Ultrathin 2D type-II p-n heterojunctions La2Ti2O7/In2S and photocatalytic hydrogen evolution under visible lig

Applied Catalysis B: Environmental 245, 733-742 DOI: 10.1016/j.apcatb.2019.01.024

Citation Report

#	Article	IF	CITATIONS
2	Synergistic effects of multiple heterojunctions significantly enhance the photocatalytic H2 evolution rate CdS/La2Ti2O7/NiS2 ternary composites. International Journal of Hydrogen Energy, 2019, 44, 19603-19613.	3.8	27
3	Graphene oxide induced dual cocatalysts formation on manganese sulfide with enhanced photocatalytic hydrogen production from hydrogen sulfide. Applied Surface Science, 2019, 494, 700-707.	3.1	21
4	MOF-based In2S3-X2S3 (X = Bi; Sb)@TFPT-COFs hybrid materials for enhanced photocatalytic performance under visible light. Applied Surface Science, 2019, 493, 41-54.	3.1	40
5	High performance hydrogen production of MoS2-modified perovskite LaNiO3 under visible light. Ionics, 2019, 25, 4533-4546.	1.2	22
6	Double perovskite compounds A2CuWO6 (A = Sr and Ba) with p-type semiconductivity for photocatalytic water oxidation under visible light illumination. Inorganic Chemistry Frontiers, 2019, 6, 2096-2103.	3.0	22
7	In situ exsolution of silver nanoparticles on AgTaO3-SrTiO3 solid solutions as efficient plasmonic photocatalysts for water splitting. Applied Catalysis B: Environmental, 2019, 256, 117818.	10.8	44
8	An atomic insight into BiOBr/La ₂ Ti ₂ O ₇ p–n heterojunctions: interfacial charge transfer pathway and photocatalysis mechanism. Catalysis Science and Technology, 2020, 10, 826-834.	2.1	28
9	Rare earth perovskite modified cobalt disulfide catalysts controlled by reaction solvent synthesis to form a p-n heterojunction. Applied Surface Science, 2020, 505, 143937.	3.1	22
10	Z–Scheme heterojunction ZnO-Au-ZnAl2O4: Bridge-type hot carrier transfer and reaction kinetics in the photodegradation of catechol. Applied Surface Science, 2020, 532, 147456.	3.1	30
11	Well-designed efficient charge separation in 2D/2D N doped La2Ti2O7/ZnIn2S4 heterojunction through band structure/morphology regulation synergistic effect. Nano Energy, 2020, 78, 105401.	8.2	81
12	Photoelectrochemical Water Splitting by In ₂ S ₃ /In ₂ Mano Materials, 2020, 3, 11638-11649.	2.4	27
13	Spherical Bi2WO6/Bi2S3/MoS2 n-p Heterojunction with Excellent Visible-Light Photocatalytic Reduction Cr(VI) Activity. Nanomaterials, 2020, 10, 1813.	1.9	25
14	A novel p–n Mn _{0.2} Cd _{0.8} S/NiWO ₄ heterojunction for highly efficient photocatalytic H ₂ production. Dalton Transactions, 2020, 49, 12242-12248.	1.6	27
15	Bi ₂ O ₃ -Sensitized TiO ₂ Hollow Photocatalyst Drives the Efficient Removal of Tetracyclines under Visible Light. Inorganic Chemistry, 2020, 59, 18131-18140.	1.9	84
16	Thin‣ayered Photocatalysts. Advanced Functional Materials, 2020, 30, 1910005.	7.8	117
17	Photocatalytic properties of novel two-dimensional B4C3/g-C3N4 van der Waals heterojunction with moderate bandgap and high carrier mobility: A theoretical study. Applied Catalysis B: Environmental, 2020, 278, 119310.	10.8	37
18	Preparation of magnetically recoverable and Z-scheme BaFe12O19/AgBr composite for degradation of 2-Mercaptobenzothiazole and Methyl orange under visible light. Applied Surface Science, 2020, 521, 146343.	3.1	19
19	Enhanced photoexcited carrier separation in Ta3N5/SrTaO2N (1D/0D) heterojunctions for highly efficient visible light-driven hydrogen evolution. Applied Surface Science, 2020, 514, 145915.	3.1	15

CITATION REPORT

#	Article	IF	CITATIONS
20	2D/2D heterostructured photocatalyst: Rational design for energy and environmental applications. Science China Materials, 2020, 63, 2119-2152.	3.5	71
21	An unexpected broad-spectral absorbed lanthanum oxychloride and lanthanum titanate heterostructure promoted photoelectrocatalytic hydrogen evolution. Chemical Engineering Journal, 2021, 404, 126567.	6.6	13
22	Synthesis of a novel Type-II In2S3/Bi2MoO6 heterojunction photocatalyst: Excellent photocatalytic performance and degradation mechanism for Rhodamine B. Separation and Purification Technology, 2021, 255, 117758.	3.9	65
23	A novel noble-metal-free Mo2C-In2S3 heterojunction photocatalyst with efficient charge separation for enhanced photocatalytic H2 evolution under visible light. Journal of Colloid and Interface Science, 2021, 582, 488-495.	5.0	81
24	Twoâ€Ðimentional Nanostructured Metal Oxide/Sulfide–Based Photoanode for Photoelectrochemical Water Splitting. Solar Rrl, 2021, 5, 2000412.	3.1	24
25	Tuning Electronic Structure of 2D In ₂ S ₃ via P Doping and Size Controlling Toward Efficient Photoelectrochemical Water Oxidation. Solar Rrl, 2021, 5, .	3.1	16
26	Advances in designing heterojunction photocatalytic materials. Chinese Journal of Catalysis, 2021, 42, 710-730.	6.9	182
27	Construction of p-n type heterojunction for effective photo-generated electron separation and visible light hydrogen evolution. International Journal of Hydrogen Energy, 2021, 46, 1934-1944.	3.8	24
28	Functional facet isotype junction and semiconductor/r-GO minor Schottky barrier tailored In2S3@r-GO@(040/110)-BiVO4 ternary hybrid. Journal of Colloid and Interface Science, 2021, 585, 519-537.	5.0	27
29	Advances in 2D/2D Zâ€5cheme Heterojunctions for Photocatalytic Applications. Solar Rrl, 2021, 5, 2000397.	3.1	82
30	Twoâ€Đimensional Transition Metal Oxides and Chalcogenides for Advanced Photocatalysis: Progress, Challenges, and Opportunities. Solar Rrl, 2021, 5, 2000403.	3.1	28
31	Vertical growth of SnS ₂ nanobelt arrays on CuSbS ₂ nanosheets for enhanced photocatalytic reduction of CO ₂ . Chemical Communications, 2021, 57, 10419-10422.	2.2	10
32	Highly efficient In ₂ S ₃ /WO ₃ photocatalysts: Z-scheme photocatalytic mechanism for enhanced photocatalytic water pollutant degradation under visible light irradiation. RSC Advances, 2021, 11, 3333-3341.	1.7	23
33	β-In2S3 as Water Splitting Photoanodes: Promise and Challenges. Electronic Materials Letters, 2021, 17, 119-135.	1.0	13
34	Indium sulfide-based photocatalysts for hydrogen production and water cleaning: a review. Environmental Chemistry Letters, 2021, 19, 1065-1095.	8.3	83
35	Construction of a novel 2D–2D heterojunction by coupling a covalent organic framework and In ₂ S ₃ for photocatalytic removal of organic pollutants with high efficiency. New Journal of Chemistry, 2021, 45, 15789-15800.	1.4	10
36	0D CdxZn1-xS and amorphous Co9S8 formed S-scheme heterojunction boosting photocatalytic hydrogen evolution. Molecular Catalysis, 2021, 501, 111378.	1.0	22
37	Construction of a novel direct Z-scheme heterostructure consisting of ReS ₂ nanoflowers and In ₂ S ₃ nanohoneycombs for improving photoelectrochemical performance, Journal Physics D: Applied Physics, 2021, 54, 175111,	1.3	5

#	Article	IF	CITATIONS
38	Construction of Dualâ€ŧight Contact Interface in Zâ€scheme System of In ₂ O ₃ /O _V /In ₂ S ₃ for Enhancing Photocatalytic Performance. ChemCatChem, 2021, 13, 2379-2385.	1.8	10
39	Surface modification of BiOBr/TiO2 by reduced AgBr for solar-driven PAHs degradation: Mechanism insight and application assessment. Journal of Hazardous Materials, 2021, 412, 125221.	6.5	58
40	Bi ₂ S ₃ –In ₂ S ₃ Heterostructures for Efficient Photoreduction of Highly Toxic Cr ⁶⁺ Enabled by Facetâ€Coupling and Zâ€Scheme Structure. Small, 2021, 17, e2101833.	5.2	41
41	Highly Controllable Hydrogenative Ring Rearrangement and Complete Hydrogenation Of Biobased Furfurals over Pd/La ₂ B ₂ O ₇ (B=Ti, Zr, Ce). ChemCatChem, 2021, 13, 4549-4556.	1.8	11
42	A novel noble-metal-free binary and ternary In2S3 photocatalyst with WC and "W-Mo auxiliary pairs― for highly-efficient visible-light hydrogen evolution. Journal of Alloys and Compounds, 2021, 875, 160058.	2.8	37
43	The effect of vacuum and air annealing in the physical characteristics and photocatalytic efficiency of In2S3:Ag thin films produced by spray pyrolysis. Materials Chemistry and Physics, 2021, 270, 124838.	2.0	9
44	Photocatalytically reductive defluorination of perfluorooctanoic acid (PFOA) using Pt/La2Ti2O7 nanoplates: Experimental and DFT assessment. Journal of Hazardous Materials, 2021, 419, 126452.	6.5	32
45	SrTiO3-CaCr0.5Nb0.5O3 solid solutions as p-type photocatalysts for Z-scheme water splitting under visible light illumination. Journal of Materials Science and Technology, 2021, 87, 46-53.	5.6	5
46	Co3O4/CdS p-n heterojunction for enhancing photocatalytic hydrogen production: Co-S bond as a bridge for electron transfer. Applied Surface Science, 2021, 567, 150849.	3.1	73
47	Enhanced photocatalytic activity for 4-nitrophenol degradation using visible-light-driven In2S3/α-Fe2O3 composite. Journal of Solid State Chemistry, 2021, 303, 122461.	1.4	19
48	Rationally constructing of a novel composite photocatalyst with multi charge transfer channels for highly efficient sulfamethoxazole elimination: Mechanism, degradation pathway and DFT calculation. Chemical Engineering Journal, 2021, 426, 131585.	6.6	89
49	Formation of hierarchical Bi2MoO6/ln2S3 S-scheme heterojunction with rich oxygen vacancies for boosting photocatalytic CO2 reduction. Chemical Engineering Journal, 2022, 429, 132456.	6.6	155
50	Hydrothermal synthesis of a CoIn ₂ S ₄ /g-C ₃ N ₄ heterojunctional photocatalyst with enhanced photocatalytic H ₂ evolution activity under visible light illumination. Nanotechnology, 2020, 31, 505711.	1.3	14
51	Photocatalytic H ₂ Evolution Coupled with Furfuralcohol Oxidation over Ptâ€Modified ZnCdS Solid Solution. Small Methods, 2021, 5, e2100979.	4.6	79
52	Versatile Titanates: Classification, Property, Preparation, and Sustainable Energy Catalysis. Advanced Functional Materials, 2022, 32, 2108350.	7.8	14
53	High efficiency hydrogen production with visible light layered MgAl-LDH coupled with CoSx. Chemical Physics Letters, 2021, 784, 139124.	1.2	5
54	Self-assembled ultrathin closely bonded 2D/2D heterojunction for enhanced visible-light-induced photocatalytic oxidation and reaction mechanism insights. Journal of Colloid and Interface Science, 2022, 608, 2472-2481.	5.0	10
55	Synthesis of La2Ti2O7/Bi5O7I photocatalysts with improved photocatalytic activity for degradation of CIP under visible light. Separation and Purification Technology, 2022, 282, 120004.	3.9	46

#	Article	IF	CITATIONS
56	In-Situ Partial Cation Exchange-Derived Znin ₂ S ₄ Nanoparticles Hybridized 1D MIL-68/In ₂ S ₃ Microtubes for Highly Efficient Visible-Light Induced Water Splitting. SSRN Electronic Journal, 0, , .	0.4	0
58	Photocatalytic reduction of water to hydrogen by CuPbSbS3 nanoflakes. Materials Today Energy, 2022, 25, 100956.	2.5	8
59	Oneâ€Pot Preparation of Binary Photocatalyst ZnO/g 3 N 4 Nanosheets with Enhanced Photocatalytic Activity in Dye Degradation. ChemistrySelect, 2022, 7, .	0.7	5
60	Novel Z-scheme In2S3/Bi2WO6 core-shell heterojunctions with synergistic enhanced photocatalytic degradation of tetracycline hydrochloride. Journal of Cleaner Production, 2022, 339, 130634.	4.6	124
61	Recent Advancement of the Current Aspects of g ₃ N ₄ for its Photocatalytic Applications in Sustainable Energy System. Chemical Record, 2022, 22, e202100310.	2.9	32
62	Enhancing the Photodegradation Property of NO through the Construction of a SrTiO ₃ /GQDs/NH ₂ -UiO-66 Heterojunction. Industrial & Engineering Chemistry Research, 2022, 61, 3550-3560.	1.8	6
63	<scp> In ₂ S ₃ </scp> nanosheets growing on sheetâ€like <scp> gâ€C ₃ N ₄ </scp> as highâ€performance photocatalyst for <scp> H ₂ </scp> evolution under visible light. International Journal of Energy Research, 2022, 46, 9138-9149.	2.2	6
64	Fabrication of novel and noble-metal-free MoP/In2S3 Schottky heterojunction photocatalyst with efficient charge separation for enhanced photocatalytic H2 evolution under visible light. Journal of Colloid and Interface Science, 2022, 617, 284-292.	5.0	61
65	Fabricating a hollow cuboctahedral structure for N-doped carbon coated p-n heterojunctions towards high-performance photocatalytic organic transformation. Nano Research, 2022, 15, 4638-4645.	5.8	5
66	Expediting Photocarrier Separation in Ta3n5@Catao2n Heterostructures with Seamless Interfaces for Photocatalytic Water Oxidation Under Visible Light. SSRN Electronic Journal, 0, , .	0.4	0
67	Novel p- and n-type S-scheme heterojunction photocatalyst for boosted CO2 photoreduction activity. Applied Catalysis B: Environmental, 2022, 316, 121587.	10.8	64
68	Preparation, properties, and photocatalytic mechanism of In2.77S4/BiVO4 heterostructure for tetracycline degradation. Journal of Materials Science: Materials in Electronics, 2022, 33, 14680-14690.	1.1	4
69	Oxidation co-catalyst modified In2S3 with efficient interfacial charge transfer for boosting photocatalytic H2 evolution. International Journal of Hydrogen Energy, 2022, 47, 25300-25308.	3.8	11
70	Integrating <scp> Co ₃ O ₄ </scp> with <scp> ZnIn ₂ S ₄ </scp> pâ€n heterojunction for efficient photocatalytic hydrogen production. International Journal of Energy Research, 2022, 46, 15589-15601.	2.2	13
71	Enhanced photocatalytic degradation of lignin by In2S3 with hydrophobic surface and metal defects. Applied Surface Science, 2022, 600, 154110.	3.1	14
72	Fabrication and visible-light photocatalytic activity of Si-α-Fe2O3/In2S3 composites. Journal of Solid State Chemistry, 2022, 314, 123410.	1.4	4
73	Expediting photocarrier separation in Ta3N5@CaTaO2N heterostructures with seamless interfaces for photocatalytic water oxidation under visible light. Applied Catalysis B: Environmental, 2022, 317, 121712.	10.8	11
74	Fabrication of novel p-n-p heterojunctions ternary WSe2/In2S3/ZnIn2S4 to enhance visible-light photocatalytic activity. Journal of Environmental Chemical Engineering, 2022, 10, 108354.	3.3	7

#	Article	IF	CITATIONS
75	Constructing porous carbon nitride nanosheets for efficient visible-light-responsive photocatalytic hydrogen evolution. Journal of Colloid and Interface Science, 2022, 628, 214-221.	5.0	8
76	One-pot in-situ hydrothermal synthesis of ternary In2S3/Nb2O5/Nb2C Schottky/S-scheme integrated heterojunction for efficient photocatalytic hydrogen production. Journal of Colloid and Interface Science, 2022, 628, 500-512.	5.0	147
77	Recent progress of indium-based photocatalysts: Classification, regulation and diversified applications. Coordination Chemistry Reviews, 2022, 473, 214819.	9.5	8
78	Selective Adsorption and Photocatalytic Degradation of Chlortetracycline Hydrochloride by La2ti2o7/Acid-Modified Coal Bearing-Strata Kaolinite Composite. SSRN Electronic Journal, 0, , .	0.4	0
79	Photogenerated carrier dynamics at the B ₄ C ₃ /g-C ₃ N ₄ interface. Physical Chemistry Chemical Physics, 2022, 24, 24860-24865.	1.3	3
80	Improved photoredox activity of the 2D Bi ₄ Ti ₃ O ₁₂ –BiVO ₄ –Bi ₄ V ₂ O _{0<: heterostructure <i>via</i> the piezoelectricity-enhanced charge transfer effect. Dalton Transactions, 2022. 51. 16389-16396.}	sub>10 <td>ubz</td>	ubz
81	Recent Advances in Semiconductor Heterojunctions and Z-Schemes for Photocatalytic Hydrogen Generation. Topics in Current Chemistry, 2022, 380, .	3.0	18
82	Unveiling S‣cheme Charge Transfer Pathways in In ₂ S ₃ /Nb ₂ O ₅ Hybrid Nanofiber Photocatalysts for Low oncentration CO ₂ Hydrogenation. Solar Rrl, 2023, 7, .	3.1	12
83	Selective adsorption and photocatalytic degradation of chlortetracycline hydrochloride using a La2Ti2O7/acid-modified coal-bearing strata kaolinite composite. Applied Surface Science, 2023, 609, 155489.	3.1	10
84	Accelerated charge transfer of g-C3N4/BiVO4 Z-scheme 2D heterojunctions by controllably introducing phosphate bridges and Ag nanocluster co-catalysts for selective CO2 photoreduction to CO. Applied Surface Science, 2023, 610, 155360.	3.1	8
85	Inter-plane 2D/2D ultrathin La2Ti2O7/Ti3C2 MXene Schottky heterojunctions toward high-efficiency photocatalytic CO2 reduction. Chinese Journal of Catalysis, 2023, 44, 146-159.	6.9	22
86	Construction of CuInS ₂ /La ₂ Ti ₂ O ₇ heterojunction for highly efficient hydrogen evolution. CrystEngComm, 0, , .	1.3	0
87	Mg modified LaTiO2N with ameliorated photocarrier separation for solar water splitting. Applied Catalysis B: Environmental, 2023, 324, 122258.	10.8	6
88	Semiconductor photocatalysts: A critical review highlighting the various strategies to boost the photocatalytic performances for diverse applications. Advances in Colloid and Interface Science, 2023, 311, 102830.	7.0	41
89	Fabrication and characterization of In2.77S4/COFs composite photocatalyst for efficient degradation of tetracycline. Journal of Materials Science: Materials in Electronics, 2023, 34, .	1.1	0
90	MIL-125(Ti)-derived double vacancy-induced enhanced visible-light-driven TiO2 p-n homojunction for photocatalytic elimination of OFL and Cr(VI). Journal of Environmental Chemical Engineering, 2023, 11, 109721.	3.3	2
91	Ta3N5–LaTaON2 heterojunction with matched interfaces to accelerate charge separation for efficient photocatalytic water oxidation. Journal of Materials Science and Technology, 2023, 154, 241-250.	5.6	5
92	Preparation and characterization of Bi2SiO5/BiVO4 n–n isotype heterojunction composites as a visible-light-induced photocatalyst for tetracycline and levofloxacin degradation. Journal of Materials Science: Materials in Electronics, 2023, 34	1.1	5

CITATION REPORT

#	Article	IF	CITATIONS
93	Functionalized Regulation of Metal Defects in ln ₂ S ₃ of p–n Homojunctions. Langmuir, 2023, 39, 5065-5077.	1.6	5
104	The multiple roles of rare earth elements in the field of photocatalysis. Inorganic Chemistry Frontiers, 0, , .	3.0	0