Photocatalysis removing of NO based on modified carbo mineral particles

Applied Catalysis B: Environmental 245, 459-468 DOI: 10.1016/j.apcatb.2019.01.013

Citation Report

#	Article	IF	CITATIONS
1	Enhancing Photocatalytic Activity of NO Removal through an In Situ Control of Oxygen Vacancies in Growth of TiO ₂ . Advanced Materials Interfaces, 2019, 6, 1901032.	1.9	34
2	Direct double Z-scheme O-g-C3N4/Zn2SnO4N/ZnO ternary heterojunction photocatalyst with enhanced visible photocatalytic activity. Applied Surface Science, 2019, 492, 690-702.	3.1	70
3	Carbon-Based Nanomaterials via Heterojunction Serving as Photocatalyst. Frontiers in Chemistry, 2019, 7, 713.	1.8	42
4	Engineering black phosphorus to porous g-C ₃ N ₄ -metal–organic framework membrane: a platform for highly boosting photocatalytic performance. Journal of Materials Chemistry A, 2019, 7, 4408-4414.	5.2	79
5	Solar-light-driven rapid water disinfection by ultrathin magnesium titanate/carbon nitride hybrid photocatalyst: Band structure analysis and role of reactive oxygen species. Applied Catalysis B: Environmental, 2019, 257, 117898.	10.8	42
6	Constructing Z-scheme SnO ₂ /N-doped carbon quantum dots/ZnSn(OH) ₆ nanohybrids with high redox ability for NO <i>x</i> removal under VIS-NIR light. Journal of Materials Chemistry A, 2019, 7, 15782-15793.	5.2	60
7	ZIFâ€67â€Ðerived 3D Hollow Mesoporous Crystalline Co ₃ O ₄ Wrapped by 2D gâ€C ₃ N ₄ Nanosheets for Photocatalytic Removal of Nitric Oxide. Small, 2019, 15, e1902291.	5.2	93
8	Carbonate-intercalated defective bismuth tungstate for efficiently photocatalytic NO removal and promotion mechanism study. Applied Catalysis B: Environmental, 2019, 254, 206-213.	10.8	58
9	Defect-mediated Z-scheme BiO2-x/Bi2O2.75 photocatalyst for full spectrum solar-driven organic dyes degradation. Applied Catalysis B: Environmental, 2019, 254, 98-112.	10.8	162
10	Reactant activation and photocatalysis mechanisms on Bi-metal@Bi2GeO5 with oxygen vacancies: A combined experimental and theoretical investigation. Chemical Engineering Journal, 2019, 370, 1366-1375.	6.6	141
11	Hybrid materials based on conjugated polymers and inorganic semiconductors as photocatalysts: from environmental to energy applications. Chemical Society Reviews, 2019, 48, 5454-5487.	18.7	228
12	Supramolecular self-assembly production of porous carbon nitride nanosheets with excellent photocatalytic activity by a melamine derivative as doping molecule. Materials Science in Semiconductor Processing, 2020, 105, 104735.	1.9	23
13	Effective charge kinetics steering in surface plasmons coupled two-dimensional chemical Au/Bi2WO6-MoS2 heterojunction for superior photocatalytic detoxification performance. Journal of Hazardous Materials, 2020, 384, 121484.	6.5	31
14	Elucidate the promotional effects of Sn on Ce-Ti catalysts for NH3-SCR activity. Journal of the Energy Institute, 2020, 93, 1053-1063.	2.7	14
15	Rational design of 3D/2D In2O3 nanocube/ZnIn2S4 nanosheet heterojunction photocatalyst with large-area "high-speed channels―for photocatalytic oxidation of 2,4-dichlorophenol under visible light. Journal of Hazardous Materials, 2020, 382, 121098.	6.5	124
16	Carbon vacancy in C3N4 nanotube: Electronic structure, photocatalysis mechanism and highly enhanced activity. Applied Catalysis B: Environmental, 2020, 262, 118281.	10.8	162
17	Preparation of heterometallic CoNi-MOFs-modified BiVO4: a steady photoanode for improved performance in photoelectrochemical water splitting. Applied Catalysis B: Environmental, 2020, 266, 118513.	10.8	208
18	CN/rGO@BPQDs high-low junctions with stretching spatial charge separation ability for photocatalytic degradation and H2O2 production. Applied Catalysis B: Environmental, 2020, 266, 118602.	10.8	324

#	Article	IF	CITATIONS
19	Hierarchical <i>Z</i> -scheme g-C ₃ N ₄ /Au/ZnIn ₂ S ₄ photocatalyst for highly enhanced visible-light photocatalytic nitric oxide removal and carbon dioxide conversion. Environmental Science: Nano, 2020, 7, 676-687.	2.2	79
20	Insight into the effect of bromine on facet-dependent surface oxygen vacancies construction and stabilization of Bi2MoO6 for efficient photocatalytic NO removal. Applied Catalysis B: Environmental, 2020, 265, 118585.	10.8	96
21	OH/Na co-functionalized carbon nitride: directional charge transfer and enhanced photocatalytic oxidation ability. Catalysis Science and Technology, 2020, 10, 529-535.	2.1	13
22	Construction of 1D-MoS2 nanorods/LiNb3O8 heterostructure for enhanced hydrogen evolution. Applied Materials Today, 2020, 18, 100536.	2.3	19
23	Photo-assisted splitting of water into hydrogen using visible-light activated silver doped g-C3N4 & CNTs hybrids. International Journal of Hydrogen Energy, 2020, 45, 31574-31584.	3.8	25
24	Highly efficient electro-generation of H ₂ O ₂ by a nitrogen porous carbon modified carbonaceous cathode during the oxygen reduction reaction. New Journal of Chemistry, 2020, 44, 15942-15950.	1.4	13
25	Direct growth of uniform carbon nitride layers with extended optical absorption towards efficient water-splitting photoanodes. Nature Communications, 2020, 11, 4701.	5.8	87
26	Controllable Preparation of 3D Graphene with Different Morphologies for High-Performance Electrode Materials. ACS Omega, 2020, 5, 29038-29042.	1.6	3
27	Removal of Cr(VI) from Acid Wastewater by BC/ZnFe ₂ O ₄ Magnetic Nanocomposite via the Synergy of Absorptionâ€Photocatalysis. ChemCatChem, 2020, 12, 4121-4131.	1.8	16
28	Photocatalytic NOx abatement: Recent advances and emerging trends in the development of photocatalysts. Journal of Cleaner Production, 2020, 270, 121912.	4.6	78
29	Enhancement of photocatalytic NO removal activity of g-C ₃ N ₄ by modification with illite particles. Environmental Science: Nano, 2020, 7, 1990-1998.	2.2	23
30	Novel N/Carbon Quantum Dot Modified MIL-125(Ti) Composite for Enhanced Visible-Light Photocatalytic Removal of NO. Industrial & Engineering Chemistry Research, 2020, 59, 6470-6478.	1.8	26
31	A facile preparation strategy for Bi2O4/Bi2WO6 heterojunction with excellent visible light photocatalytic activity. Journal of Solid State Chemistry, 2020, 290, 121542.	1.4	18
32	Enhanced Interface Charge Transfer of Zâ€Scheme Photocatalyst by Br Substitution at the Bay Position in Perylene Tetracarboxylic Diimide. Solar Rrl, 2020, 4, 2000303.	3.1	12
33	Hollow graphene with apparent potential difference to boost charge directional transfer for photocatalytic H2 evolution. Applied Catalysis B: Environmental, 2020, 268, 118742.	10.8	23
34	Palladium as a Superior Cocatalyst to Platinum for Hydrogen Evolution Using Covalent Triazine Frameworks as a Support. ACS Applied Materials & Interfaces, 2020, 12, 12774-12782.	4.0	56
35	Efficient and Stable Photocatalytic Hydrogen Evolution Activity of Multi-Heterojunction Composite Photocatalysts: CdS and NiS2 Co-modified NaNbO3 Nanocubes. Frontiers in Chemistry, 2019, 7, 880.	1.8	8
36	Preparation of heterostructure g-C3N4/ZnO nanorods for high photocatalytic activity on different pollutants (MB, RhB, Cr(VI) and eosin). Ceramics International, 2020, 46, 12192-12199.	2.3	121

#	Article	IF	CITATIONS
37	The photocatalytic performance and active sites of g-C3N4 effected by the coordination doping of Fe(III). Chinese Journal of Catalysis, 2020, 41, 1564-1572.	6.9	55
38	Z-scheme heterojunction Ag3PO4/BiVO4 with exposing high-active facets and stretching spatial charge separation ability for photocatalytic organic pollutants degradation. Applied Surface Science, 2020, 524, 146506.	3.1	37
39	Selective Catalytic Oxidation of Benzyl Alcohol to Benzaldehyde by Nitrates. Frontiers in Chemistry, 2020, 8, 151.	1.8	16
40	Photocatalytic removal of NO by intercalated carbon nitride: The effect of group IIA element ions. Applied Catalysis B: Environmental, 2020, 273, 119007.	10.8	40
41	Dopant-Induced Edge and Basal Plane Catalytic Sites on Ultrathin C ₃ N ₄ Nanosheets for Photocatalytic Water Reduction. ACS Sustainable Chemistry and Engineering, 2020, 8, 7497-7502.	3.2	80
42	Enhanced photocatalytic NO removal and toxic NO2 production inhibition over ZIF-8-derived ZnO nanoparticles with controllable amount of oxygen vacancies. Chinese Journal of Catalysis, 2021, 42, 175-183.	6.9	66
43	Dual defects and build-in electric field mediated direct Z-scheme W18O49/g-C3N4â^'x heterojunction for photocatalytic NO removal and organic pollutant degradation. Journal of Colloid and Interface Science, 2021, 582, 212-226.	5.0	71
44	Z-Scheme 2D/2D α-Fe2O3/g-C3N4 heterojunction for photocatalytic oxidation of nitric oxide. Applied Catalysis B: Environmental, 2021, 280, 119409.	10.8	239
45	Novel Z-scheme Ag-C3N4/SnS2 plasmonic heterojunction photocatalyst for degradation of tetracycline and H2 production. Chemical Engineering Journal, 2021, 405, 126555.	6.6	124
46	Chemical etching fabrication of uniform mesoporous Bi@Bi2O3 nanospheres with enhanced visible light-induced photocatalytic oxidation performance for NOx. Chemical Engineering Journal, 2021, 406, 126910.	6.6	51
47	Insights into the photocatalysis mechanism of the novel 2D/3D Z-Scheme g-C3N4/SnS2 heterojunction photocatalysts with excellent photocatalytic performances. Journal of Hazardous Materials, 2021, 402, 123711.	6.5	33
48	Catalytic oxidation mechanism of NO to HNO3 on TiO2 (101) and (001) surfaces and the influence factors on NO removal: A DFT study. Journal of Environmental Chemical Engineering, 2021, 9, 104643.	3.3	6
49	Study on the Photocatalysis Mechanism of the Z-Scheme Cobalt Oxide Nanocubes/Carbon Nitride Nanosheets Heterojunction Photocatalyst with High Photocatalytic Performances. Journal of Hazardous Materials, 2021, 402, 123839.	6.5	23
50	Z-scheme Au decorated carbon nitride/cobalt tetroxide plasmonic heterojunction photocatalyst for catalytic reduction of hexavalent chromium and oxidation of Bisphenol A. Journal of Hazardous Materials, 2021, 410, 124539.	6.5	52
51	Intrinsic defect engineering in graphitic carbon nitride for photocatalytic environmental purification: A review to fill existing knowledge gaps. Chemical Engineering Journal, 2021, 421, 127729.	6.6	67
52	Photocatalytic reaction mechanisms at a gas–solid interface for typical air pollutant decomposition. Journal of Materials Chemistry A, 2021, 9, 20184-20210.	5.2	28
53	Linking the enhanced deep NO oxidation of a ferroelectric K _{0.5} Bi _{0.5} TiO ₃ nanowire photocatalyst to its spontaneous polarization and oxygen vacancies. Inorganic Chemistry Frontiers, 2021, 8, 5065-5075.	3.0	3
54	Enhanced peroxymonosulfate activation on dual active sites of N vacancy modified g-C3N4 under visible-light assistance and its selective removal of organic pollutants. Science of the Total Environment, 2021, 756, 144139.	3.9	74

#	Article	IF	CITATIONS
55	Excitation-induced tunable luminescent properties of polyhedral CaMoO4 microcrystallites. Journal of Materials Science: Materials in Electronics, 2021, 32, 10008-10017.	1.1	5
56	Amorphous Carbon Nitride with Three Coordinate Nitrogen (N3 _C) Vacancies for Exceptional NO <i>_x</i> Abatement in Visible Light. Advanced Energy Materials, 2021, 11, 2004001.	10.2	91
57	A novel Au/g-C3N4 nanosheets/CeO2 hollow nanospheres plasmonic heterojunction photocatalysts for the photocatalytic reduction of hexavalent chromium and oxidation of oxytetracycline hydrochloride. Chemical Engineering Journal, 2021, 409, 128185.	6.6	74
58	Defects and internal electric fields synergistically optimized g-C3N4â^'x/BiOCl/WO2.92 heterojunction for photocatalytic NO deep oxidation. Journal of Hazardous Materials, 2021, 408, 124897.	6.5	35
59	CsPbBr ₃ Perovskite Nanocrystal: A Robust Photocatalyst for Realizing NO Abatement. ACS ES&T Engineering, 2021, 1, 1021-1027.	3.7	18
60	Diffusionâ€Controlled Zâ€Schemeâ€Steered Charge Separation across PDI/BiOI Heterointerface for Ultraviolet, Visible, and Infrared Lightâ€Driven Photocatalysis. Advanced Functional Materials, 2021, 31, 2102315.	7.8	73
61	New Insights on Competitive Adsorption of NO/SO ₂ on TiO ₂ Anatase for Photocatalytic NO Oxidation. Environmental Science & Technology, 2021, 55, 9285-9292.	4.6	24
62	Novel AgClxBr1â^x solid solutions photocatalyst with enhanced photocatalytic activity for reduction of Cr6+ and oxidation of Bisphenol A under simulated sunlight. Materials Research Bulletin, 2021, 139, 111257.	2.7	5
63	Ternary g-C3N4/TiO2/Ti3C2 MXene S-scheme heterojunction photocatalysts for NOx removal under visible light. Applied Surface Science, 2021, 556, 149817.	3.1	58
64	Silver embedded in defective twin brush-like ZnO for efficient and stable photocatalytic NO removal. Surfaces and Interfaces, 2021, 25, 101298.	1.5	4
65	A novel Z-scheme CeO2/g-C3N4 heterojunction photocatalyst for degradation of Bisphenol A and hydrogen evolution and insight of the photocatalysis mechanism. Journal of Materials Science and Technology, 2021, 85, 18-29.	5.6	75
66	A nanoporous Three-dimensional graphene aerogel doped with a carbon quantum Dot-TiO2 composite that exhibits superior activity for the catalytic photodegradation of organic pollutants. Applied Surface Science, 2021, 569, 151116.	3.1	12
67	Photocatalytic degradation of tetracycline antibiotic by a novel Bi2Sn2O7/Bi2MoO6 S-scheme heterojunction: Performance, mechanism insight and toxicity assessment. Chemical Engineering Journal, 2022, 429, 132519.	6.6	279
68	Molecular oxygen activation enhancement by BiOBr0.510.5/BiOI utilizing the synergistic effect of solid solution and heterojunctions for photocatalytic NO removal. Chinese Journal of Catalysis, 2020, 41, 1480-1487.	6.9	31
69	Enhanced photocatalytic degradation of organic contaminants over a CuO/g-C ₃ N ₄ p–n heterojunction under visible light irradiation. RSC Advances, 2021, 11, 33373-33379.	1.7	13
70	Photocatalytic Air Purification Using Functional Polymeric Carbon Nitrides. Advanced Science, 2021, 8, e2102376.	5.6	24
71	Heterostructures obtained by ultrasonic methods for photocatalytic application: A review. Materials Science in Semiconductor Processing, 2022, 139, 106311.	1.9	7
72	Polyoxometalates-doped Bi2O3–/Bi photocatalyst for highly efficient visible-light photodegradation of tetrabromobisphenol A and removal of NO. Chinese Journal of Catalysis, 2022, 43, 771-781.	6.9	17

CITATION REPORT

#	Article	IF	CITATIONS
73	Visible Light Driven S-Scheme Heterojunction Zn3in2s6/Bi2moo6ÂFor Efficient Degradation of Metronidazole. SSRN Electronic Journal, 0, , .	0.4	0
74	Constructing an ohmic junction of copper@ cuprous oxide nanocomposite with plasmonic enhancement for photocatalysis. Journal of Colloid and Interface Science, 2022, 616, 163-176.	5.0	25
75	High-performance BiVO4 photoanodes cocatalyzed with bilayer metal–organic frameworks for photoelectrochemical application. Journal of Colloid and Interface Science, 2022, 619, 257-266.	5.0	13
76	Local Spatial Polarization Induced Efficient Charge Separation of Squaraineâ€Linked COF for Enhanced Photocatalytic Performance. Advanced Functional Materials, 2022, 32, .	7.8	56
77	Hydrothermal Synthesis of a Ce–Zr–Ti Mixed Oxide Catalyst with Enhanced Catalytic Performance for a NH ₃ -SCR Reaction. Langmuir, 2021, 37, 14823-14832.	1.6	9
78	Synergistic degradation of NO and C7H8 for inhibition of O3 generation. Applied Catalysis B: Environmental, 2022, 312, 121423.	10.8	14
80	Recent Advances in the Application and Mechanism of Carbon Dots/Metalâ€Organic Frameworks Hybrids in Photocatalysis and the Detection of Environmental Pollutants. Chemistry - an Asian Journal, 2022, 17, .	1.7	5
81	Preparation of Ce _{<i>x</i>} Zr _{1–<i>x</i>} O ₂ by Different Methods and Its Catalytic Oxidation Activity for Diesel Soot. ACS Omega, 2022, 7, 16352-16360.	1.6	1
82	The excellent photocatalytic NO removal performance relates to the synergistic effect between the prepositive NaOH solution and the g-C3N4 photocatalysis. Environmental Research, 2022, 212, 113405.	3.7	19
83	Z-Scheme Bi4o5br2/Mil-88b(Fe) Heterojunction for Boosting Visible Light Catalytic Oxidation of Tetracycline Hydrochloride. SSRN Electronic Journal, 0, , .	0.4	Ο
84	Z-Scheme Bi4o5br2/Mil-88b(Fe) Heterojunction for Boosting Visible Light Catalytic OxidationÂOf Tetracycline Hydrochloride. SSRN Electronic Journal, 0, , .	0.4	0
85	Mineral-Supported Photocatalysts: A Review of Materials, Mechanisms and Environmental Applications. Energies, 2022, 15, 5607.	1.6	12
86	Progress and prospects of photocatalytic conversion of low-concentration NO. Chinese Journal of Catalysis, 2022, 43, 2363-2387.	6.9	24
87	Engineering ZnSn(OH)6 with ternary active sites-directed hydroxyl vacancies for robust deep C6H6 photo-oxidation: Experiment and DFT calculations. Chemical Engineering Journal, 2023, 451, 138695.	6.6	7
88	Immobilizing TiO2 on nickel foam for an enhanced photocatalysis in NO abatement under visible light. Journal of Materials Science, 2022, 57, 15722-15736.	1.7	3
89	Recent Progress of Natural Mineral Materials in Environmental Remediation. Catalysts, 2022, 12, 996.	1.6	6
90	Syntheses and Applications of Nanomaterials-Based Photocatalysts for Air Purification. Green Energy and Technology, 2023, , 75-150.	0.4	0
91	Z-scheme Bi4O5Br2/MIL-88B(Fe) heterojunction for boosting visible light catalytic oxidation of tetracycline hydrochloride. Applied Surface Science, 2023, 611, 155667.	3.1	7

CITATION REPORT

#	Article	IF	CITATIONS
92	Constructing oxygen absorption and activation sites in Ce-doped g-C3N4 photocatalyst for effective removal of amoxicillin: Performance, mechanism and degradation pathways. Applied Surface Science, 2023, 611, 155808.	3.1	7
93	2D/3D g-C3N4/BiOI heterostructure catalyst for efficient and robust photocatalytic NO removal. Separation and Purification Technology, 2023, 310, 123183.	3.9	9
94	Favoring the generation and utilization of photocatalytic reactive species over g-C ₃ N ₄ nanosheets by controllable edge C modification. Sustainable Energy and Fuels, 0, , .	2.5	1
95	Oxygen Vacancy Defect Engineering of Heterophase Junction TiO ₂ : Interfacial/Surface Oxygen Vacancies Coadjust the Photocatalytic ROS Production. ACS Applied Energy Materials, 2023, 6, 1025-1036.	2.5	13
96	Enhanced photocatalytic degradation of tetracycline by a H ₂ O ₂ -assisted Bi ₃ NbO ₇ /Bi ₂ Sn ₂ O ₇ composite under visible light. Physical Chemistry Chemical Physics, 2023, 25, 4553-4562.	1.3	0
97	Polymeric carbon nitride-based photocatalysts for the removal of nitrogen oxides: a review. Environmental Chemistry Letters, 2023, 21, 2913-2952.	8.3	2