Mechano-chemical decomposition of organic friction m centres induces superlubricity of ta-C

Nature Communications 10, 151 DOI: 10.1038/s41467-018-08042-8

Citation Report

#	Article	IF	CITATIONS
1	Enhancement in the tribological properties of Cr/DLC multilayers in methane: structural transformation induced by sliding. SN Applied Sciences, 2019, 1, 1.	1.5	7
2	Fatty Acid-Derived Ionic Liquid Lubricant. Protic Ionic Liquid Crystals as Protic Ionic Liquid Additives. Coatings, 2019, 9, 710.	1.2	16
3	Insights into friction dependence of carbon nanoparticles as oil-based lubricant additive at amorphous carbon interface. Carbon, 2019, 150, 465-474.	5.4	48
4	Atomistic Insights Into Lubricated Tungsten/Diamond Sliding Contacts. Frontiers in Mechanical Engineering, 2019, 5, .	0.8	4
5	Atomistic understanding on friction behavior of amorphous carbon films induced by surface hydrogenated modification. Tribology International, 2019, 136, 446-454.	3.0	26
6	Nonequilibrium Molecular Dynamics Simulations of Tribological Systems. CISM International Centre for Mechanical Sciences, Courses and Lectures, 2020, , 95-130.	0.3	2
7	Superlubricity for hydrogenated diamond like carbon induced by thin MoS2 and DLC layer in moist air. Diamond and Related Materials, 2020, 102, 107668.	1.8	25
8	Structural lubricity in soft and hard matter systems. Nature Communications, 2020, 11, 4657.	5.8	62
9	Influence Factors on Mechanisms of Superlubricity in DLC Films: A Review. Frontiers in Mechanical Engineering, 2020, 6, .	0.8	33
10	Human gut microbiota/microbiome in health and diseases: a review. Antonie Van Leeuwenhoek, 2020, 113, 2019-2040.	0.7	473
11	Towards programmable friction: control of lubrication with ionic liquid mixtures by automated electrical regulation. Scientific Reports, 2020, 10, 17634.	1.6	12
12	Fundamental understanding on low-friction mechanisms at amorphous carbon interface from reactive molecular dynamics simulation. Carbon, 2020, 170, 621-629.	5.4	23
13	Tailoring the Nanostructure of Graphene as an Oil-Based Additive: toward Synergistic Lubrication with an Amorphous Carbon Film. ACS Applied Materials & Interfaces, 2020, 12, 43320-43330.	4.0	34
14	Measuring and modelling mechanochemical reaction kinetics. Chemical Communications, 2020, 56, 7730-7733.	2.2	31
15	Steric Effects Control Dry Friction of H- and F-Terminated Carbon Surfaces. ACS Applied Materials & Interfaces, 2020, 12, 8805-8816.	4.0	15
16	Adsorption of Organic Friction Modifier Additives. Langmuir, 2020, 36, 1147-1155.	1.6	54
17	A review of recent advances in tribology. Friction, 2020, 8, 221-300.	3.4	324
18	Development of a Transferable ReaxFF Parameter Set for Carbon- and Silicon-Based Solid Systems. Journal of Physical Chemistry C, 2020, 124, 10007-10015.	1.5	22

#	ARTICLE	IF	Citations
19	The role of lubricant and carbon surface in achieving ultra- and superlow friction. , 2021, , 247-273.		5
20	Tribo-induced interfacial nanostructures stimulating superlubricity in amorphous carbon films. , 2021, , 289-307.		0
21	Nanoindentation of Amorphous Carbon: a combined experimental and simulation approach. Acta Materialia, 2021, 203, 116485.	3.8	23
22	Effects of Ti interlayer on adhesion property of DLC films: A first principle study. Diamond and Related Materials, 2021, 111, 108188.	1.8	26
23	Unraveling the Friction Evolution Mechanism of Diamondâ€Like Carbon Film during Nanoscale Runningâ€In Process toward Superlubricity. Small, 2021, 17, e2005607.	5.2	21
24	Influence of structural factors on the tribological performance of organic friction modifiers. Friction, 2021, 9, 380-400.	3.4	25
25	Influence of the terminal group on the thermal decomposition reactions of carboxylic acids on copper: nature of the carbonaceous film. Physical Chemistry Chemical Physics, 2021, 23, 17663-17671.	1.3	9
26	Surface chemistry at the solid–solid interface: mechanically induced reaction pathways of C ₈ carboxylic acid monolayers on copper. Physical Chemistry Chemical Physics, 2021, 23, 17803-17812.	1.3	13
27	Conversion of fatty acid methyl esters into dibasic esters by metathesis and their lubricant properties. RSC Advances, 2021, 11, 31030-31041.	1.7	4
28	<i>In Situ</i> Synthesis of Graphene Nitride Nanolayers on Glycerol-Lubricated Si ₃ N ₄ for Superlubricity Applications. ACS Applied Nano Materials, 2021, 4, 2721-2732.	2.4	16
29	Macroscale Superlubricity and Polymorphism of Long-Chain <i>n</i> -Alcohols. ACS Applied Materials & Interfaces, 2021, 13, 9239-9251.	4.0	13
30	Inducing High-Energy-Barrier Tribochemical Reaction Pathways; Acetic Acid Decomposition on Copper. Tribology Letters, 2021, 69, 1.	1.2	17
32	High-Temperature Tribological Performance of Al2O3/a-C:H:Si Coating in Ambient Air. Coatings, 2021, 11, 495.	1.2	3
33	Macro-scale superlow friction enabled when MoS2 flakes lubricate hydrogenated diamond-like carbon film. Ceramics International, 2021, 47, 10980-10989.	2.3	15
34	Biocoatings and additives as promising candidates for ultralow friction systems. Green Chemistry Letters and Reviews, 2021, 14, 358-381.	2.1	8
36	Macroscale Superlubricity on Engineering Steel in the Presence of Black Phosphorus. Nano Letters, 2021, 21, 5308-5315.	4.5	42
37	Insights into Superlow Friction and Instability of Hydrogenated Amorphous Carbon/Fluid Nanocomposite Interface. ACS Applied Materials & Interfaces, 2021, 13, 35173-35186.	4.0	17
38	Surface Chemistry at the Solidâ€Solid Interface; Selectivity and Activity in Mechanochemical Reactions on Surfaces. Chemistry Methods, 2021, 1, 340-349.	1.8	1

#	Article	IF	CITATIONS
39	The pivotal role of oxygen in establishing superlow friction by inducing the in situ formation of a robust MoS2 transfer film. Journal of Colloid and Interface Science, 2021, 594, 824-835.	5.0	15
40	Interplay of mechanics and chemistry governs wear of diamond-like carbon coatings interacting with ZDDP-additivated lubricants. Nature Communications, 2021, 12, 4550.	5.8	42
41	Exploring the different roles of graphene and its derivatives as nano-additives at amorphous carbon surface through reactive molecular dynamics approach. Computational Materials Science, 2021, 195, 110499.	1.4	3
42	Achieving macroscale liquid superlubricity using glycerol aqueous solutions. Tribology International, 2021, 160, 107006.	3.0	21
43	Structure and reaction pathways of octanoic acid on copper. Surface Science, 2021, 711, 121875.	0.8	8
44	Superlow Friction of a-C:H Coatings in Vacuum: Passivation Regimes and Structural Characterization of the Sliding Interfaces. Coatings, 2021, 11, 1069.	1.2	14
45	A Combined Experimental and Atomistic Investigation of PTFE Double Transfer Film Formation and Lubrication in Rolling Point Contacts. Tribology Letters, 2021, 69, 1.	1.2	13
46	Drop-On-Demand Lubrication of Gears: A Feasibility Study. Frontiers in Mechanical Engineering, 2021, 7,	0.8	2
47	Mechanistic insights into the effect of structural factors on film formation and tribological performance of organic friction modifiers. Tribology International, 2021, 164, 107243.	3.0	10
48	Adsorption and reaction pathways of 7-octenoic acid on copper. Physical Chemistry Chemical Physics, 2021, 23, 5834-5844.	1.3	8
49	Comparision of tribological behaviour for parts fabricated through fused deposition modelling (FDM) process on abs and 20% carbon fibre PLA. Materials Today: Proceedings, 2020, 27, 1780-1786.	0.9	16
50	Academic Motivation And Engagement: An Examination Of Its Factor Structure In Senior School Years. European Journal of Social & Behavioural Sciences, 2012, 2, 260-277.	0.3	5
51	Effect of Degree of Unsaturation in Vegetable Oils on Friction Properties of DLC Coatings. Tribology Online, 2021, 16, 210-215.	0.2	3
52	Prandtl–Tomlinson-Type Models for Molecular Sliding Friction. Tribology Letters, 2021, 69, 1.	1.2	4
53	Rehybridization analysis of C atoms of Cu/Diamond and Ni/Diamond interfaces under vertical pressure. Diamond and Related Materials, 2021, 120, 108661.	1.8	2
54	Achieving Macroscale Liquid Superlubricity Using Lubricant Mixtures of Glycerol and Propanediol. Tribology Letters, 2021, 69, 1.	1.2	6
55	Trends in R & D on and Parts Applications of Diamond Like Carbon Coatings. Journal of the Japan Institute of Marine Engineering, 2020, 55, 11-17.	0.0	0
56	Investigation of ionic liquids with and without graphene as lubricant additive for metal/metal and metal/ PEEK contacts over a wide temperature range. Lubrication Science, 2021, 33, 100-111.	0.9	6

#	Article	IF	Citations
57	Influence of the Nature and Orientation of the Terminal Group on the Tribochemical Reaction Rates of Carboxylic Acid Monolayers on Copper. Tribology Letters, 2022, 70, 1.	1.2	7
58	Mechanochemistry of phosphate esters confined between sliding iron surfaces. Communications Chemistry, 2021, 4, .	2.0	21
59	Operando Formation of Van der Waals Heterostructures for Achieving Macroscale Superlubricity on Engineering Rough and Worn Surfaces. Advanced Functional Materials, 2022, 32, .	7.8	31
60	Achieving superlubricity using selected tribo-pairs lubricated by castor oil and unsaturated fatty acids. Tribology International, 2022, 169, 107462.	3.0	13
61	Molecular Simulations of Surfactant Adsorption on Iron Oxide from Hydrocarbon Solvents. Langmuir, 2021, 37, 14582-14596.	1.6	9
62	Macroscale Robust Superlubricity on Metallic NbB ₂ . Advanced Science, 2022, 9, e2103815.	5.6	8
63	The synergistic mechanism between transfer layer and surface passivation of diamond-like carbon film under different gas pressure environments. Applied Surface Science, 2022, 587, 152874.	3.1	4
64	Selfâ€Assembled Artificial Nanocilia Actuators. Advanced Materials, 2022, 34, e2200185.	11.1	13
65	Relating Dry Friction to Interdigitation of Surface Passivation Species: A Molecular Dynamics Study on Amorphous Carbon. Materials, 2022, 15, 3247.	1.3	8
66	A critical review on liquid superlubricitive technology for attaining ultra-low friction. Renewable and Sustainable Energy Reviews, 2022, 165, 112626.	8.2	20
67	Mechanism of superlubricity of a DLC/Si3N4 contact in the presence of castor oil and other green lubricants. Friction, 2022, 10, 1693-1706.	3.4	12
68	Effect of Molecular Weight on Tribological Properties of Polyether Amine Derivatives under Different Contact Modes. Lubricants, 2022, 10, 105.	1.2	4
69	Molecules with a TEMPO-based head group as high-performance organic friction modifiers. Friction, 2023, 11, 316-332.	3.4	6
70	Friction Response of Piston Rings for Application-like Starvation and Benefit of Amorphous Carbon Coatings. Coatings, 2022, 12, 738.	1.2	4
71	Effect of functional groups on tribological properties of lubricants and mechanism investigation. Friction, 2023, 11, 911-926.	3.4	18
72	New in situ superlow-friction method for nitrogen-containing diamond-like carbon coatings using dielectric barrier discharge treatment in ambient air. Tribology International, 2022, 174, 107749.	3.0	13
73	Enhanced superlubricity on a-C films by lubrication with 3-hydroxypropionic acid. Carbon, 2022, 199, 161-169.	5.4	5
74	High temperature tribology behavior of silicon and nitrogen doped hydrogenated diamond-like carbon (DLC) coatings. Tribology International, 2022, 175, 107845.	3.0	19

#	Article	IF	CITATIONS
75	Roles of transfer layer and surface adhesion on superlubricity behaviors of diamond-like carbon film depending on rotating and reciprocating motion. Applied Surface Science, 2022, 604, 154538.	3.1	12
76	Tailoring microstructure, mechanical and tribological properties of amorphous CNx films by incorporating Fe. Surface and Coatings Technology, 2022, 448, 128875.	2.2	1
77	Achieving Superlubricity of Ricinoleic Acid in the Steel/Si3N4 Contact Under Boundary Lubrication. Tribology Letters, 2022, 70, .	1.2	2
78	Effect of doping elements to hydrogen-free amorphous carbon coatings on structure and mechanical properties with special focus on crack resistance. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 857, 144086.	2.6	9
79	Effects of interlayer bias voltage on the mechanical properties of tetrahedral amorphous carbon films. Vacuum, 2022, 206, 111555.	1.6	3
80	Friction induced mechanochemistry: self-adaptive lubrication through in-situ tribo-click system. Chemical Engineering Journal, 2023, 454, 139772.	6.6	17
81	Characterization of organic friction modifiers using lateral force microscopy and Eyring activation energy model. Tribology International, 2023, 178, 108052.	3.0	6
82	Unraveling the friction response from selective hydrogenation of textured amorphous carbon surface. Applied Surface Science, 2023, 614, 156246.	3.1	4
83	Theoretical superlubricity and its friction stability of amorphous carbon film induced by simple surface graphitization. Applied Surface Science, 2023, 615, 156318.	3.1	3
84	A review of recent advances and applications of machine learning in tribology. Physical Chemistry Chemical Physics, 2023, 25, 4408-4443.	1.3	12
85	Macroscale Superlubricity with Ultralow Wear and Ultrashort Running-In Period (â^1⁄41 s) through Phytic Acid-Based Complex Green Liquid Lubricants. ACS Applied Materials & Interfaces, 2023, 15, 10302-10314.	4.0	9
86	Lithium Citrate Triggered Macroscopic Superlubricity with Near-Zero Wear on an Amorphous Carbon Film. ACS Applied Materials & Interfaces, 2023, 15, 19705-19714.	4.0	2
87	Positive Effect of Periodic Micropatterns on Compression Ring Friction. Advanced Engineering Materials, 0, , 2201708.	1.6	0
88	Superlubricity with Graphitization in Ti-Doped DLC/Steel Tribopair: Response on Humidity and Temperature. ACS Applied Materials & amp; Interfaces, 2023, 15, 19715-19729.	4.0	7
89	DFT studies of the adsorption and decomposition of dimethyl ether on copper surface. Applied Surface Science, 2023, 627, 157310.	3.1	0
97	Partially Oxidized Violet Phosphorus as an Excellent Lubricant Additive for Tribological Applications. Nano Letters, 2023, 23, 6292-6300.	4.5	2
106	Surface Mechanochemistry. ACS Symposium Series, 0, , 231-245.	0.5	0