemistry - A European Journal, 2023, 29, .	3.3	6
95	Induced Ferromagnetism in Epitaxial Uranium Dioxide Thin Films. Advanced Science, 2022, 9, .	11.2	7
96	Braiding Lateral Morphotropic Grain Boundaries in Homogenetic Oxides. Advanced Materials, 2023, 35,	21.0	7
97	Vertically aligned nanocomposite films by selfâ€assembled epitaxial nucleation for superâ€broadband transparent conductors. InformaÄnÃ-Materiály, 0, , .	17.3	0
98	Atomic Origins of Enhanced Ferroelectricity in Nanocolumnar PbTiO ₃ /PbO Composite Thin Films. Small, 2023, 19, .	10.0	0
99	Generation of nanogaps on porous ZnO sheets via Li-ion implantation: NO2 gas sensing with ultrafast recovery time. Sensors and Actuators B: Chemical, 2023, 379, 133283.	7.8	1
100	Robust Ferrimagnetism and Switchable Magnetic Anisotropy in Highâ€Entropy Ferrite Film. Advanced Functional Materials, 2023, 33, .	14.9	11
101	Nanoscale phenomena in metal oxide heterostructures. , 2023, , 77-105.		0
102	Interface-related phenomena in epitaxial complex oxide ferroics across different thin film platforms: opportunities and challenges. Materials Horizons, 2023, 10, 1060-1086.	12.2	2
103	Heterogeneous Integration of Freestanding Bilayer Oxide Membrane for Multiferroicity. Advanced Science, 2023, 10, .	11.2	4
104	Metal Oxides Nanomaterials and Nanocomposite-Based Electrochemical Sensors for Healthcare Applications. Biosensors, 2023, 13, 542.	4.7	12
105	Heteroepitaxial growth of anatase (0 0 1) films on SrTiO3 (0 0 1) by PLD and MBE. Applied Surface Science, 2023, 632, 157586.	6.1	0
106	Microfluidicâ€Assembled Covalent Organic Frameworks@Ti ₃ C ₂ T _x MXene Vertical Fibers for Highâ€Performance Electrochemical Supercapacitors. Advanced Materials, 2023, 35, .	21.0	12
107	Probing size-dependent defects in zinc oxide using synchrotron techniques: impact on photocatalytic efficiency. Physical Chemistry Chemical Physics, 2023, 25, 25639-25653.	2.8	0
108	The Strain Effects and Interfacial Defects of Large ZnSe/ZnS Core/Shell Nanocrystals. Small, 2024, 20, .	10.0	0
109	Combinatorial Growth of Vertically Aligned Nanocomposite Thin Films for Accelerated Exploration in Composition Variation. Small Science, 2023, 3, .	9.9	0
110	Tunable particle-agglomeration and magnetic coupling in bi-magnetic nanocomposites. Physical Chemistry Chemical Physics, 2023, 25, 27817-27828.	2.8	1

#	Article	IF	CITATIONS
111	Manipulating topological Hall-like signatures by interface engineering in epitaxial ruthenate/manganite heterostructures. Nanoscale, 0, , .	5.6	0
112	Self-Assembled Au Nanoelectrodes: Enabling Low-Threshold-Voltage HfO ₂ -Based Artificial Neurons. Nano Letters, 0, , .	9.1	0
113	High-Performance Neuromorphic Computing and Logic Operation Based on a Self-Assembled Vertically Aligned Nanocomposite SrTiO ₃ :MgO Film Memristor. ACS Nano, 2023, 17, 21518-21530.	14.6	1
114	Escalated Phase Separation Driven Enhanced Magnetoresistance in Manganite/Iridate Epitaxial Heterostructures. , 2024, 3, .		0
115	Modification of Band Structure by Oxygen Filling in Epitaxial La _{0.88} Sr _{0.12} MnO _{3–<i>x</i>} Thin Films. ACS Applied Electronic Materials, 0, , .	4.3	0
116	Metastable marvels: Navigating VO2 polymorphs for next-gen electronics and energy solutions. Journal of Applied Physics, 2024, 135, .	2.5	0
117	Sr ₄ Al ₂ O ₇ : A New Sacrificial Layer with High Water Dissolution Rate for the Synthesis of Freestanding Oxide Membranes. Advanced Materials, 2024, 36, .	21.0	0
118	Effect of isothermal annealing on formation of self-assembled nanostructures in manganese spinel ZnMnGaO4. Journal of Applied Physics, 2024, 135, .	2.5	0
119	Multiferroic Marvels Paving the Way for Energy Harvesting. Advances in Civil and Industrial Engineering Book Series, 2024, , 72-99.	0.2	0