Robust Superhydrophobic/Superoleophilic Wrinkled M Composites for Efficient Oil–Water Separation

Angewandte Chemie - International Edition 58, 5297-5301 DOI: 10.1002/anie.201814487

Citation Report

#	Article	IF	CITATIONS
1	Synthesis of Three-Dimensional Graphene-Based Hybrid Materials for Water Purification: A Review. Nanomaterials, 2019, 9, 1123.	1.9	65
2	Computer-aided discovery of connected metal-organic frameworks. Nature Communications, 2019, 10, 3620.	5.8	71
3	Protein corona of metal-organic framework nanoparticals: Study on the adsorption behavior of protein and cell interaction. International Journal of Biological Macromolecules, 2019, 140, 709-718.	3.6	31
4	Functional Metal Organic Framework/SiO2 Nanocomposites: From Versatile Synthesis to Advanced Applications. Polymers, 2019, 11, 1823.	2.0	31
5	Robust fluorine-free colorful superhydrophobic PDMS/NH2-MIL-125(Ti)@cotton fabrics for improved ultraviolet resistance and efficient oil–water separation. Cellulose, 2019, 26, 9335-9348.	2.4	40
6	An electrospun fiber based metal–organic framework composite membrane for fast, continuous, and simultaneous removal of insoluble and soluble contaminants from water. Journal of Materials Chemistry A, 2019, 7, 22559-22570.	5.2	89
7	Nonflammable and Magnetic Sponge Decorated with Polydimethylsiloxane Brush for Multitasking and Highly Efficient Oil–Water Separation. Advanced Functional Materials, 2019, 29, 1902488.	7.8	162
8	Hydrophobic metal-organic frameworks: Potential toward emerging applications. APL Materials, 2019, 7, 050701.	2.2	40
9	3D Grapheneâ€Based Macrostructures for Water Treatment. Advanced Materials, 2020, 32, e1806843.	11.1	158
10	Development of superhydrophilic Al foil with micropore arrays via mask electrochemical machining and chemical immersion for efficient oil/water separation. Journal of Dispersion Science and Technology, 2020, 41, 1335-1345.	1.3	6
11	Fabrication of multifunctional textiles with durable antibacterial property and efficient oil-water separation via in situ growth of zeolitic imidazolate framework-8 (ZIF-8) on cotton fabric. Applied Surface Science, 2020, 503, 144079.	3.1	114
12	Dual superlyophobic zeolitic imidazolate framework-8 modified membrane for controllable oil/water emulsion separation. Separation and Purification Technology, 2020, 236, 116273.	3.9	72
13	Microâ€/Nanostructured Interface for Liquid Manipulation and Its Applications. Small, 2020, 16, e1903849.	5.2	70
14	Hydrophobicity or superhydrophobicity—which is the right choice for stabilizing underwater superoleophilicity?. Journal of Materials Chemistry A, 2020, 8, 97-106.	5.2	20
15	Metal–organic frameworks and their derivatives with graphene composites: preparation and applications in electrocatalysis and photocatalysis. Journal of Materials Chemistry A, 2020, 8, 2934-2961.	5.2	170
16	Design and preparation of superwetting polymer surface. Polymer, 2020, 186, 122043.	1.8	6
17	Porous Fluorinated Graphene and ZIF-67 Composites with Hydrophobic-Oleophilic Properties Towards Oil and Organic Solvent Sorption. Journal of Nanoscience and Nanotechnology, 2020, 20, 2930-2938.	0.9	12
18	A Mini Review: Application Progress of Magnetic Graphene Three-Dimensional Materials for Water Purification. Frontiers in Chemistry, 2020, 8, 595643.	1.8	9

#	Article	IF	CITATIONS
19	Hydrophobicity-Adjustable MOF Constructs Superhydrophobic MOF-rGO Aerogel for Efficient Oil–Water Separation. ACS Applied Materials & Interfaces, 2020, 12, 56435-56444.	4.0	71
20	Designing novel superwetting surfaces for high-efficiency oil–water separation: design principles, opportunities, trends and challenges. Journal of Materials Chemistry A, 2020, 8, 16831-16853.	5.2	194
21	Oneâ€Pot Route for Fe@Poly(styreneâ€ <i>co</i> â€divinylbenzene) Foam with Robust Physical/Chemical Stability and Remote Magnetic Driven Capacity for Oil Removal. Macromolecular Materials and Engineering, 2020, 305, 2000160.	1.7	2
22	Graphene oxide/zeolitic imidazolate frameworks-8 coating for cotton fabrics with highly flame retardant, self-cleaning and efficient oil/water separation performances. Materials Chemistry and Physics, 2020, 256, 123656.	2.0	27
23	Ultralight covalent organic framework/graphene aerogels with hierarchical porosity. Nature Communications, 2020, 11, 4712.	5.8	183
24	General Fabrication of 3D Hierarchically Structured Bamboo-like Nitrogen-Doped Carbon Nanotube Arrays on 1D Nitrogen-Doped Carbon Skeletons for Highly Efficient Electromagnetic Wave Energy Attenuation. ACS Applied Materials & Interfaces, 2020, 12, 40692-40701.	4.0	69
25	Graphene Oxide-Supported Lanthanide Metal–Organic Frameworks with Boosted Stabilities and Detection Sensitivities. Analytical Chemistry, 2020, 92, 15550-15557.	3.2	38
26	Hydrophobic porous BN/SiO2@PU as ternary adsorbents for efficient oil/water separation. Journal of Porous Materials, 2020, 27, 1149-1158.	1.3	12
27	Hydrophilicity reversal by post-modification: Hydrophobic zeolite FAU and LTA coatings on stainless-steel-net for oil/water separation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 601, 124936.	2.3	17
28	Ultrafast Fabrication of Metal–Organic Framework-Functionalized Superwetting Membrane for Multichannel Oil/Water Separation and Floating Oil Collection. ACS Applied Materials & Interfaces, 2020, 12, 25512-25520.	4.0	56
29	Fabrication of superhydrophobic self-cleaning manganese dioxide coatings on Mg alloys inspired by lotus flower. Ceramics International, 2020, 46, 20328-20334.	2.3	34
30	Hard-and-Soft Integration Strategy for Preparation of Exceptionally Stable Zr(Hf)-UiO-66 via Thiol–Ene Click Chemistry. ACS Applied Materials & Interfaces, 2020, 12, 28576-28585.	4.0	26
31	A three-dimensional porous MoS ₂ –PVP aerogel as a highly efficient and recyclable sorbent for oils and organic solvents. Materials Advances, 2020, 1, 760-766.	2.6	9
32	Surface Engineering of Ceramic Nanomaterials for Separation of Oil/Water Mixtures. Frontiers in Chemistry, 2020, 8, 578.	1.8	14
33	Natural sponge-like wood-derived aerogel for solar-assisted adsorption and recovery of high-viscous crude oil. Chemical Engineering Journal, 2020, 400, 125865.	6.6	96
34	A General in Situ Deposition Strategy for Synthesis of Janus Composite Fabrics with Co(CO3)0.5OH·0.11H2O Nanoneedles for Oil–Water Separation. ACS Applied Nano Materials, 2020, 3, 3779-3786.	2.4	8
35	Durable multifunctional superhydrophobic sponge for oil/water separation and adsorption of volatile organic compounds. Research on Chemical Intermediates, 2020, 46, 4297-4309.	1.3	15
36	Photothermal hierarchical carbon nanotube/reduced graphene oxide microspherical aerogels with radially orientated microchannels for efficient cleanup of crude oil spills. Journal of Colloid and Interface Science, 2020, 570, 61-71.	5.0	83

#	Article	IF	CITATIONS
37	Incorporation of UiO-66-NH2 into modified PAN nanofibers to enhance adsorption capacity and selectivity for oil removal. Journal of Polymer Research, 2020, 27, 1.	1.2	18
38	A Spiderwebâ€Like Metal–Organic Framework Multifunctional Foam. Angewandte Chemie - International Edition, 2020, 59, 9506-9513.	7.2	41
39	A Spiderwebâ€Like Metal–Organic Framework Multifunctional Foam. Angewandte Chemie, 2020, 132, 9593-9600.	1.6	3
40	Superhydrophobic Metal–Organic Framework Nanocoating Induced by Metal-Phenolic Networks for Oily Water Treatment. ACS Sustainable Chemistry and Engineering, 2020, 8, 1831-1839.	3.2	33
41	Graphene oxide modified waste newspaper for removal of heavy metal ions and its application in	2.0	31
42	Robust porous organosilica monoliths via a surfactant-free high internal phase emulsion process for efficient oil-water separation. Journal of Colloid and Interface Science, 2020, 566, 338-346.	5.0	27
43	Tuning the Wrinkles in 3D Graphene Architectures for Mass and Electron Transport. Advanced Materials Interfaces, 2020, 7, 1902190.	1.9	5
44	Fabrication of a superhydrophobic surface using a simple <i>in situ</i> growth method of HKUST-1/copper foam with hexadecanethiol modification. New Journal of Chemistry, 2020, 44, 7065-7070.	1.4	11
45	Facile optimization of hierarchical topography and chemistry on magnetically active graphene oxide nanosheets. Chemical Science, 2020, 11, 6556-6566.	3.7	16
46	Graphene and its derivative composite materials with special wettability: Potential application in oil-water separation. Carbon, 2021, 172, 647-681.	5.4	47
47	Fabrication of highly stable metal–organic frameworks and corresponding hydrophobic foam through a reticular chemistry strategy for simultaneous organic micropollutant and insoluble oil removal from wastewater. Journal of Materials Chemistry A, 2021, 9, 3369-3378.	5.2	23
48	Magnetic, superelastic and superhydrophobic porous thermoplastic polyurethane monolith with nano-Fe3O4 coating for highly selective and easy-recycling oil/water separation. Applied Surface Science, 2021, 535, 147690.	3.1	42
49	Hydrophobic mixed-metal MOF-derived carbon sponges. Mendeleev Communications, 2021, 31, 91-93.	0.6	10
50	Robust superhydrophobicity: mechanisms and strategies. Chemical Society Reviews, 2021, 50, 4031-4061.	18.7	334
51	Green Method for Fabrication of an Underwater Superoleophobic Phosphor-Copper Mesh and Transportation of Oily Liquids. Langmuir, 2021, 37, 759-768.	1.6	5
52	Welding partially reduced graphene oxides by MOFs into micro–mesoporous hybrids for high-performance oil absorption. RSC Advances, 2021, 11, 30980-30989.	1.7	2
53	In-Situ Growth of MOF for Energy Conversion and Storage Devices. , 2021, , .		1
54	Design of â€~tolerant and hard' superhydrophobic coatings to freeze physical deformation. Materials Horizons, 2021, 8, 2717-2725.	6.4	15

			Circumiania
#	ARTICLE	IF	CITATIONS
55	Wettability control of metal-organic frameworks. , 2021, , 131-166.		2
56	An environmentally friendly method for fabrication of superhydrophobic "pipe―with loss-free liquid transportation properties. Surface and Coatings Technology, 2021, 407, 126777.	2.2	4
57	Superhydrophobic/Superoleophilic Polyacrylonitrile/Ag Aerogels for the High Efficient Oil/Water Separation and Sensitive Detection of Low oncentration Oily Sudan Dyes. Advanced Materials Interfaces, 2021, 8, 2002174.	1.9	6
58	Biomimetic Porous Nanofiber-Based Oil Pump for Spontaneous Oil Directional Transport and Collection. ACS Applied Materials & amp; Interfaces, 2021, 13, 16887-16894.	4.0	2
59	Multi-functional cotton textiles design using in situ generating zeolitic imidazolate framework-67 (ZIF-67) for effective UV resistance, antibacterial activity, and self-cleaning. Cellulose, 2021, 28, 5923.	2.4	20
60	Durable, magnetic-responsive melamine sponge composite for high efficiency, in situ oil–water separation. Nanotechnology, 2021, 32, 275705.	1.3	14
61	Length controllable tubular carbon nanofibers: Surface adjustment and oil adsorption performances. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 615, 126272.	2.3	9
62	Nano/submicrometer-emulsion oily wastewater treatment inspired by plant transpiration. Matter, 2021, 4, 1274-1286.	5.0	65
63	Facile Construction and Fabrication of a Superhydrophobic Copper Mesh for Ultraefficient Oil/Water Separation. Industrial & Engineering Chemistry Research, 2021, 60, 8139-8146.	1.8	18
64	Hydrophobic-modified metal-hydroxide nanoflocculants enable one-step removal of multi-contaminants for drinking water production. IScience, 2021, 24, 102491.	1.9	12
65	One-pot synthesis of fluorine functionalized Zr-MOFs and their in situ growth on sponge for oil absorption. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 616, 126322.	2.3	15
66	Recent developments of organic solvent resistant materials for membrane separations. Chemosphere, 2021, 271, 129425.	4.2	64
67	Wood Sponge Reinforced with Polyvinyl Alcohol for Sustainable Oil–Water Separation. ACS Omega, 2021, 6, 12866-12876.	1.6	37
68	A review of graphene-oxide/metal–organic framework composites materials: characteristics, preparation and applications. Journal of Porous Materials, 2021, 28, 1837-1865.	1.3	36
69	Super-hydrophobic F-TiO2@PP membranes with nano-scale "coral―like synapses for waste oil recovery. Separation and Purification Technology, 2021, 267, 118579.	3.9	23
70	A Strategy of Liquidâ€Grafted Slippery Sponges with Simultaneously Enhanced Absorption and Desorption Performances for Crude Oil Spill Remediation. Macromolecular Materials and Engineering, 2021, 306, 2100242.	1.7	10
71	Biocarbons as emerging and sustainable hydrophobic/oleophilic sorbent materials for oil/water separation. Sustainable Materials and Technologies, 2021, 28, e00268.	1.7	23
72	Engineering Durable Superhydrophobic Photocatalyst for Oilâ€Water Separation and Degradation of Chemical Pollutants. ChemistrySelect, 2021, 6, 7271-7277.	0.7	3

#	Article	IF	CITATIONS
73	Fabrication of cross-like ZIF-L structures with water repellency and self-cleaning property via a simple in-situ growth strategy. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 623, 126731.	2.3	9
74	A superhydrophobic material based on an industrial solid waste for oil/water separation. Canadian Journal of Chemical Engineering, 2022, 100, 1771-1777.	0.9	3
75	Efficient and Fast Removal of Oils from Water Surfaces via Highly Oleophilic Polyurethane Composites. Toxics, 2021, 9, 186.	1.6	17
76	Hydrophobicity: a key factor en route to applications of metal–organic frameworks. Trends in Chemistry, 2021, 3, 911-925.	4.4	14
77	2D MOFsâ€based Materials for the Application of Water Pollutants Removing: Fundamentals and Prospects. Chemistry - an Asian Journal, 2021, 16, 3585-3598.	1.7	9
78	Rapid and Scalable Synthesis of a Vanillin-Based Organogelator and Its Durable Composite for a Comprehensive Remediation of Crude-Oil Spillages. ACS Applied Materials & Interfaces, 2021, 13, 46803-46812.	4.0	11
79	Small molecules derived Tailored-Superhydrophobicity on fibrous and porous Substrates—with superior tolerance. Chemical Engineering Journal, 2022, 430, 132597.	6.6	8
80	Biomass-derived oriented neurovascular network-like superhydrophobic aerogel as robust and recyclable oil droplets captor for versatile oil/water separation. Journal of Hazardous Materials, 2022, 424, 127393.	6.5	64
81	Sensitive and selective detection of chromium (VI) based on two-dimensional luminescence metal organic framework nanosheets via the mechanism integrating chemical oxidation-reduction and inner filter effect. Journal of Hazardous Materials, 2021, 419, 126443.	6.5	44
82	Highly efficient and recyclable polyolefin-based magnetic sorbent for oils and organic solvents spill cleanup. Journal of Hazardous Materials, 2021, 419, 126485.	6.5	9
83	Steamed bun-derived microporous carbon for oil-water separation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 629, 127389.	2.3	3
84	Fully organic and biodegradable superhydrophobic sponges derived from natural resources for efficient removal of oil from water. Separation and Purification Technology, 2021, 277, 119411.	3.9	9
85	Recent advances in metal-organic framework membranes for water treatment: A review. Science of the Total Environment, 2021, 800, 149662.	3.9	450
86	Lightweight, amphipathic and fire-resistant prGO/MXene spherical beads for rapid elimination of hazardous chemicals. Journal of Hazardous Materials, 2022, 423, 127069.	6.5	34
87	Preparation of core-shell C@TiO2 composite microspheres with wrinkled morphology and its microwave absorption. Journal of Colloid and Interface Science, 2022, 607, 1036-1049.	5.0	34
88	Recent progress in metal–organic framework/graphene-derived materials for energy storage and conversion: design, preparation, and application. Chemical Science, 2021, 12, 5737-5766.	3.7	79
89	A sustainable strategy for the remediation of oil/water separation using polybenzoxazine/stearic acid functionalized porous carbon. New Journal of Chemistry, 2021, 45, 17566-17575.	1.4	1
90	Carbon nanostructure-based superhydrophobic surfaces and coatings. Nanotechnology Reviews, 2021, 10, 518-571.	2.6	42

#	Article	IF	CITATIONS
91	Fabrication of novel superhydrophobic ZIF-8 modified directly Z-scheme bismuth oxyiodide/cadmium sulfide melamine sponge for efficient oil/water separation and visible-light photodegradation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 601, 124992.	2.3	13
92	Advanced Materials with Special Wettability toward Intelligent Oily Wastewater Remediation. ACS Applied Materials & Interfaces, 2021, 13, 67-87.	4.0	190
93	Metal Organic Framework@Polysilsesequioxane Core/Shell-Structured Nanoplatform for Drug Delivery. Pharmaceutics, 2020, 12, 98.	2.0	17
94	Hydrophilic and underwater superoleophobic porous graphitic carbon nitride (g-C3N4) membranes with photo-Fenton self-cleaning ability for efficient oil/water separation. Journal of Colloid and Interface Science, 2022, 608, 1960-1972.	5.0	55
95	Preparation and adsorption performance of cellulose nanofibrils/polyvinyl alcohol composite gel spheres with millimeter size. Carbohydrate Polymers, 2022, 277, 118850.	5.1	10
96	Flexible polyurethane foams surface-modified with FeOOH for improved oil-water separation and flame retardancy. Materials Chemistry and Physics, 2022, 276, 125408.	2.0	14
97	Optical-switched proton logic gate: Indocyanine green decorated HSB-W5 MOFs nanosheets. Science China Materials, 0, , 1.	3.5	4
98	Recent advances and challenges of metal–organic framework/graphene-based composites. Composites Part B: Engineering, 2022, 230, 109532.	5.9	66
99	Superhydrophobic aerogel membrane with integrated functions of biopolymers for efficient oil/water separation. Separation and Purification Technology, 2022, 282, 120138.	3.9	35
100	A durable superhydrophobic porous polymer coated sponge for efficient separation of immiscible oil/water mixtures and oil-in-water emulsions. Journal of Hazardous Materials, 2022, 425, 127980.	6.5	41
101	Boosting CO desorption on dual active site electrocatalysts for CO2 reduction to produce tunable syngas. Cell Reports Physical Science, 2022, 3, 100703.	2.8	14
102	Mussel-Inspired and <i>In Situ</i> Polymerization-Modified Commercial Sponge for Efficient Crude Oil and Organic Solvent Adsorption. ACS Applied Materials & amp; Interfaces, 2022, 14, 2663-2673.	4.0	21
103	Hierarchical porous metal–organic framework materials for efficient oil–water separation. Journal of Materials Chemistry A, 2022, 10, 2751-2785.	5.2	48
104	Biomass poplar catkin fiber-based superhydrophobic aerogel with tubular-lamellar interweaved neurons-like structure. Journal of Hazardous Materials, 2022, 429, 128290.	6.5	38
105	Shaping of Metal–Organic Frameworks: A Review. Energy & Fuels, 2022, 36, 2927-2944.	2.5	56
106	Nasal Cavity Inspired Microâ€Nanostructured Cone Array Tube for Oil Recovery in Wastewater. Advanced Materials Interfaces, 2022, 9, .	1.9	5
107	Ultrastable MOF-based foams for versatile applications. Nano Research, 2022, 15, 2961-2970.	5.8	20
108	Controlling Oil Spill Via Rapid and Recyclable Trap Using Biomass Poplar Catkin Fiber-Based Superhydrophobic Aerogel with Tubular-Lamellar Interweaved Neurons-Like Structure. SSRN Electronic Journal. 0	0.4	Ο

#	Article	IF	CITATIONS
109	Facile Fabrication of Highly Hydrophobic Onion-like Candle Soot-Coated Mesh for Durable Oil/Water Separation. Nanomaterials, 2022, 12, 761.	1.9	9
110	MIL-101(Fe) Networks Supported on Fluorinated Graphene Nanosheets as Coatings for Oil Sorption. ACS Applied Nano Materials, 2022, 5, 5857-5867.	2.4	8
111	A Durable Fluorineâ€Free MOFâ€Based Selfâ€Cleaning Superhydrophobic Cotton Fabric for Oilâ€Water Separation. Advanced Materials Interfaces, 2022, 9, .	1.9	17
112	Recycling plastic waste into multifunctional superhydrophobic textiles. Nano Research, 2022, 15, 9921-9925.	5.8	13
113	Magnetic Fe ₃ O ₄ Nanoparticle/ZIF-8 Composites for Contaminant Removal from Water and Enhanced Flame Retardancy of Flexible Polyurethane Foams. ACS Applied Nano Materials, 2022, 5, 3491-3501.	2.4	9
114	Grapheneâ€based macromolecular assemblies as high-performance absorbents for oil and chemical spills response and cleanup. Journal of Environmental Chemical Engineering, 2022, 10, 107586.	3.3	3
115	Recent advances in membrane-enabled water desalination by 2D frameworks: Graphene and beyond. Desalination, 2022, 531, 115684.	4.0	50
116	Nanocomposites of Graphene Oxide and Metal-Organic Frameworks. Russian Journal of Applied Chemistry, 2021, 94, 1453-1468.	0.1	6
117	Surfactant-modified graphene oxide complex-coating functionalized material with robust switchable oil/water wettability for high-performance on-demand emulsion separation. Surface and Coatings Technology, 2022, 439, 128431.	2.2	12
119	A Review of Metal–Organic Frameworkâ€Based Compounds for Environmental Applications. Energy and Environmental Materials, 2023, 6, .	7.3	15
120	Synthesis of MOF-derived nitrogen-doped carbon microtubules via template self-consumption. Rare Metals, 2022, 41, 2582-2587.	3.6	21
121	A Biomaterialâ€Based Porous Core–Shell Sorbent for Practical and Efficient Marine Oil Spill Recovery. Advanced Sustainable Systems, 2022, 6, .	2.7	7
122	Mussel-inspired durable superhydrophobic/superoleophilic MOF-PU sponge with high chemical stability, efficient oil/water separation and excellent anti-icing properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 648, 129142.	2.3	30
123	A sponge heated by electromagnetic induction and solar energy for quick, efficient, and safe cleanup of high-viscosity crude oil spills. Journal of Hazardous Materials, 2022, 436, 129272.	6.5	15
124	Fast self-healing and antifouling polyurethane/fluorinated polysiloxane-microcapsules-silica composite material. Advanced Composites and Hybrid Materials, 2022, 5, 1899-1909.	9.9	38
125	Superhydrophobic Self-Cleaning Composite of a Metal–Organic Framework with Polypropylene Fabric for Efficient Removal of Oils from Oil–Water Mixtures and Emulsions. ACS Applied Nano Materials, 2022, 5, 10003-10014.	2.4	21
126	Postsynthetically modified hydrophobic covalent organic frameworks for enhanced oil/water and CH4/C2H2 separation. Chemical Engineering Journal, 2022, 448, 137687.	6.6	9
127	Recent Advances in Multifunctional Mechanical–Chemical Superhydrophobic Materials. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	8

#	Article	IF	Citations
128	Formation of conductive MOF@Metal oxide micro-nano composites via facile self-assembly for high-performance supercapacitors. Materials Today Chemistry, 2022, 26, 101024.	1.7	5
129	Metal-organic frameworks as advanced sorbents for oil/water separation. Journal of Molecular Liquids, 2022, 363, 119900.	2.3	11
130	Superhydrophobic ultra-high molecular weight polyethylene porous material with self-cleaning ability, long-term stability, and high durability. Surface and Coatings Technology, 2022, 446, 128792.	2.2	5
131	Adsorptive carbon-based materials for biomedical applications. Engineered Regeneration, 2022, 3, 352-364.	3.0	4
132	Fluorinated graphene nanosheet supported halloysite nanoarchitectonics: Super-wetting coatings for efficient and recyclable oil sorption. Separation and Purification Technology, 2022, 301, 122049.	3.9	11
133	Robust and durable liquid-repellent surfaces. Chemical Society Reviews, 2022, 51, 8476-8583.	18.7	105
134	Green Synthesis of a Superhydrophobic Porous Organic Polymer for Vocs Removal at High Humidity. SSRN Electronic Journal, 0, , .	0.4	0
135	Metal–Organic Frameworks and Their Composites for Environmental Applications. Advanced Science, 2022, 9, .	5.6	26
136	Novel Method for Producing Oleophilic Polyurethane Foam to Remove Oil from Open Water. Journal of Polymers and the Environment, 2022, 30, 5012-5023.	2.4	2
137	Bridging hollow carbon nanostructures to hierarchically pomegranate-like microspheres for efficient oil adsorption and catalysis applications. Carbon, 2023, 201, 930-940.	5.4	4
138	One-step preparation of efficient SiO2/PVDF membrane by sol-gel strategy for oil/water separation under harsh environments. Polymer, 2022, 260, 125402.	1.8	8
139	Rapid fabrication of superhydrophobic magnetic melt-blown fiber felt for oil spill recovery and efficient oil–water separation. Separation and Purification Technology, 2023, 306, 122486.	3.9	13
140	Bio-Inspired Eco-Friendly Superhydrophilic/Underwater Superoleophobic Cotton for Oil-Water Separation and Removal of Heavy Metals. Biomimetics, 2022, 7, 177.	1.5	4
141	Mesh membranes coated with zirconium metal-organic framework nanosheets of optimized morphology for oil-water separation. Journal of Membrane Science, 2023, 668, 121077.	4.1	8
142	Emerging Synthetic Methods and Applications of MOFâ€Based Gels in Supercapacitors, Water Treatment, Catalysis, Adsorption, and Energy Storage. Macromolecular Materials and Engineering, 2023, 308, .	1.7	13
143	Graphene-Based Metal–Organic Framework Hybrids for Applications in Catalysis, Environmental, and Energy Technologies. Chemical Reviews, 2022, 122, 17241-17338.	23.0	81
144	Construction of Fe(III) doping modified AgI/NH2-MIL-68(In/Fe) Z-scheme heterojunction photocatalysts through unique internal and interfacial charge transmission and separation efficiency. Applied Surface Science, 2023, 612, 155726.	3.1	15
145	A Geminiâ€Type Superwettable Separator for Consecutive Purification of Water and Oil Phases from Oilâ€Water Mixtures and Emulsions. ChemSusChem, 0, , .	3.6	0

#	Article	IF	CITATIONS
146	Global research trends in petrochemical wastewater treatment from 2000 to 2021. Environmental Science and Pollution Research, 2023, 30, 9369-9388.	2.7	7
147	Synergistic effect of bimetal (Zn/Ni)–organic framework/reduced graphene oxide for high-performance supercapacitor. Applied Surface Science, 2023, 615, 156435.	3.1	5
148	Tailored Skyâ€Parking Architectures of 3D Graphene Oxide Towards Highlyâ€Efficient Water Purification. ChemSusChem, 2023, 16, .	3.6	1
149	Preparation of 2D Materials and Their Application in Oil–Water Separation. Biomimetics, 2023, 8, 35.	1.5	7
150	Breakthrough in controlling membrane fouling and complete demulsification via electro-fenton pathway: Principle and mechanisms. Journal of Membrane Science, 2023, 670, 121354.	4.1	4
151	Synthesis and characterization of MOF-5 incorporated waste-derived siliceous materials for the removal of malachite green dye from aqueous solution. Sustainable Chemistry and Pharmacy, 2023, 31, 100954.	1.6	5
152	Materials and Methodologies for Tuning Surface Wettability and Oil/Water Separation Mechanisms. ACS Symposium Series, 0, , 165-244.	0.5	0
153	Zeolitic Imidazolate Frameworkâ€8 Triggers the Inhibition of Arginine Biosynthesis to Combat Methicillinâ€Resistant <i>Staphylococcus Aureus</i> . Small, 2023, 19, .	5.2	14
154	Intelligent device composed of two membranes with opposite wettability for identification and purification of both water and oil phases from oil-in-water and water-in-oil emulsions. Separation and Purification Technology, 2023, 312, 123406.	3.9	5
155	Construction of superhydrophobic ZIF-90/Melamine sponge with highly stable puncture structure for sustainable oil spill removal from seawater. Microporous and Mesoporous Materials, 2023, 355, 112563.	2.2	2
156	Advanced hybrid polybenzimidazole membrane enabled by a "linker―of metal-organic framework for high-performance vanadium flow battery. Chemical Engineering Journal, 2023, 461, 142032.	6.6	3
157	Digitization of Freeâ€Shapable Graphene Foam with Damage Tolerance. Advanced Functional Materials, 2023, 33, .	7.8	4
158	Membrane Contact Demulsification: A Superhydrophobic ZIF-8@rGO Membrane for Water-in-Oil Emulsion Separation. Engineering, 2023, 23, 73-81.	3.2	6
159	Mussel-Inspired Robust Peony-like Cu ₃ (PO ₄) ₂ Composite Switchable Superhydrophobic Surfaces for Bidirectional Efficient Oil/Water Separation. ACS Applied Materials & Interfaces, 2023, 15, 13700-13710.	4.0	15
160	Bionic Aerogel with a Lotus Leaf-like Structure for Efficient Oil-Water Separation and Electromagnetic Interference Shielding. Gels, 2023, 9, 214.	2.1	3
161	Water absorption behavior of functionalized graphene reinforced PVA based composite crosslinked using citric acid. Materials Today: Proceedings, 2023, , .	0.9	0
162	Eco-Friendly Fluorine Functionalized Superhydrophobic/Superoleophilic Zeolitic Imidazolate Frameworks–Based Composite for Continuous Oil–Water Separation. Molecules, 2023, 28, 2843.	1.7	2
173	Recent Advances of Polyurethane Composite Foam Materials in Oil/Water Separation Applications. Industrial & Engineering Chemistry Research, 2023, 62, 11757-11767.	1.8	3

ARTICLE

IF CITATIONS