Peer-to-Peer Energy Trading in a Prosumer-Based Com Model

IEEE Transactions on Industrial Electronics 66, 6087-6097 DOI: 10.1109/tie.2018.2874578

Citation Report

#	Article	IF	CITATIONS
1	Peer-to-Peer Energy Trading in Micro/Mini-Grids for Local Energy Communities: A Review and Case Study of Nepal. IEEE Access, 2019, 7, 131911-131928.	2.6	101
2	Energy Crowdsourcing and Peer-to-Peer Energy Trading in Blockchain-Enabled Smart Grids. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2019, 49, 1612-1623.	5.9	262
3	Hierarchical dispatch of multiple microgrids using nodal price: an approach from consensus and replicator dynamics. Journal of Modern Power Systems and Clean Energy, 2019, 7, 1573-1584.	3.3	9
4	Demand Side Load Management for Big Industrial Energy Users Under Blockchain-Based Peer-to-Peer Electricity Market. IEEE Transactions on Smart Grid, 2019, 10, 6426-6435.	6.2	85
5	Multi Agent-based Distributed Energy Arbitrage in Residential Distribution System. , 2019, , .		1
6	A Transactive Energy Trading Framework for Community Microgrids in Residential Multi-Dwelling Apartment Buildings. , 2019, , .		2
7	Game-Theoretic Approach for Electricity Pricing between Distribution System Operator and Load Aggregators. , 2019, , .		2
8	Distributed Peer-to-Peer Electricity Trading Considering Network Loss in a Distribution System. Energies, 2019, 12, 4318.	1.6	12
9	Robustly Multi-Microgrid Scheduling: Stakeholder-Parallelizing Distributed Optimization. IEEE Transactions on Sustainable Energy, 2020, 11, 988-1001.	5.9	51
10	Exploring blockchain for the energy transition: Opportunities and challenges based on a case study in Japan. Renewable and Sustainable Energy Reviews, 2020, 117, 109488.	8.2	96
11	Energy scheduling for a three-level integrated energy system based on energy hub models: A hierarchical Stackelberg game approach. Sustainable Cities and Society, 2020, 52, 101814.	5.1	91
12	A Decentralized Bilateral Energy Trading System for Peer-to-Peer Electricity Markets. IEEE Transactions on Industrial Electronics, 2020, 67, 4646-4657.	5.2	234
13	Energy Peer-to-Peer Trading in Virtual Microgrids in Smart Grids: A Game-Theoretic Approach. IEEE Transactions on Smart Grid, 2020, 11, 1264-1275.	6.2	214
14	A Decentralized Periodic Energy Trading Framework for Pelagic Islanded Microgrids. IEEE Transactions on Industrial Electronics, 2020, 67, 7595-7605.	5.2	21
15	An Energy Sharing Game With Generalized Demand Bidding: Model and Properties. IEEE Transactions on Smart Grid, 2020, 11, 2055-2066.	6.2	54
16	Local flexibility markets: Literature review on concepts, models and clearing methods. Applied Energy, 2020, 261, 114387.	5.1	182
17	Towards Flexibility Trading at TSO-DSO-Customer Levels: A Review. Energies, 2020, 13, 165.	1.6	42
18	A distributionâ€market based gameâ€theoretical model for the coordinated operation of multiple microgrids in active distribution networks. International Transactions on Electrical Energy Systems, 2020, 30, e12291.	1.2	6

2

#	Article	IF	CITATIONS
19	Integrating P2P Energy Trading With Probabilistic Distribution Locational Marginal Pricing. IEEE Transactions on Smart Grid, 2020, 11, 3095-3106.	6.2	107
20	Becoming prosumer: Revealing trading preferences and decision-making strategies in peer-to-peer energy communities. Energy Policy, 2020, 137, 111098.	4.2	117
21	Iterative Auction for P2P Renewable Energy Trading with Dynamic Energy Storage Management. Energies, 2020, 13, 4963.	1.6	7
22	A comparison study on trading behavior and profit distribution in local energy transaction games. Applied Energy, 2020, 280, 115941.	5.1	34
23	Towards a transactive energy system for integration of distributed energy resources: Home energy management, distributed optimal power flow, and peer-to-peer energy trading. Renewable and Sustainable Energy Reviews, 2020, 132, 110000.	8.2	144
24	Research Hotspots and Evolution of Energy Prosumer: A Literature Review and Bibliometric Analysis. Mathematical Problems in Engineering, 2020, 2020, 1-12.	0.6	4
25	Applications of Game Theory to Design and Operation of Modern Power Systems: A Comprehensive Review. Energies, 2020, 13, 3982.	1.6	25
26	Pricing and Operation Strategy for Peer-to-Peer Energy Trading Using Distribution System Usage Charge and Game Theoretic Model. IEEE Access, 2020, 8, 137720-137730.	2.6	24
27	Peer-to-peer electricity trading in grid-connected residential communities with household distributed photovoltaic. Applied Energy, 2020, 278, 115670.	5.1	68
28	Optimization of a Local Energy Market Operation in a Transactive Energy Environment. , 2020, , .		4
29	Distributed Energy Management for Distribution Networks with Multi-stakerholder Power Sources and Loads. , 2020, , .		0
30	A New Local Market Structure for Meeting Customer-Level Flexibility Needs. , 2020, , .		6
31	A Blockchain-Enabled Secure Power Trading Mechanism for Smart Grid Employing Wireless Networks. IEEE Access, 2020, 8, 177745-177756.	2.6	33
32	Framework of locality electricity trading system for profitable peerâ€toâ€peer power transaction in locality electricity market. IET Smart Grid, 2020, 3, 318-330.	1.5	23
33	Energy Management Optimization of Microgrid Cluster Based on Multi-Agent-System and Hierarchical Stackelberg Game Theory. IEEE Access, 2020, 8, 206183-206197.	2.6	55
34	Modeling the decentralized energy investment and operation in the prosumer era: a systematic review. , 2020, , .		3
35	Paving the Path for Two-Sided Energy Markets: An Overview of Different Approaches. IEEE Access, 2020, 8, 223708-223722.	2.6	11
36	Hierarchical Model-Free Transactional Control of Building Loads to Support Grid Services. IEEE Access, 2020, 8, 219367-219377.	2.6	12

#	Article	IF	CITATIONS
37	Peer-to-Peer Energy Transaction Mechanisms Considering Fairness in Smart Energy Communities. IEEE Access, 2020, 8, 216055-216068.	2.6	42
38	Multi-Agent Based Optimal Scheduling and Trading for Multi-Microgrids Integrated With Urban Transportation Networks. IEEE Transactions on Power Systems, 2021, 36, 2197-2210.	4.6	56
39	Automatic P2P Energy Trading Model Based on Reinforcement Learning Using Long Short-Term Delayed Reward. Energies, 2020, 13, 5359.	1.6	23
40	Cooperative P2P Energy Trading in Active Distribution Networks: An MILP-Based Nash Bargaining Solution. IEEE Transactions on Smart Grid, 2020, , 1-1.	6.2	54
41	Matching Game Based Strategy for Energy Exchange in a Networked Microgrid. , 2020, , .		2
42	Peer-to-Peer Energy Trading in Smart Grid Considering Power Losses and Network Fees. IEEE Transactions on Smart Grid, 2020, 11, 4727-4737.	6.2	171
43	Control and operation of a threeâ€phase local energy router for prosumers in a smart community. IET Renewable Power Generation, 2020, 14, 560-570.	1.7	18
44	Game-based peer-to-peer energy sharing management for a community of energy buildings. International Journal of Electrical Power and Energy Systems, 2020, 123, 106204.	3.3	35
45	A Mini-Review on High-Penetration Renewable Integration Into a Smarter Grid. Frontiers in Energy Research, 2020, 8, .	1.2	15
46	Day-ahead Energy Sharing Schedule for the P2P Prosumer Community Using LSTM and Swarm Intelligence. , 2020, , .		8
47	Distributed energy trading for an integrated energy system and electric vehicle charging stations: A Nash bargaining game approach. Renewable Energy, 2020, 155, 513-530.	4.3	60
48	A motivational game-theoretic approach for peer-to-peer energy trading in islanded and grid-connected microgrid. International Journal of Electrical Power and Energy Systems, 2020, 123, 106307.	3.3	53
49	Economic Efficiency Analysis of Micro Energy Grid Considering Time-of-Use Gas Pricing. IEEE Access, 2020, 8, 3016-3028.	2.6	6
50	Home Energy Management Systems under Effects of Solarâ€Battery Smart Inverter Functions. IEEJ Transactions on Electrical and Electronic Engineering, 2020, 15, 692-703.	0.8	10
51	Peer-to-Peer Energy Sharing in Distribution Networks With Multiple Sharing Regions. IEEE Transactions on Industrial Informatics, 2020, 16, 6760-6771.	7.2	44
52	Leveraging Blockchain Technology for Secure Energy Trading and Least-Cost Evaluation of Decentralized Contributions to Electrification in Sub-Saharan Africa. Entropy, 2020, 22, 226.	1.1	21
53	Multiple Home-to-Home Energy Transactions for Peak Load Shaving. IEEE Transactions on Industry Applications, 2020, 56, 1074-1085.	3.3	31
54	Peer-to-Peer Trading in Electricity Networks: An Overview. IEEE Transactions on Smart Grid, 2020, 11, 3185-3200.	6.2	464

#	Article	IF	Citations
55	Transactive energy coordination mechanism for community microgrids supplying multiâ€dwelling residential apartments. IET Generation, Transmission and Distribution, 2020, 14, 1207-1213.	1.4	9
56	A New and Fair Peer-to-Peer Energy Sharing Framework for Energy Buildings. IEEE Transactions on Smart Grid, 2020, 11, 3817-3826.	6.2	106
57	Distributed Day-Ahead Peer-to-Peer Trading for Multi-Microgrid Systems in Active Distribution Networks. IEEE Access, 2020, 8, 66961-66976.	2.6	38
58	Transactive Energy Market for Energy Management in Microgrids: The Monash Microgrid Case Study. Energies, 2020, 13, 2010.	1.6	53
59	Investigating the impact of P2P trading on power losses in grid-connected networks with prosumers. Applied Energy, 2020, 263, 114687.	5.1	61
60	Decentralized Local Energy Trading in Microgrids With Voltage Management. IEEE Transactions on Industrial Informatics, 2021, 17, 1111-1121.	7.2	41
61	Blockchain for Cybersecurity in Smart Grid: A Comprehensive Survey. IEEE Transactions on Industrial Informatics, 2021, 17, 3-19.	7.2	109
62	Peer-to-Peer Multienergy and Communication Resource Trading for Interconnected Microgrids. IEEE Transactions on Industrial Informatics, 2021, 17, 2522-2533.	7.2	74
63	Peer-to-Peer Energy Sharing With Social Attributes: A Stochastic Leader–Follower Game Approach. IEEE Transactions on Industrial Informatics, 2021, 17, 2545-2556.	7.2	40
64	A Framework for Joint Scheduling and Power Trading of Prosumers in Transactive Markets. IEEE Transactions on Sustainable Energy, 2021, 12, 955-965.	5.9	31
65	Trilayer Stackelberg Game Approach for Robustly Power Management in Community Grids. IEEE Transactions on Industrial Informatics, 2021, 17, 4073-4083.	7.2	18
66	Realistic energy commitments in peer-to-peer transactive market with risk adjusted prosumer welfare maximization. International Journal of Electrical Power and Energy Systems, 2021, 124, 106377.	3.3	28
67	Toward sustainable microgrids with blockchain technology-based peer-to-peer energy trading mechanism: A fuzzy meta-heuristic approach. Renewable and Sustainable Energy Reviews, 2021, 136, 110452.	8.2	48
68	Peer-to-peer energy trading: A review of the literature. Applied Energy, 2021, 283, 116268.	5.1	189
69	Lightweight blockchain framework for location-aware peer-to-peer energy trading. International Journal of Electrical Power and Energy Systems, 2021, 127, 106610.	3.3	57
70	Peer-to-peer energy systems for connected communities: A review of recent advances and emerging challenges. Applied Energy, 2021, 282, 116131.	5.1	265
71	Game-theoretic robust optimization for a small-scale integrated power system. Electric Power Systems Research, 2021, 192, 106852.	2.1	5
72	Reducing residential energy consumption through a marketized behavioral intervention: The approach of Household Energy Saving Option (HESO). Energy and Buildings, 2021, 232, 110621.	3.1	27

#	Article	IF	CITATIONS
73	A Community Sharing Market With PV and Energy Storage: An Adaptive Bidding-Based Double-Side Auction Mechanism. IEEE Transactions on Smart Grid, 2021, 12, 2450-2461.	6.2	37
74	A Hierarchical Peer-to-Peer Energy Transaction Model Considering Prosumer's Green Energy Preference. International Journal of Control, Automation and Systems, 2021, 19, 311-317.	1.6	4
75	Energy Management of Grid Interconnected Multi-Microgrids Based on P2P Energy Exchange: A Data Driven Approach. IEEE Transactions on Power Systems, 2021, 36, 1546-1562.	4.6	45
76	A Blockchain-Enabled Multi-Settlement Quasi-Ideal Peer-to-Peer Trading Framework. IEEE Transactions on Smart Grid, 2021, 12, 885-896.	6.2	71
77	Chance-Constrained Peer-to-Peer Joint Energy and Reserve Market Considering Renewable Generation Uncertainty. IEEE Transactions on Smart Grid, 2021, 12, 798-809.	6.2	79
78	A Two-Tier Distributed Market Clearing Scheme for Peer-to-Peer Energy Sharing in Smart Grid. IEEE Transactions on Industrial Informatics, 2022, 18, 66-76.	7.2	21
79	Optimal Demand Response Incorporating Distribution LMP With PV Generation Uncertainty. IEEE Transactions on Power Systems, 2022, 37, 982-995.	4.6	15
80	A Bidding-Based Peer-to-Peer Energy Transaction Model Considering the Green Energy Preference in Virtual Energy Community. IEEE Access, 2021, 9, 87410-87419.	2.6	21
81	Optimal Subsidy Policy for Green Energy Trading Among Three Parties: A Game Theoretical Approach. IEEE Access, 2021, 9, 86321-86330.	2.6	2
82	Peer-to-Peer Energy Trading Enabled Optimal Decentralized Operation of Smart Distribution Grids. IEEE Transactions on Smart Grid, 2022, 13, 654-666.	6.2	33
83	A Data-Driven Approach for Blockchain-Based Smart Grid System. IEEE Access, 2021, 9, 70061-70070.	2.6	9
84	Electricity Cost-Sharing in Energy Communities Under Dynamic Pricing and Uncertainty. IEEE Access, 2021, 9, 30225-30241.	2.6	40
85	FogChain: A Blockchain-Based Peer-to-Peer Solar Power Trading System Powered by Fog AI. IEEE Internet of Things Journal, 2022, 9, 5200-5215.	5.5	11
86	A Container-Driven Service Architecture to Minimize the Upgrading Requirements of User-Side Smart Meters in Distribution Grids. IEEE Transactions on Industrial Informatics, 2022, 18, 719-728.	7.2	7
87	Peer-to-peer energy platforms. , 2021, , 91-105.		0
88	Stochastic Cooperative Bidding Strategy for Multiple Microgrids With Peer-to-Peer Energy Trading. IEEE Transactions on Industrial Informatics, 2022, 18, 1447-1457.	7.2	39
89	Microgrids and Local Markets. Power Systems, 2021, , 151-177.	0.3	1
90	Control and optimisation of networked microgrids: A review. IET Renewable Power Generation, 2021, 15, 1133-1148.	1.7	34

		CITATION R	EPORT	
#	Article		IF	CITATIONS
91	Game-Based Trust in Complex Networks: Past, Present, and Future. Complexity, 2021,	2021, 1-7.	0.9	9
92	A pool-based energy market model for microgrids characterized by scheduled blackout Energy, 2021, 283, 116358.	rs. Applied	5.1	7
93	Peer-to-Peer Bundled Energy Trading with Game Theoretic Approach. , 2021, , .			1
94	Peer-to-peer trading-based efficient flexibility securing mechanism to support distribut stability. Applied Energy, 2021, 285, 116403.	ion system	5.1	18
95	Closest Energy Matching: Improving peerâ€toâ€peer energy trading auctions for EV ov Grid, 2021, 4, 445-460.	wners. IET Smart	1.5	6
96	Efficient Allocation of Harvested Energy at the Edge by Building a Tangible Micro-Gridâ IEEE Transactions on Green Communications and Networking, 2021, 5, 94-105.	€"The Texas Case.	3.5	5
97	Multi-level trading community formation and hybrid trading network construction in lo market. Applied Energy, 2021, 285, 116399.	ocal energy	5.1	13
98	Photovoltaics Enabling Sustainable Energy Communities: Technological Drivers and En Markets. Energies, 2021, 14, 1862.	nerging	1.6	12
99	A Community-Based Energy Market Design Using Decentralized Decision-Making Unde Transactions on Smart Grid, 2021, 12, 1782-1793.	er Uncertainty. IEEE	6.2	62
100	Decentralized Peer-to-Peer Energy Trading Model for Networked Microgrids. , 2021, , .			6
101	A Novel Energy Sharing Framework for a Residential Community. , 2021, , .			0
102	Distributed optimization of energy profiles to improve photovoltaic self-consumption energy community. Simulation Modelling Practice and Theory, 2021, 108, 102242.	on a local	2.2	26
103	Electrical-distance driven peer-to-peer energy trading in a low-voltage network. Applied 287, 116598.	1 Energy, 2021,	5.1	53
104	Coordinated P2P electricity trading model with aggregated alliance and reserve purcha hedging the risk of deviation penalty. Energy Reports, 2021, 7, 426-435.	asing for	2.5	7
105	Arbitrage Strategy of Renewable-Based Microgrids via Peer-to-Peer Energy-Trading. IEE on Sustainable Energy, 2021, 12, 1372-1382.	E Transactions	5.9	28
106	Blockchain Based Transaction System with Fungible and Non-Fungible Tokens for a Co Energy Infrastructure. Sensors, 2021, 21, 3822.	mmunity-Based	2.1	52
107	A Novel Energy Trading Framework Using Adapted Blockchain Technology. IEEE Transa Grid, 2021, 12, 2165-2175.	ictions on Smart	6.2	48
108	Strategic Prosumers-Based Peer-to-Peer Energy Market Design for Community Microgr Transactions on Industry Applications, 2021, 57, 2048-2057.	ids. IEEE	3.3	28

ARTICLE IF CITATIONS # Performance evaluation of Hyperledger Fabric-enabled framework for pervasive peer-to-peer energy 109 4.9 22 trading in smart Cyberâ€"Physical Systems. Future Generation Computer Systems, 2021, 118, 392-416. Blockchain-Empowered Socially Optimal Transactive Energy System: Framework and Implementation. IEEE Transactions on Industrial Informatics, 2021, 17, 3122-3132. 7.2 39 A New Method for Peer Matching and Negotiation of Prosumers in Peer-to-Peer Energy Markets. IEEE 111 6.2 54 Transactions on Smart Grid, 2021, 12, 2472-2483. Distributed photovoltaics with peer-to-peer electricity trading. Energy and Built Environment, 2022, 3, 2.9 424-432. Approaching Prosumer Social Optimum via Energy Sharing With Proof of Convergence. IEEE 113 6.2 21 Transactions on Smart Grid, 2021, 12, 2484-2495. A twoâ€stage multi microgrids p2p energy trading with motivational gameâ€theory: A case study in malaysia. IET Renewable Power Generation, 2021, 15, 2615-2628. 1.7 Optimal Operation of the Campus Microgrid considering the Resource Uncertainty and Demand 115 0.6 10 Response Schemes. Mathematical Problems in Engineering, 2021, 2021, 1-18. Peer-to-peer energy sharing with dynamic network structures. Applied Energy, 2021, 291, 116831. 5.1 116 Effective community energy management through transactive energy marketplace. Computers and Electrical Engineering, 2021, 93, 107312. 117 3.0 10 Increasing photovoltaic self-consumption with game theory and blockchain. EAI Endorsed 118 Transactions on Energy Web, 2021, 8, 166770 A multi-market nanogrid P2P energy and ancillary service trading paradigm: Mechanisms and 119 5.124 implementations. Applied Energy, 2021, 293, 116938. A novel communication efficient peer-to-peer energy trading scheme for enhanced privacy in 5.1 microgrids. Applied Energy, 2021, 296, 117075. Evaluating the interdependency between peer-to-peer networks and energy storages: A 121 6.6 17 techno-economic proof for prosumers. Advances in Applied Energy, 2021, 3, 100059. Two-stage mechanism design for energy trading of strategic agents in energy communities. Applied Energy, 2021, 295, 117036. 5.1 An optimal scheduling strategy for peer-to-peer trading in interconnected microgrids based on RO 123 70 5.1and Nash bargaining. Applied Energy, 2021, 295, 117024. Distributed coordinative transaction of a community integrated energy system based on a tri-level 124 5.1 game model. Applied Energy, 2021, 295, 116972. Peer-to-peer energy sharing with battery storage: Energy pawn in the smart grid. Applied Energy, 2021, 125 5.142 297, 117129. What Do Prosumer Marginal Utility Functions Look Like? Derivation and Analysis. IEEE Transactions on Power Systems, 2021, 36, 4322-4330.

#	Article	IF	CITATIONS
127	Joint energy market design for local integrated energy system service procurement considering demand flexibility. Applied Energy, 2021, 297, 117060.	5.1	24
128	An iterative uniform-price auction mechanism for peer-to-peer energy trading in a community microgrid. Applied Energy, 2021, 298, 117088.	5.1	46
129	Aggregator free ancillary services <scp>eâ€market</scp> for electric vehicles using smart contracts. International Transactions on Electrical Energy Systems, 2021, 31, e13096.	1.2	2
130	An integrated smart home energy management model based on a pyramid taxonomy for residential houses with photovoltaic-battery systems. Applied Energy, 2021, 298, 117159.	5.1	26
131	Distributed Generalized Nash Equilibrium Seeking for Energy Sharing Games in Prosumers. IEEE Transactions on Power Systems, 2021, 36, 3973-3986.	4.6	38
132	A Decade of Transitioning Malaysia toward a High-Solar PV Energy Penetration Nation. Sustainability, 2021, 13, 9959.	1.6	9
133	Coalition Graph Game-Based P2P Energy Trading With Local Voltage Management. IEEE Transactions on Smart Grid, 2021, 12, 4389-4402.	6.2	55
134	A Proof-of-Stake public blockchain based pricing scheme for peer-to-peer energy trading. Applied Energy, 2021, 298, 117154.	5.1	40
135	Multi-Round Double Auction-Enabled Peer-to-Peer Energy Exchange in Active Distribution Networks. IEEE Transactions on Smart Grid, 2021, 12, 4403-4414.	6.2	49
136	Peer-to-peer energy trades based on multi-objective optimization. International Journal of Electrical Power and Energy Systems, 2021, 131, 107017.	3.3	19
137	Incentivizing distributed energy trading among prosumers: A general Nash bargaining approach. International Journal of Electrical Power and Energy Systems, 2021, 131, 107100.	3.3	23
138	Fully decentralized peer-to-peer energy sharing framework for smart buildings with local battery system and aggregated electric vehicles. Applied Energy, 2021, 299, 117243.	5.1	65
139	Demand response-based peer-to-peer energy trading among the prosumers and consumers. Energy Reports, 2021, 7, 7825-7834.	2.5	34
140	Bidding in local electricity markets with cascading wholesale market integration. International Journal of Electrical Power and Energy Systems, 2021, 131, 107045.	3.3	26
141	Optimal energy management of multi-microgrids connected to distribution system based on deep reinforcement learning. International Journal of Electrical Power and Energy Systems, 2021, 131, 107048.	3.3	38
142	Roadmap on community-based microgrids deployment: An extensive review. Energy Reports, 2021, 7, 2883-2898.	2.5	34
143	Risk-averse energy trading among peer-to-peer based virtual power plants: A stochastic game approach. International Journal of Electrical Power and Energy Systems, 2021, 132, 107145.	3.3	25
144	Benefits of small-size communities for continuous cost-optimization in peer-to-peer energy sharing. Applied Energy, 2021, 301, 117402.	5.1	21

#	Article	IF	CITATIONS
145	Multi-agent Deep Reinforcement Learning for Distributed Energy Management and Strategy Optimization of Microgrid Market. Sustainable Cities and Society, 2021, 74, 103163.	5.1	38
146	Blockchain based decentralized local energy flexibility market. Energy Reports, 2021, 7, 5269-5288.	2.5	47
147	Optimal bidding of profit-seeking virtual associations of smart prosumers considering peer to peer energy sharing strategy. International Journal of Electrical Power and Energy Systems, 2021, 132, 107175.	3.3	5
148	Peer-to-Peer energy trading strategy for energy balance service provider (EBSP) considering market elasticity in community microgrid. Applied Energy, 2021, 303, 117596.	5.1	31
149	Modelling and analysis of a two-level incentive mechanism based peer-to-peer energy sharing community. International Journal of Electrical Power and Energy Systems, 2021, 133, 107202.	3.3	18
150	Energy trading among electric vehicles based on Stackelberg approaches: A review. Sustainable Cities and Society, 2021, 75, 103199.	5.1	18
151	A peer-to-peer energy trading for a clustered microgrid – Game theoretical approach. International Journal of Electrical Power and Energy Systems, 2021, 133, 107307.	3.3	27
152	A cooperative Stackelberg game based energy management considering price discrimination and risk assessment. International Journal of Electrical Power and Energy Systems, 2022, 135, 107461.	3.3	35
153	Peer-to-Peer Energy Trading in Smart Grid Through Blockchain: A Double Auction-Based Game Theoretic Approach. IEEE Access, 2021, 9, 49206-49218.	2.6	69
154	Research on the coordinated optimization operation method of Park Comprehensive Energy System Based on master-slave game. E3S Web of Conferences, 2021, 245, 01044.	0.2	1
155	Power-Flow-Based Secondary Control for Autonomous Droop-Controlled AC Nanogrids With Peer-to-Peer Energy Trading. IEEE Access, 2021, 9, 22339-22350.	2.6	18
156	Operator-as-a-Consumer: A Novel Energy Storage Sharing Approach Under Demand Charge. IEEE Transactions on Cybernetics, 2023, 53, 941-953.	6.2	4
157	An electric power trading framework for smart residential community in smart cities. IET Smart Cities, 2019, 1, 40-51.	1.6	18
158	Green energy platform economics – understanding platformization and sustainabilization in the energy sector. International Journal of Energy Sector Management, 2021, 15, 456-475.	1.2	9
159	Energy Peer-to-Peer Trading Model and Optimization Method for the Prosumers Based on Smart Community. , 2020, , .		1
160	Peer-to-Peer Energy Trading in Smart Grids Considering Network Utilization Fees. , 2020, , .		3
161	Small-Scale Communities Are Sufficient for Cost- and Data-Efficient Peer-to-Peer Energy Sharing. , 2020, , .		4
162	A New Vision on the Prosumers Energy Surplus Trading Considering Smart Peer-to-Peer Contracts. Mathematics, 2020, 8, 235.	1.1	20

#	Article	IF	Citations
163	Prosumer Energy Management for Optimal Utilization of Bid Fulfillment With EV Uncertainty Modeling. IEEE Transactions on Industry Applications, 2022, 58, 599-611.	3.3	9
164	Dynamic Price-Enabled Strategic Energy Management Scheme in Cloud-Enabled Smart Grid. IEEE Transactions on Cloud Computing, 2022, 10, 111-122.	3.1	6
165	Optimal Energy Trading With Demand Responses in Cloud Computing Enabled Virtual Power Plant in Smart Grids. IEEE Transactions on Cloud Computing, 2022, 10, 17-30.	3.1	16
166	Incentivizing Peer-to-Peer Energy Trading in Microgrids. , 2021, , .		Ο
167	A multiâ€objective optimization for planning of networked microgrid using a game theory for peerâ€ŧoâ€peer energy trading scheme. IET Generation, Transmission and Distribution, 2021, 15, 3423-3434.	1.4	17
168	Towards improved prosumer participation: Electricity trading in local markets. Energy, 2022, 239, 122445.	4.5	15
169	Roles of retailers in the peer-to-peer electricity market: A single retailer perspective. IScience, 2021, 24, 103278.	1.9	12
170	A Power Control Method for Hybrid Electrical Accommodation Systems. Energies, 2021, 14, 6681.	1.6	0
171	SynergyGrids: blockchain-supported distributed microgrid energy trading. Peer-to-Peer Networking and Applications, 2022, 15, 884-900.	2.6	9
173	Distributed Day-ahead Peer-to-Peer Trade for Multimicrogrid Integration of Smart Buildings in Active Distribution Networks. , 2020, , .		1
174	Distributed Framework for P2P Energy Sharing among Building Prosumers using Stackelberg Game. , 2020, , .		4
175	Distributed Peer-to-Peer Day-ahead Trading under Multi-microgrid Congestion Management in Active Distribution Networks. , 2020, , .		0
176	Energy Scheduling for Multi-Energy Systems via Deep Reinforcement Learning. , 2020, , .		6
177	Distributed Solution Approach for a Stackelberg Pricing Game of Aggregated Demand Response. , 2020, , .		4
178	Autonomous and Privacy-preserving Energy Trading Based on Redactable Blockchain in Smart Grid. , 2020, , .		12
179	Peerâ€ŧoâ€peer load allocation using potential field concept for optimal operation of standalone microgrids. IET Generation, Transmission and Distribution, 2020, 14, 6061-6070.	1.4	4
180	A Dynamic Energy Trading and Management Algorithm for the Elastic End-User in Smart Grids. , 2020, , .		3
181	Pricing and Energy Trading in Peer-to-Peer Zero Marginal-Cost Microgrids. IEEE Transactions on Smart Grid, 2022, 13, 702-714.	6.2	7

#	Article	IF	Citations
182	Parametric optimization-based peer-to-peer energy trading among commercial buildings considering multiple energy conversion. Applied Energy, 2022, 306, 118040.	5.1	20
183	Becoming a building suitable for participation in peer-to-peer energy trading. Sustainable Cities and Society, 2022, 76, 103436.	5.1	11
184	Contribution-based energy-trading mechanism: A multi-level energy management approach. International Journal of Electrical Power and Energy Systems, 2022, 136, 107668.	3.3	1
185	Bidding in Local Energy Markets Considering Uncertainty from Renewables and Demand. , 2021, , .		3
186	An optimal scheduling strategy for microgrid considering the <scp>CDRS</scp> and <scp>CECS</scp> of prosumer. International Transactions on Electrical Energy Systems, 2021, 31, e13191.	1.2	0
187	Distributed optimization of power profiles on a local energy community using blockchain. , 2020, , .		0
188	Peer-to-Peer Electricity Market Based on Local Supervision. IEEE Access, 2021, 9, 156647-156662.	2.6	3
189	Prosumers as active market participants: A systematic review of evolution of opportunities, models and challenges. Renewable and Sustainable Energy Reviews, 2022, 154, 111859.	8.2	55
190	Market Mechanisms for Local Electricity Markets: A review of models, solution concepts and algorithmic techniques. Renewable and Sustainable Energy Reviews, 2022, 156, 111890.	8.2	44
191	Peer-to-Peer energy trading considering the output uncertainty of distributed energy resources. Energy Reports, 2022, 8, 567-574.	2.5	12
192	Electric Vehicle Charging Data Management System Based on RFID and Socket Communication. , 2021, , .		1
193	Framework of transactive energy market pool for community energy trading and demand response management using an auction-theoretic approach. International Journal of Electrical Power and Energy Systems, 2022, 137, 107719.	3.3	9
194	A peer-to-peer market for utility exchanges in Eco-Industrial Parks using automated negotiations. Expert Systems With Applications, 2022, 191, 116211.	4.4	6
195	Towards inclusive community-based energy markets: A multiagent framework. Applied Energy, 2022, 307, 118115.	5.1	6
196	A Systematic Literature Review of Peer-to-Peer, Community Self-Consumption, and Transactive Energy Market Models. SSRN Electronic Journal, 0, , .	0.4	4
197	A Novel Scheme for P2P Energy Trading Considering Energy Congestion in Microgrid. IEEE Access, 2021, 9, 147649-147664.	2.6	8
198	PETS: P2P Energy Trading Scheduling Scheme for Electric Vehicles in Smart Grid Systems. IEEE Transactions on Intelligent Transportation Systems, 2022, 23, 14361-14374.	4.7	10
199	Peer-to-Peer Electricity Trading of Interconnected Flexible Distribution Networks Based on Distributed Ledger. IEEE Transactions on Industrial Informatics, 2022, 18, 5949-5960.	7.2	14

#	Article	IF	CITATIONS
200	Optimal Prosumers' Peer-to-Peer Energy Trading and Scheduling in Distribution Networks. IEEE Transactions on Industry Applications, 2022, 58, 1466-1477.	3.3	20
201	Practical Insights to Design a Blockchain-Based Energy Trading Platform. IEEE Access, 2021, 9, 154827-154844.	2.6	10
202	Realizing the Transactive Energy Future with Local Energy Market: an Overview. Current Sustainable/Renewable Energy Reports, 2022, 9, 1-14.	1.2	4
203	A peer-to-peer energy trading market embedded with residential shared energy storage units. Applied Energy, 2022, 308, 118400.	5.1	59
204	Peer-to-peer energy trading among smart homes considering responsive demand and interactive visual interface for monitoring. Sustainable Energy, Grids and Networks, 2022, 29, 100584.	2.3	7
205	A priority-based approach for peer-to-peer energy trading using cooperative game theory in local energy community. International Journal of Electrical Power and Energy Systems, 2022, 137, 107865.	3.3	43
206	Optimal Sizing of Networked Microgrid using Game Theory considering the Peer-to-Peer Energy Trading. , 2020, , .		8
207	Determining Prosumer Energy Generation Performance as Basis for Peer-to-Peer Energy Trading Decisions using Monte Carlo Simulation. , 2020, , .		1
208	Virtual Power Plant Trading Strategy Based on Block-chain to Satisfy Clean Energy Partiality. , 2020, , .		2
209	A Stochastic Transactive Energy Model for Optimal Dispatch of Integrated Low-Carbon Energy Hubs in the Incorporated Electricity and Gas Networks. , 2020, , .		5
210	Deep Reinforcement Learning and Blockchain for Peer-to-Peer Energy Trading among Microgrids. , 2020, , .		6
211	Construction method of virtual power plant based on optimized aggregation of prosumer resources. , 2020, , .		2
212	Analysis of Decentralized Energy Transactions Based on Smart Contract. , 2020, , .		0
213	An Energy Sharing Game with Generalized Demand Bidding: Model and Properties. , 2021, , .		0
214	Peer-to-Peer Energy Cooperation in Building Community over A Lossy Network. , 2021, , .		0
215	An Optimal Market Clearing Algorithm for Peer-to-Peer Energy Trading in Smart Grid. , 2021, ,		1
216	Scheduling for Prosumer Microgrid with Considering Price Based Demand Response. Journal of Physics: Conference Series, 2021, 2117, 012027.	0.3	1
217	Community-Based Microgrids: Literature Review and Pathways to Decarbonise the Local Electricity Network. Energies, 2022, 15, 918.	1.6	26

#	Article	IF	CITATIONS
218	Peer-to-Peer Energy Trading With Energy Path Conflict Management in Energy Local Area Network. IEEE Transactions on Smart Grid, 2022, 13, 2269-2278.	6.2	13
219	FederatedGrids: Federated Learning and Blockchain-Assisted P2P Energy Sharing. IEEE Transactions on Green Communications and Networking, 2022, 6, 424-436.	3.5	34
220	Hierarchical Reinforcement Learning for Blockchain-Assisted Software Defined Industrial Energy Market. IEEE Transactions on Industrial Informatics, 2022, 18, 6100-6108.	7.2	9
221	Blockchain-Based Secure Energy Trading With Mutual Verifiable Fairness in a Smart Community. IEEE Transactions on Industrial Informatics, 2022, 18, 7412-7422.	7.2	15
222	Dynamic participation in local energy communities with peer-to-peer trading. Open Research Europe, 0, 2, 5.	2.0	1
223	Modelling and Simulation Approaches for Local Energy Community Integrated Distribution Networks. IEEE Access, 2022, 10, 3775-3789.	2.6	12
224	Peak-valley tariffs and solar prosumers: Why renewable energy policies should target local electricity markets. SSRN Electronic Journal, 0, , .	0.4	1
225	Drivers and Challenges of Peer-to-Peer Energy Trading Development in Thailand. Energies, 2022, 15, 1229.	1.6	21
226	Improved Particle Swarm Algorithm Using Rubik's Cube Topology for Bilevel Building Energy Transaction. Journal of Energy Resources Technology, Transactions of the ASME, 0, , 1-10.	1.4	0
227	Blockchain-based self-consumption optimisation and energy trading in renewable energy communities. CIRED - Open Access Proceedings Journal, 2020, 2020, 371-374.	0.1	3
228	Optimal Charge/Discharge Scheduling for Batteries in Energy Router-Based Microgrids of Prosumers via Peer-to-Peer Trading. IEEE Transactions on Sustainable Energy, 2022, 13, 1315-1328.	5.9	26
229	Hierarchical Blockchain Design for Distributed Control and Energy Trading Within Microgrids. IEEE Transactions on Smart Grid, 2022, 13, 3133-3144.	6.2	30
230	Economic Planning and Comparative Analysis of Market-Driven Multi-Microgrid System for Peer-to-Peer Energy Trading. IEEE Transactions on Industry Applications, 2022, 58, 4025-4036.	3.3	20
231	P2P Energy Trading Model for a Local Electricity Community Considering Technical Constraints. Communications in Computer and Information Science, 2022, , 285-296.	0.4	0
232	Predictive Optimization Based Energy Cost Minimization and Energy Sharing Mechanism for Peer-to-Peer Nanogrid Network. IEEE Access, 2022, 10, 23593-23604.	2.6	19
233	The Effect of Prosumer Duality on Power Market: Evidence From the Cournot Model. IEEE Transactions on Power Systems, 2023, 38, 692-701.	4.6	3
234	A Novel Multi-Hierarchical Bidding Strategy for Peer-to-Peer Energy Trading Among Communities. IEEE Access, 2022, 10, 23798-23807.	2.6	10
235	Incorporating Forecasting and Peer-to-Peer Negotiation Frameworks Into a Distributed Model-Predictive Control Approach for Meshed Electric Networks. IEEE Transactions on Control of Network Systems, 2022, 9, 1556-1568.	2.4	3

#	Article	IF	CITATIONS
236	Community Energy Markets with Battery Energy Storage Systems: A General Modeling with Applications. SSRN Electronic Journal, 0, , .	0.4	4
237	Game Theory Modeling of Energy Systems. , 2022, , 1-19.		0
238	Blockchain in energy systems: values, opportunities, and limitations. Frontiers in Energy, 2022, 16, 9-18.	1.2	6
239	Review of energy sharing: Business models, mechanisms, and prospects. IET Renewable Power Generation, 2022, 16, 2468-2480.	1.7	13
240	Recent Trends, Challenges, and Future Aspects of P2P Energy Trading Platforms in Electrical-Based Networks Considering Blockchain Technology: A Roadmap Toward Environmental Sustainability. Frontiers in Energy Research, 2022, 10, .	1.2	21
241	A novel transactive energy trading model for modernizing energy hubs in the coupled heat and electricity network. Journal of Cleaner Production, 2022, 344, 131024.	4.6	26
242	Distributed Network Control by Multi-agent System. IEEJ Transactions on Power and Energy, 2022, 142, 210-219.	0.1	0
243	Towards collective energy Community: Potential roles of microgrid and blockchain to go beyond P2P energy trading. Applied Energy, 2022, 314, 119003.	5.1	52
244	Applications of blockchain and artificial intelligence technologies for enabling prosumers in smart grids: A review. Renewable and Sustainable Energy Reviews, 2022, 161, 112308.	8.2	47
245	Blockchain Based Solar Energy Trading. , 2021, , .		Ο
246	A Multi-Regional Coordinated Peer-to-Peer Energy Trading Market Mechanism in Distribution Networks. , 2021, , .		0
247	Multi-attribute based prosumers prioritization for energy trading in Smart Grid. , 2021, , .		3
248	P2P Energy Trading in Local Energy Market considering Network Fees and Losses. , 2021, , .		1
249	Truthful Double-auction Mechanisms for Peer-to-peer Energy Trading in a Local Market. , 2021, , .		1
250	SPETS: Secure and Privacy-Preserving Energy Trading System in Microgrid. Sensors, 2021, 21, 8121.	2.1	3
251	Peer-to-Peer Energy Trading in Smart Energy Communities: A Lyapunov-Based Energy Control and Trading System. IEEE Access, 2022, 10, 42916-42932.	2.6	18
252	Agent-based peer-to-peer energy trading between prosumers and consumers with cost-benefit business models. , 2022, , 273-289.		1
253	Peer-to-peer, community self-consumption, and transactive energy: A systematic literature review of local energy market models. Renewable and Sustainable Energy Reviews, 2022, 162, 112403.	8.2	74

#	Article	IF	CITATIONS
255	Distributed Auction-Based Incentive Mechanism for Energy Trading Between Electric Vehicles and Mobile Charging Stations. IEEE Access, 2022, 10, 56331-56347.	2.6	12
256	Distributed Energy Trading and Scheduling Among Microgrids via Multiagent Reinforcement Learning. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34, 10638-10652.	7.2	5
257	Peer-to-peer management of energy systems. , 2022, , 369-389.		0
258	An Adaptive Algorithm for Selling <scp>Onâ€Site</scp> Renewable Energy of Data Centers in Two Transaction Modes. IEEJ Transactions on Electrical and Electronic Engineering, 0, , .	0.8	0
259	Rolling horizon optimisation based peer-to-peer energy trading under real-time variations in demand and generation. Energy Systems, 2023, 14, 541-565.	1.8	2
260	Peak-valley tariffs and solar prosumers: Why renewable energy policies should target local electricity markets. Energy Policy, 2022, 165, 112984.	4.2	20
261	Integrated prosumers–DSO approach applied in peer-to-peer energy and reserve tradings considering network constraints. Applied Energy, 2022, 317, 119125.	5.1	17
262	Decentralized Active Power Management in Multi-Agent Distribution Systems Considering Congestion Issue. IEEE Transactions on Smart Grid, 2022, 13, 3582-3593.	6.2	11
263	Promoting the Sustainability of an Energy Building Community by Peer-to-Peer Energy Sharing. Canadian Journal of Electrical and Computer Engineering, 2022, 45, 182-190.	1.5	0
264	Coordination of resources at the edge of the electricity grid: Systematic review and taxonomy. Applied Energy, 2022, 318, 119188.	5.1	15
265	Reviewing global peer-to-peer distributed renewable energy trading projects. Energy Research and Social Science, 2022, 89, 102655.	3.0	17
266	Consumer-centric electricity markets: A comprehensive review on user preferences and key performance indicators. Electric Power Systems Research, 2022, 210, 108088.	2.1	15
267	An Online Scheduling Algorithm for a Community Energy Storage System. IEEE Transactions on Smart Grid, 2022, 13, 4651-4664.	6.2	2
268	A new three-part tariff pricing scheme for the electricity microgrid considering consumer regret. Energy, 2022, , 124387.	4.5	5
269	Optimal trading strategies for multi-energy microgrid cluster considering demand response under different trading modes: A comparison study. Energy, 2022, 254, 124448.	4.5	22
270	Privacy preserving renewable energy trading system for residential communities. International Journal of Electrical Power and Energy Systems, 2022, 142, 108367.	3.3	4
271	A Hierarchical Deep Reinforcement Learning-Based Community Energy Trading Scheme for a Neighborhood of Smart Households. IEEE Transactions on Smart Grid, 2022, 13, 4747-4758.	6.2	14
272	A Survey on Information Communication Technologies in Modern Demand-Side Management for Smart Grids: Challenges, Solutions, and Opportunities. IEEE Engineering Management Review, 2023, 51, 76-107.	1.0	14

#	Article	IF	CITATIONS
273	Multi P2P Energy Trading Market, Integrating Energy Storage Systems and Used for Optimal Scheduling. IEEE Access, 2022, 10, 64302-64315.	2.6	8
274	A Byzantine-Resilient Distributed Peer-to-Peer Energy Management Approach. IEEE Transactions on Smart Grid, 2023, 14, 623-634.	6.2	2
275	A Review of Dynamic Pricing and Peer-to-Peer Energy Trading in Smart Cities with Emphasize on Electric Vehicles. , 2022, , .		1
276	Optimisation of Buyer and Seller Preferences for Peer-to-Peer Energy Trading in a Microgrid. Energies, 2022, 15, 4212.	1.6	4
277	Towards transactive energy: An analysis of informationâ€related practical issues. Energy Conversion and Economics, 2022, 3, 112-121.	1.9	11
278	Editable and Verifiable Anonymous Authentication Incorporating Blockchain in the Internet of Energy. Electronics (Switzerland), 2022, 11, 1992.	1.8	0
279	Optimal energy management of cooperative energy communities considering flexible demand, storage and vehicle-to-grid under uncertainties. Sustainable Cities and Society, 2022, 84, 104019.	5.1	45
280	Energy Cooperation for Wind Farm and Hydrogen Refueling Stations: A RO-Based and Nash-Harsanyi Bargaining Solution. IEEE Transactions on Industry Applications, 2022, 58, 6768-6779.	3.3	8
281	Transactive energy management for microgrids considering technoâ€economic perspectives of utility – a review. International Journal of Energy Research, 2022, 46, 16127-16149.	2.2	7
282	Hybrid energy sharing considering network cost for prosumers in integrated energy systems. Applied Energy, 2022, 323, 119627.	5.1	12
283	Transactive energy for low voltage residential networks: A review. Applied Energy, 2022, 323, 119556.	5.1	13
284	General Nash bargaining based direct P2P energy trading among prosumers under multiple uncertainties. International Journal of Electrical Power and Energy Systems, 2022, 143, 108403.	3.3	23
285	The competition and equilibrium in power markets under decarbonization and decentralization. , 2022, 1, 188-203.		7
286	P2P as a Smarter Way of Energy Trading: A Game Theoretic Case Study for Multi-microgrids. , 2022, , .		6
287	Optimal scheduling of power systems considering carbon markets: Based on blockchain theory and multi-objective particle swarm optimization algorithm. Frontiers in Energy Research, 0, 10, .	1.2	1
288	A coalitional game theoretic energy transaction algorithm for networked microgrids. International Journal of Electrical Power and Energy Systems, 2023, 144, 108494.	3.3	7
289	Peer-to-peer kilowatt and negawatt trading: A review of challenges and recent advances in distribution networks. Renewable and Sustainable Energy Reviews, 2022, 169, 112908.	8.2	31
290	Decentralized peer-to-peer energy trading strategy in energy blockchain environment: A game-theoretic approach. Applied Energy, 2022, 325, 119852.	5.1	27

#	Article	IF	CITATIONS
291	Blockchain-based systems for modern energy grid: a detailed view on significant applications of blockchain for the smart grid. , 2023, , 203-216.		0
292	Peer-to-Peer electricity trading of interconnected flexible distribution networks based on Non-Cooperative games. International Journal of Electrical Power and Energy Systems, 2023, 145, 108648.	3.3	9
293	A Secure Intra-Regional-Inter-Regional Peer-to-Peer Electricity Trading System for Electric Vehicles. IEEE Transactions on Vehicular Technology, 2022, 71, 12576-12587.	3.9	5
294	Peer-to-Peer Energy Trading for Residential Prosumers With Photovoltaic and Battery Storage Systems. IEEE Systems Journal, 2023, 17, 154-163.	2.9	11
295	A Novel Distributed Paradigm for Energy Scheduling of Islanded Multiagent Microgrids. IEEE Access, 2022, 10, 83636-83649.	2.6	5
296	A Smart Power System Operation Using Sympathetic Impact of IGDT and Smart Demand Response With the High Penetration of RES. IEEE Access, 2022, 10, 102355-102372.	2.6	1
297	Design and Field Implementation of a Hierarchical Control Solution for Residential Energy Storage Systems. IEEE Transactions on Smart Grid, 2023, 14, 1083-1092.	6.2	1
298	Impact of Distributed Energy Resources in Smart Homes and Community-Based Electricity Market. IEEE Transactions on Industry Applications, 2023, 59, 59-69.	3.3	10
299	A Robust Decentralized Peer-to-Peer Energy Trading in Community of Flexible Microgrids. IEEE Systems Journal, 2023, 17, 640-651.	2.9	14
300	An Effective Pricing Mechanism for Electricity Trading Considering Customer Preference and Reserved Price in Direct P2P Electricity Market Under Uncertainty in Grid Supply. IEEE Access, 2022, 10, 96197-96211.	2.6	5
301	Pricing Strategy for Household Energy-Saving Option (Heso): A Novel Option-Based Intervention for Promoting Household Energy Efficiency. SSRN Electronic Journal, 0, , .	0.4	0
302	A Three-Stage Multi-Energy Trading Strategy Based on P2P Trading Mode. IEEE Transactions on Sustainable Energy, 2023, 14, 233-241.	5.9	11
303	Peer-to-Peer Pv Energy Trading for Residential Households in the GCC. SSRN Electronic Journal, 0, , .	0.4	1
304	Optimal Peer-to-Peer Energy Trading Under Load Uncertainty Incorporating Carbon Emission and Transaction Cost for Grid-Connected Prosumers. IEEE Access, 2022, 10, 106202-106216.	2.6	7
305	Financial Optimization of Renewable Energy Communities Through Optimal Allocation of Locally Generated Electricity. IEEE Access, 2022, 10, 77571-77586.	2.6	6
306	Imbalance Reduction of P2P Energy Market by Closed-Loop Clustering and Forecasting. IEEE Transactions on Smart Grid, 2023, 14, 572-581.	6.2	1
307	Community Integrated Energy System Multi-Energy Transaction Decision Considering User Interaction. Processes, 2022, 10, 1794.	1.3	3
308	A review of multistage solar driven photovoltaic–thermal components with cascade energy storage system for tri-generation. Energy Reports, 2022, 8, 14-20.	2.5	2

#	Article	IF	CITATIONS
309	Grid-Oriented Coordination Strategy of Prosumers Using Game-theoretic Peer-to-Peer Trading Framework in Energy Community. Applied Energy, 2022, 326, 119980.	5.1	12
310	Mechanism design for decentralized peer-to-peer energy trading considering heterogeneous preferences. Sustainable Cities and Society, 2022, 87, 104182.	5.1	17
311	Pricing and energy trading in peer-to-peer zero marginal-cost microgrids. , 2022, , .		0
312	Privacy-Friendly Peer-to-Peer Energy Trading: A Game Theoretical Approach. , 2022, , .		3
313	Reliability and Incentive of Performance Assessment for Decentralized Clouds. Journal of Computer Science and Technology, 2022, 37, 1176-1199.	0.9	0
314	MILP-based optimal day-ahead scheduling for a system-centric community energy management system supporting different types of homes and energy trading. Scientific Reports, 2022, 12, .	1.6	3
315	A classification scheme for local energy trading. OR Spectrum, 2023, 45, 85-118.	2.1	0
316	A hierarchical approach for P2P energy trading considering community energy storage and PVâ€enriched system operator. IET Generation, Transmission and Distribution, 2022, 16, 4738-4749.	1.4	3
317	Community Energy Markets with Battery Energy Storage Systems: A General Modeling with Applications. Energies, 2022, 15, 7714.	1.6	2
318	On the Modeling of Energy-Multisource Networks by the Thermostatted Kinetic Theory Approach: A Review with Research Perspectives. Energies, 2022, 15, 7825.	1.6	1
319	Efficient and privacy-preserving decentralized energy trading scheme in a blockchain environment. Energy Reports, 2022, 8, 485-493.	2.5	3
320	The flexible roles of distributed energy storages in peer-to-peer transactive energy market: A state-of-the-art review. Applied Energy, 2022, 327, 120085.	5.1	11
321	Peer-to-peer energy trading in smart grid: Frameworks, implementation methodologies, and demonstration projects. Electric Power Systems Research, 2023, 214, 108907.	2.1	28
322	Energy trading scheme based on consortium blockchain and game theory. Computer Standards and Interfaces, 2023, 84, 103699.	3.8	14
323	A Benders decomposition approach for solving a two-stage local energy market problem under uncertainty. Applied Energy, 2023, 329, 120226.	5.1	7
324	Pricing strategy for household energy-saving option (HESO): A novel option-based intervention for promoting household energy efficiency. Environmental Impact Assessment Review, 2023, 98, 106969.	4.4	5
325	Rolling horizon optimization for real-time operation of prosumers with Peer-to-Peer energy trading. Energy Reports, 2023, 9, 321-328.	2.5	6
326	A Blockchain-Based Trading Framework for Community Electricity Market. , 2022, , .		1

#	Article	IF	CITATIONS
327	Energy Trading Strategies of Multiple Integrated Energy Service Providers Based on Cooperative Games. , 2022, , .		0
328	Reviewing the peer-to-peer transactive energy market: Trading environment, optimization methodology, and relevant resources. Journal of Cleaner Production, 2023, 383, 135441.	4.6	15
329	Distributionally robust optimization for peer-to-peer energy trading considering data-driven ambiguity sets. Applied Energy, 2023, 331, 120436.	5.1	10
330	Online distributed optimization for spatio-temporally constrained real-time peer-to-peer energy trading. Applied Energy, 2023, 331, 120216.	5.1	5
331	Event-trigger rolling horizon optimization for congestion management considering peer-to-peer energy trading among microgrids. International Journal of Electrical Power and Energy Systems, 2023, 147, 108838.	3.3	4
332	Network-Constrained Peer-to-Peer energy trading for multiple microgrids considering zoning pricing. International Journal of Electrical Power and Energy Systems, 2023, 147, 108837.	3.3	4
333	Blockchain-Based Local Energy Market Enabling P2P Trading: An Australian Collated Case Study on Energy Users, Retailers and Utilities. IEEE Access, 2022, 10, 124429-124447.	2.6	7
334	Optimal Scheduling Strategy of Park Microgrid based on Blockchain Technology. , 2022, , .		0
335	Electrical Thermal Coupling Demand Response of Integrated Energy System Considering "Equipment's Variable Working Conditionâ€: , 2022, , .		0
336	A Review of Peer-to-Peer Energy Trading with Standard Terminology Proposal and a Techno-Economic Characterisation Matrix. Energies, 2022, 15, 9070.	1.6	0
337	Evolutionary Game Analysis of Power Generation Groups Considering Energy Price Fluctuation. Algorithms, 2022, 15, 456.	1.2	0
338	Peer-to-Peer Trading for Energy-Saving Based on Reinforcement Learning. Energies, 2022, 15, 9633.	1.6	2
339	Exploring Energy Trading Markets in Smart Grid and Microgrid Systems and Their Implications for Sustainability in Smart Cities. Energies, 2023, 16, 801.	1.6	6
340	Network-aware energy management for microgrids in distribution market: A leader-followers approach. Applied Energy, 2023, 332, 120522.	5.1	5
341	Seamless plug-in plug-out enabled fully distributed peer-to-peer control of prosumer-based islanded AC microgrid. Sustainable Energy Technologies and Assessments, 2023, 55, 102958.	1.7	1
342	Tron Blockchain Based Pricing Scheme for Energy Trading Considering Carbon Emissions Taxes. , 2022, , .		0
343	On the Performance of Reinforcement Learning Algorithms for Dynamic Matching of Renewable Energy with Flexible Loads. , 2022, , .		0
344	A game-theoretic model for the classification of selected oil companies' price changes. PeerJ Computer Science, 0, 9, e1215.	2.7	0

#	Article	IF	CITATIONS
345	Local Energy Market-Consumer Digital Twin Coordination for Optimal Energy Price Discovery under Thermal Comfort Constraints. Applied Sciences (Switzerland), 2023, 13, 1798.	1.3	3
346	A Survey of Cyber-Physical Systems From a Game-Theoretic Perspective. IEEE Access, 2023, 11, 9799-9834.	2.6	11
347	Applying Energy Justice Principles to Renewable Energy Trading and Allocation in Multi-Unit Buildings. Energies, 2023, 16, 1150.	1.6	0
348	Interval Coalition Game-Based Peer-to-Peer Energy Trading Method for Multi-microgrids. , 2022, , .		Ο
349	Energy and Reserve Sharing Considering Uncertainty and Communication Resources. IEEE Internet of Things Journal, 2023, , 1-1.	5.5	0
350	A High-Efficiency and Incentive-Compatible Peer-to-Peer Energy Trading Mechanism. IEEE Transactions on Smart Grid, 2024, 15, 1075-1088.	6.2	8
351	Peer-to-Peer Energy Trading Method of Multi-Virtual Power Plants Based on Non-Cooperative Game. Energy Engineering: Journal of the Association of Energy Engineers, 2023, 120, 1163-1183.	0.3	1
352	Market Mechanisms and Trading in Microgrid Local Electricity Markets: A Comprehensive Review. Energies, 2023, 16, 2145.	1.6	8
353	Optimal capacity of solar photovoltaic and battery storage for gridâ€ŧied houses based on energy sharing. IET Generation, Transmission and Distribution, 0, , .	1.4	1
354	Peer-to-peer energy sharing and trading of renewable energy in smart communities ─ trading pricing models, decision-making and agent-based collaboration. Renewable Energy, 2023, 207, 177-193.	4.3	41
355	Emerging business models in local energy markets: A systematic review of peer-to-peer, community self-consumption, and transactive energy models. Renewable and Sustainable Energy Reviews, 2023, 179, 113273.	8.2	8
356	Vulnerability analysis of demand-response with renewable energy integration in smart grids to cyber attacks and online detection methods. Reliability Engineering and System Safety, 2023, 235, 109212.	5.1	7
357	A day-ahead optimal operation strategy for integrated energy systems in multi-public buildings based on cooperative game. Energy, 2023, 275, 127395.	4.5	9
358	Peer-to-peer electricity trading: A systematic review on current developments and perspectives. Renewable Energy Focus, 2023, 44, 317-333.	2.2	15
359	Review of Transactive Energy Market Models and Their Possible Financial Impact on The Utility. , 2022, ,		0
360	Hierarchical electricity-carbon trading for regional virtual federated prosumers. Electric Power Systems Research, 2023, 217, 109160.	2.1	1
361	Distributed Network-Constrained P2P Community-Based Market for Distribution Networks. Energies, 2023, 16, 1520.	1.6	4
362	Developing an Appropriate Energy Trading Algorithm and Techno-Economic Analysis between Peer-to-Peer within a Partly Independent Microgrid. Energies, 2023, 16, 1549.	1.6	2

		CITATION REPORT		
#	Article		IF	Citations
363	A Novel Method for Energy Trading in Networked Microgrids Using Matching Theory. ,	2022, , .		0
364	Peer-to-Peer Energy Trading Pricing Mechanisms: Towards a Comprehensive Analysis o Network Service Pricing (NSP) Mechanisms to Get Sustainable Enviro-Economical Ener Energies, 2023, 16, 2198.	f Energy and rgy Sector.	1.6	16
365	Hierarchical Hybrid Multi-Agent Deep Reinforcement Learning for Peer-to-Peer Energy Multiple Heterogeneous Microgrids. IEEE Transactions on Smart Grid, 2023, 14, 4649-	Trading Among 4665.	6.2	8
366	Energy Trading in Local Electricity Markets with Behind-The-Meter Solar and Energy St 1-10.	orage. , 2023, ,		2
367	A Scalable and Computational Efficient Peer-to-Peer Energy Management Scheme. IEE 21686-21698.	E Access, 2023, 11,	2.6	1
368	Stochastic Peer-to-Peer Energy Trading with Price and Incentive Mechanism. , 2022, , .			1
369	Application of a Community Battery-Integrated Microgrid in a Blockchain-Based Local Accommodating P2P Trading. IEEE Access, 2023, 11, 29635-29649.	Energy Market	2.6	5
370	Autonomous Peer-to-Peer Energy Trading in Networked Microgrids: A Distributed Deep Learning Approach. , 2023, , .	o Reinforcement		2
371	Peer-to-Peer Energy Trading Among Networked Microgrids Considering the Compleme Wind and PV Solar Energy. , 2023, , .	entary Nature of		1
372	Game and Dynamic Communication Path-Based Pricing Strategies for Microgrids Unde Communication Interruption. IEEE/CAA Journal of Automatica Sinica, 2023, 10, 1032-1	er 1047.	8.5	3
373	Peer-to-Peer Energy Trading: Energy Pricing Using Game Theory Models. , 2023, , .			0
374	A Case Study of Renewable Energy Trading in a Peer-to-Peer Microgrid Based Network Technology. , 2023, , .	using Blockchain		0
375	Data-Based Optimal Microgrid Management for Energy Trading With Integral <i>Q</i> Scheme. IEEE Internet of Things Journal, 2023, 10, 16183-16193.	-Learning	5.5	3
382	Peer-to-Peer Energy Trading Considering Low-Carbon Preference. , 2023, , .			0
392	Towards Net-Zero Goal through Altruistic Prosumer based Energy Trading among Con Vehicles. , 2023, , .	nected Electric		0
396	Multi- agent Collaborative Optimal Operation Strategy of Microgrid Based on Master-S 2023, , .	Slave Game. ,		0
397	Smart Grid Energy Trading using Peer-to-Peer Blockchain Technology , 2023, , .			0
399	Strategic Energy Trading Among Prosumers in a Smart Grid. , 2023, , .			1

#	Article	IF	CITATIONS
404	Research on the Application of Blockchain in Electricity Market. Lecture Notes in Electrical Engineering, 2023, , 96-105.	0.3	0
407	A scenario-based battery storage optimization method for diverse P2P energy trading. , 2023, , .		Ο
408	Game Theory Modeling of Energy Systems. , 2023, , 941-959.		0
410	Virtual Community based Peer-to-Peer Energy Trading. , 2023, , .		Ο
418	Peer-to-Peer Trading Among Prosumers Based on Cooperative Game. Lecture Notes in Electrical Engineering, 2023, , 532-541.	0.3	0
423	Optimal Management for Prosumer Resources in Energy Communities with P2P Market Considering Deviation and Previously Established Agreements. , 2023, , .		О
430	A P2P Trading Mechanism Participated with Shared Energy Storage Operator Based on Stackelberg Game. , 2023, , .		0
435	Real-Time Demand Response Multi-Energy Trading Strategy in Multiseller-Multibuyer Smart Distribution Grid. , 2023, , .		Ο
444	Stackelberg Game Model for Optimal Dispatching of Electricity Consumption for Community Microgrid Considering Demand Response Mechanism. , 2023, , .		0
445	Distributed Energy Trading Method for Community Photovoltaic Users in Cloud Energy Storage Mode. , 2023, , .		О
447	An Innovative Hierarchical P2P Method for Energy Trading Management in A Distribution Network with Micro-Grids. , 2022, , .		0
454	Peer-to-peer energy trading with advanced pricing and decision-making mechanisms. , 2024, , 133-158.		О
456	The Non-Cooperative Bilateral Trading Among DG Owners Considering both Investment and Operation Stages. , 2023, , .		0
458	Optimization strategy for multi-microgrid power sharing operation considering low-carbon characteristics. , 2023, , .		0
461	Stationary BES Coupled with Solar PV for an Energy Shared Home with an EV. , 2023, , .		0
468	Peer-To-Peer Energy Trading Using MMR Mechanism in Microgrid. , 2023, , .		0
470	Profitable Energy Transaction in a Smart Distribution Network Through Transactive Energy Systems. Advances in Computational Intelligence and Robotics Book Series, 2024, , 182-203.	0.4	0