Metagenomic engineering of the mammalian gut micro

Nature Methods 16, 167-170

DOI: 10.1038/s41592-018-0301-y

Citation Report

#	ARTICLE	IF	Citations
1	Defining and combating antibiotic resistance from One Health and Global Health perspectives. Nature Microbiology, 2019, 4, 1432-1442.	5.9	614
2	Precision Medicine Goes Microscopic: Engineering the Microbiome to Improve Drug Outcomes. Cell Host and Microbe, 2019, 26, 22-34.	5.1	80
3	Recent advances in developing and applying biosensors for synthetic biology. Nano Futures, 2019, 3, 042002.	1.0	9
4	Recoding the metagenome: microbiome engineering in situ. Current Opinion in Microbiology, 2019, 50, 28-34.	2.3	12
5	Trans-Kingdom Conjugation within Solid Media from Escherichia coli to Saccharomyces cerevisiae. International Journal of Molecular Sciences, 2019, 20, 5212.	1.8	9
6	A library of human gut bacterial isolates paired with longitudinal multiomics data enables mechanistic microbiome research. Nature Medicine, 2019, 25, 1442-1452.	15.2	255
7	Efficient inter-species conjugative transfer of a CRISPR nuclease for targeted bacterial killing. Nature Communications, 2019, 10, 4544.	5 . 8	78
8	Common principles and best practices for engineering microbiomes. Nature Reviews Microbiology, 2019, 17, 725-741.	13.6	324
9	Engineers embrace microbiome messiness. Nature Methods, 2019, 16, 581-584.	9.0	6
10	Combinatory biotechnological intervention for gut microbiota. Applied Microbiology and Biotechnology, 2019, 103, 3615-3625.	1.7	14
11	An Engineered Cas-Transposon System for Programmable and Site-Directed DNA Transpositions. CRISPR Journal, 2019, 2, 376-394.	1.4	37
12	Necrotizing enterocolitis is preceded by increased gut bacterial replication, <i>Klebsiella</i> , and fimbriae-encoding bacteria. Science Advances, 2019, 5, eaax5727.	4.7	120
13	Outcome of the public consultation on the draft Scientific Opinion on the evaluation of existing guidelines for their adequacy for the microbial characterisation and environmental risk assessment of microâ€organisms obtained through synthetic biology. EFSA Supporting Publications, 2020, 17, 1934E.	0.3	0
14	Artificial intelligence and synthetic biology approaches for human gut microbiome. Critical Reviews in Food Science and Nutrition, 2020, , 1-19.	5.4	8
15	Personalized Nutrition Through The Gut Microbiota: Current Insights And Future Perspectives. Nutrition Reviews, 2020, 78, 66-74.	2.6	20
16	Plasmid Transfer by Conjugation in Gram-Negative Bacteria: From the Cellular to the Community Level. Genes, 2020, $11,1239.$	1.0	118
17	Highly efficient gene transfer in the mouse gut microbiota is enabled by the Incl2 conjugative plasmid TP114. Communications Biology, 2020, 3, 523.	2.0	41
18	Meeting report of the third annual Tri-Service Microbiome Consortium symposium. Environmental Microbiomes, 2020, 15, 12.	2.2	4

#	Article	IF	Citations
19	Systemic Immunometabolism: Challenges and Opportunities. Immunity, 2020, 53, 496-509.	6.6	73
20	Gut Microbiome in Microbial Pathogenicity. , 2020, , 1-36.		0
21	The persistence potential of transferable plasmids. Nature Communications, 2020, 11, 5589.	5.8	16
22	Targeted Depletion of Bacteria from Mixed Populations by Programmable Adhesion with Antagonistic Competitor Cells. Cell Host and Microbe, 2020, 28, 313-321.e6.	5.1	62
23	Engineering microbial diagnostics and therapeutics with smart control. Current Opinion in Biotechnology, 2020, 66, 11-17.	3.3	21
24	Editing the microbiome. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 3345-3348.	3.3	9
25	Erwinia carotovora Quorum Sensing System Regulates Host-Specific Virulence Factors and Development Delay in Drosophila melanogaster. MBio, 2020, 11 , .	1.8	9
26	Antibiotic resistance: turning evolutionary principles into clinical reality. FEMS Microbiology Reviews, 2020, 44, 171-188.	3.9	154
27	Biofilm architecture: An emerging synthetic biology target. Synthetic and Systems Biotechnology, 2020, 5, 1-10.	1.8	66
28	Microbiome Engineering: Synthetic Biology of Plant-Associated Microbiomes in Sustainable Agriculture. Trends in Biotechnology, 2021, 39, 244-261.	4.9	166
29	Gut microbes in cardiovascular diseases and their potential therapeutic applications. Protein and Cell, 2021, 12, 346-359.	4.8	62
30	Engineering the Microbiome to Prevent Adverse Events: Challenges and Opportunities. Annual Review of Pharmacology and Toxicology, 2021, 61, 159-179.	4.2	19
31	Engineering rhizobacteria for sustainable agriculture. ISME Journal, 2021, 15, 949-964.	4.4	86
32	CRISPR RNA-guided integrases for high-efficiency, multiplexed bacterial genome engineering. Nature Biotechnology, 2021, 39, 480-489.	9.4	179
33	Deciphering Human Microbiota–Host Chemical Interactions. ACS Central Science, 2021, 7, 20-29.	5.3	19
34	Radiotherapy and the gut microbiome: facts and fiction. Radiation Oncology, 2021, 16, 9.	1.2	85
35	Genetic Disease and Therapy. Annual Review of Pathology: Mechanisms of Disease, 2021, 16, 145-166.	9.6	21
36	Plant-wide systems microbiology for the wastewater industry. Environmental Science: Water Research and Technology, 2021, 7, 1687-1706.	1.2	7

#	Article	IF	Citations
37	Precision modification of the human gut microbiota targeting surface-associated proteins. Scientific Reports, 2021, 11, 1270.	1.6	6
38	Genetic Variation in Holobionts. The Microbiomes of Humans, Animals, Plants, and the Environment, 2021, , 275-315.	0.2	0
39	Synthetic biology in biofilms: Tools, challenges, and opportunities. Biotechnology Progress, 2021, 37, e3123.	1.3	13
40	Translating New Synthetic Biology Advances for Biosensing Into the Earth and Environmental Sciences. Frontiers in Microbiology, 2020, $11,618373$.	1.5	40
41	The sum is greater than the parts: exploiting microbial communities to achieve complex functions. Current Opinion in Biotechnology, 2021, 67, 149-157.	3.3	25
42	Integrating Systems and Synthetic Biology to Understand and Engineer Microbiomes. Annual Review of Biomedical Engineering, 2021, 23, 169-201.	5.7	23
43	Examining horizontal gene transfer in microbial communities. Nature Reviews Microbiology, 2021, 19, 442-453.	13.6	136
44	Imaging Commensal Microbiota and Pathogenic Bacteria in the Gut. Accounts of Chemical Research, 2021, 54, 2076-2087.	7.6	37
45	Directed Evolution of Microbial Communities. Annual Review of Biophysics, 2021, 50, 323-341.	4.5	51
46	Control of synthetic microbial consortia in time, space, and composition. Trends in Microbiology, 2021, 29, 1095-1105.	3.5	40
47	Engineering insects from the endosymbiont out. Trends in Microbiology, 2022, 30, 79-96.	3.5	22
48	Phage satellites and their emerging applications in biotechnology. FEMS Microbiology Reviews, 2021, 45, .	3.9	27
49	Molecular Mechanisms Influencing Bacterial Conjugation in the Intestinal Microbiota. Frontiers in Microbiology, 2021, 12, 673260.	1.5	30
50	Predicting plasmid persistence in microbial communities by coarseâ€grained modeling. BioEssays, 2021, 43, 2100084.	1.2	2
51	Driving to Safety: CRISPR-Based Genetic Approaches to Reducing Antibiotic Resistance. Trends in Genetics, 2021, 37, 745-757.	2.9	8
52	Gut Microbiome and Common Variable Immunodeficiency: Few Certainties and Many Outstanding Questions. Frontiers in Immunology, 2021, 12, 712915.	2.2	26
53	Advances in promoter engineering: Novel applications and predefined transcriptional control. Biotechnology Journal, 2021, 16, e2100239.	1.8	44
54	Engineering the plant microbiota in the context of the theory of ecological communities. Current Opinion in Biotechnology, 2021, 70, 220-225.	3.3	21

#	ARTICLE	IF	Citations
55	Meeting report of the fourth annual Tri-Service Microbiome Consortium symposium. Environmental Microbiomes, 2021, 16, 16.	2.2	3
56	Retooling Microbiome Engineering for a Sustainable Future. MSystems, 2021, 6, e0092521.	1.7	8
57	Quantitative analysis of horizontal gene transfer in complex systems. Current Opinion in Microbiology, 2021, 62, 103-109.	2.3	13
58	Genetic innovations in animal–microbe symbioses. Nature Reviews Genetics, 2022, 23, 23-39.	7.7	60
59	Synergistically promoting plant health by harnessing synthetic microbial communities and prebiotics. IScience, 2021, 24, 102918.	1.9	23
60	Discovery and delivery strategies for engineered live biotherapeutic products. Trends in Biotechnology, 2022, 40, 354-369.	4.9	23
61	Exploiting interbacterial antagonism for microbiome engineering. Current Opinion in Biomedical Engineering, 2021, 19, 100307.	1.8	5
62	A highly effective and self-transmissible CRISPR antimicrobial for elimination of target plasmids without antibiotic selection. Peerl, 2021, 9, e11996.	0.9	10
63	Commensal inter-bacterial interactions shaping the microbiota. Current Opinion in Microbiology, 2021, 63, 158-171.	2.3	30
64	Enhancing Microbial Pollutant Degradation by Integrating Eco-Evolutionary Principles with Environmental Biotechnology. Trends in Microbiology, 2021, 29, 908-918.	3.5	46
65	Microbiomes in Medicine and Agriculture. The Microbiomes of Humans, Animals, Plants, and the Environment, 2021, , 353-412.	0.2	0
66	Plasmids persist in a microbial community by providing fitness benefit to multiple phylotypes. ISME Journal, 2020, 14, 1170-1181.	4.4	62
67	A peek in the micro-sized world: a review of design principles, engineering tools, and applications of engineered microbial community. Biochemical Society Transactions, 2020, 48, 399-409.	1.6	5
74	Programmable CRISPR as transcriptional activation in bacteria. Molecular Systems Biology, 2020, 16, e9427.	3.2	56
75	Metagenomic Exploration of Plastic Degrading Microbes for Biotechnological Application. Current Genomics, 2020, 21, 253-270.	0.7	58
76	Bioengineering horizon scan 2020. ELife, 2020, 9, .	2.8	19
77	Functions predict horizontal gene transfer and the emergence of antibiotic resistance. Science Advances, 2021, 7, eabj5056.	4.7	44
78	Engineering Wired Life: Synthetic Biology for Electroactive Bacteria. ACS Synthetic Biology, 2021, 10, 2808-2823.	1.9	50

#	Article	IF	CITATIONS
82	Microbiomes for sustainable biomanufacturing. Current Opinion in Microbiology, 2022, 65, 8-14.	2.3	5
83	Engineering temporal dynamics in microbial communities. Current Opinion in Microbiology, 2022, 65, 47-55.	2.3	12
86	Harnessing intercellular signals to engineer the soil microbiome. Natural Product Reports, 2021, , .	5.2	2
88	The Role of Segmented Filamentous Bacteria in Immune Barrier Maturation of the Small Intestine at Weaning. Frontiers in Nutrition, 2021, 8, 759137.	1.6	2
89	Broad Dissemination of Plasmids across Groundwater-Fed Rapid Sand Filter Microbiomes. MBio, 2021, 12, e0306821.	1.8	6
90	Engineering living and regenerative fungal–bacterial biocomposite structures. Nature Materials, 2022, 21, 471-478.	13.3	47
91	Species- and site-specific genome editing in complex bacterial communities. Nature Microbiology, 2022, 7, 34-47.	5.9	127
92	Intestinal microbiota research from a global perspective. Gastroenterology Report, 2022, 10, goac010.	0.6	13
93	Exploring the plastic degrading ability of microbial communities through metagenomic approach. Materials Today: Proceedings, 2022, 57, 1924-1932.	0.9	12
94	Cross-kingdom expression of synthetic genetic elements promotes discovery of metabolites in the human microbiome. Cell, 2022, 185, 1487-1505.e14.	13.5	17
95	Rehabilitation of a misbehaving microbiome: phages for the remodeling of bacterial composition and function. IScience, 2022, 25, 104146.	1.9	7
96	DART takes aim at community editing. Nature Microbiology, 2022, 7, 8-9.	5.9	1
98	Ecological dynamics of plasmid transfer and persistence in microbial communities. Current Opinion in Microbiology, 2022, 68, 102152.	2.3	24
99	Freedom of expression: A synthetic route to metabolites. Cell, 2022, 185, 1449-1451.	13.5	1
100	Quantitative and analytical tools to analyze the spatiotemporal population dynamics of microbial consortia. Current Opinion in Biotechnology, 2022, 76, 102754.	3.3	4
101	Propagation of Recombinant Genes through Complex Microbiomes with Synthetic Mini-RP4 Plasmid Vectors. Biodesign Research, 2022, 2022, .	0.8	5
102	A Framework for the Systematic Selection of Biosensor Chassis for Environmental Synthetic Biology. ACS Synthetic Biology, 2022, 11, 2909-2916.	1.9	7
103	Characterization of interactions of dietary cholesterol with the murine and human gut microbiome. Nature Microbiology, 2022, 7, 1390-1403.	5.9	41

#	Article	IF	CITATIONS
104	Intestinal transgene delivery with native E.Âcoli chassis allows persistent physiological changes. Cell, 2022, 185, 3263-3277.e15.	13.5	56
105	Molecular tools for probing the microbiome. Current Opinion in Structural Biology, 2022, 76, 102415.	2.6	2
106	Methods of DNA introduction for the engineering of commensal microbes. Engineering Microbiology, 2022, 2, 100048.	2.2	6
107	Modulation of human microbiome and drug metabolism. , 2022, , 375-397.		0
108	Association Between Microbial Tyrosine Decarboxylase Gene and Levodopa Responsiveness in Patients With Parkinson Disease. Neurology, 2022, 99, .	1.5	10
109	Achieving spatially precise diagnosis and therapy in the mammalian gut using synthetic microbial gene circuits. Frontiers in Bioengineering and Biotechnology, 0, 10 , .	2.0	5
111	An easily modifiable conjugative plasmid for studying horizontal gene transfer. Plasmid, 2022, 123-124, 102649.	0.4	1
112	Antimicrobial resistance: new insights and therapeutic implications. Applied Microbiology and Biotechnology, 2022, 106, 6427-6440.	1.7	9
113	SynMADE: synthetic microbiota across diverse ecosystems. Trends in Biotechnology, 2022, 40, 1405-1414.	4.9	20
114	Microbiome and metabolism: Advancements in microbiome engineering. Current Opinion in Endocrine and Metabolic Research, 2022, 27, 100404.	0.6	0
115	Microbiome and Human Health: Current Understanding, Engineering, and Enabling Technologies. Chemical Reviews, 2023, 123, 31-72.	23.0	54
117	Genetic manipulation of the human gut bacterium Eggerthella lenta reveals a widespread family of transcriptional regulators. Nature Communications, 2022, 13, .	5.8	15
118	Parallel engineering of environmental bacteria and performance over years under jungle-simulated conditions. PLoS ONE, 2022, 17, e0278471.	1.1	5
119	Targeted bacterial conjugation mediated by synthetic cell-to-cell adhesions. Nucleic Acids Research, 2022, 50, 12938-12950.	6.5	13
120	Conjugative RP4 Plasmid-Mediated Transfer of Antibiotic Resistance Genes to Commensal and Multidrug-Resistant Enteric Bacteria In Vitro. Microorganisms, 2023, 11, 193.	1.6	2
121	Computational design of CRISPR guide RNAs to enable strain-specific control of microbial consortia. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	12
122	Genome editing of microbes for degradation of pesticides. , 2023, , 167-200.		2
125	High-throughput microbial culturomics using automation and machine learning. Nature Biotechnology, 2023, 41, 1424-1433.	9.4	39

#	Article	IF	CITATIONS
127	Spatiotemporally resolved tools for analyzing gut microbiota. CheM, 2023, 9, 1094-1117.	5.8	1
129	Targeting the human gut microbiome with small-molecule inhibitors. Nature Reviews Chemistry, 2023, 7, 319-339.	13.8	4
133	Engineering the gut microbiome., 2023, 1, 665-679.		5
135	CRISPR-Cas-Based Antimicrobials: Design, Challenges, and Bacterial Mechanisms of Resistance. ACS Infectious Diseases, 2023, 9, 1283-1302.	1.8	7
139	Microbial Technology for Neurological Disorders. , 2023, , 299-339.		0
141	Bacterial therapies at the interface of synthetic biology and nanomedicine. , 2024, 2, 120-135.		6
147	Soil microbiome engineering for sustainability in a changing environment. Nature Biotechnology, 2023, 41, 1716-1728.	9.4	6
153	Influence of Intestinal Microbiomes on COVID Progression and Its Effects byÂlmmunotherapeutic Modulation. , 2023, , 151-169.		0
162	Choreographing root architecture and rhizosphere interactions through synthetic biology. Nature Communications, 2024, 15, .	5.8	0