Reprogrammable recovery and actuation behaviour of a

Nature Reviews Materials 4, 116-133 DOI: 10.1038/s41578-018-0078-8

Citation Report

#	Article	IF	CITATIONS
1	4D Printing of a Digital Shape Memory Polymer with Tunable High Performance. ACS Applied Materials & Interfaces, 2019, 11, 32408-32413.	4.0	95
2	Electro and Light-Active Actuators Based on Reversible Shape-Memory Polymer Composites with Segregated Conductive Networks. ACS Applied Materials & Interfaces, 2019, 11, 30332-30340.	4.0	66
3	Tough, Selfâ€Healing Hydrogels Capable of Ultrafast Shape Changing. Advanced Materials, 2019, 31, e1904956.	11.1	118
4	Dispersed Association of Single-Component Short-Alkyl Chains toward Thermally Programmable and Malleable Multiple-Shape Hydrogel. ACS Applied Materials & Interfaces, 2019, 11, 43622-43630.	4.0	22
5	Photonic Shape Memory Polymer Based on Liquid Crystalline Blue Phase Films. ACS Applied Materials & Interfaces, 2019, 11, 46124-46131.	4.0	51
6	Shape Memory Polyurethane and its Composites for Various Applications. Applied Sciences (Switzerland), 2019, 9, 4694.	1.3	33
7	Development of a Shapeâ€Memory Tube to Prevent Vascular Stenosis. Advanced Materials, 2019, 31, e1904476.	11.1	38
8	A 3D Printed Paper-Based Thermally Driven Soft Robotic Gripper Inspired by Cabbage. International Journal of Precision Engineering and Manufacturing, 2019, 20, 1915-1928.	1.1	33
9	Architectural Code for Rubber Elasticity: From Supersoft to Superfirm Materials. Macromolecules, 2019, 52, 7531-7546.	2.2	137
10	Bioperspectives for Shape-Memory Polymers as Shape Programmable, Active Materials. Biomacromolecules, 2019, 20, 3627-3640.	2.6	66
11	Shape Memory Polyurethane-Based Smart Polymer Substrates for Physiologically Responsive, Dynamic Pressure (Re)Distribution. ACS Omega, 2019, 4, 15348-15358.	1.6	22
12	Symmetry-Breaking Actuation Mechanism for Soft Robotics and Active Metamaterials. ACS Applied Materials & Material	4.0	130
13	Multiple and two-way reversible shape memory polymers: Design strategies and applications. Progress in Materials Science, 2019, 105, 100572.	16.0	129
14	Rapid, Localized, and Athermal Shape Memory Performance Triggered by Photoswitchable Glass Transition Temperature. ACS Applied Materials & Interfaces, 2019, 11, 46212-46218.	4.0	55
15	Intrinsically Stretchable and Shape Memory Conducting Nanofiber for Programmable Flexible Electronic Films. ACS Applied Materials & amp; Interfaces, 2019, 11, 48202-48211.	4.0	13
16	Influence of Long-Term Storage on Shape Memory Performance and Mechanical Behavior of Pre-stretched Commercial Poly(methyl methacrylate) (PMMA). Polymers, 2019, 11, 1978.	2.0	8
17	Flexible Actuators for Soft Robotics. Advanced Intelligent Systems, 2020, 2, 1900077.	3.3	79
18	Thermomechanical properties and deformation behavior of a unidirectional carbonâ€fiberâ€reinforced shape memory polymer composite laminate. Journal of Applied Polymer Science, 2020, 137, 48532.	1.3	10

#	Article	IF	CITATIONS
19	Naturally biomimicked smart shape memory hydrogels for biomedical functions. Chemical Engineering Journal, 2020, 379, 122430.	6.6	112
20	Shape memory behaviour of gelatin – alginate interpenetrating network hydrogel. Materials Letters, 2020, 260, 126968.	1.3	10
21	Investigating the Phase-Morphology of PLLA-PCL Multiblock Copolymer / PDLA Blends Cross-linked Using Stereocomplexation. MRS Advances, 2020, 5, 699-707.	0.5	1
22	Patterned, morphing composites <i>via</i> maskless photo-click lithography. Soft Matter, 2020, 16, 1270-1278.	1.2	3
23	Polymeric sheet actuators with programmable bioinstructivity. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 1895-1901.	3.3	13
24	Liquidâ€Crystalline Soft Actuators with Switchable Thermal Reprogrammability. Angewandte Chemie, 2020, 132, 4808-4814.	1.6	14
25	Liquid rystalline Soft Actuators with Switchable Thermal Reprogrammability. Angewandte Chemie - International Edition, 2020, 59, 4778-4784.	7.2	102
26	Solvent-based Fabrication Method for Magnetic, Shape-Memory Nanocomposite Foams. MRS Advances, 2020, 5, 785-795.	0.5	2
27	Magnetic Shape Memory Polymers with Integrated Multifunctional Shape Manipulation. Advanced Materials, 2020, 32, e1906657.	11.1	367
28	Properties of Novel Polyesters Made from Renewable 1,4â€Pentanediol. ChemSusChem, 2020, 13, 556-563.	3.6	33
29	Responsive and Foldable Soft Materials. Trends in Chemistry, 2020, 2, 107-122.	4.4	46
30	Controlling Actuation Performance in Physically Cross-Linked Polylactone Blends Using Polylactide Stereocomplexation. Biomacromolecules, 2020, 21, 338-348.	2.6	18
31	Recent development of implantable and flexible nerve electrodes. Smart Materials in Medicine, 2020, 1, 131-147.	3.7	61
32	Recent advances in additive manufacturing of active mechanical metamaterials. Current Opinion in Solid State and Materials Science, 2020, 24, 100869.	5.6	65
33	Dynamic Thermal-Regulating Textiles with Metallic Fibers Based on a Switchable Transmittance. Physical Review Applied, 2020, 14, .	1.5	15
34	Recent advances for phase-transition materials for actuators. Journal of Applied Physics, 2020, 128, .	1.1	12
35	Biohybrid Actuators for Soft Robotics: Challenges in Scaling Up. Actuators, 2020, 9, 96.	1.2	27
36	Shape-adaptable biodevices for wearable and implantable applications. Lab on A Chip, 2020, 20, 4321-4341.	3.1	27

#	Article	IF	CITATIONS
37	Designing Biodegradable Shape Memory Polymers for Tissue Repair. Advanced Functional Materials, 2020, 30, 2002014.	7.8	49
38	Thermoresponsive cryogels from dendronized interpenetrating polymer network showing dual-shape memory. European Polymer Journal, 2020, 141, 110092.	2.6	11
39	A Mini-Review of Shape-Memory Polymer-Based Materials. Johnson Matthey Technology Review, 2020, 64, 425-442.	0.5	20
40	Stimuli-Responsive Shape Changing Commodity Polymer Composites and Bilayers. ACS Applied Materials & Interfaces, 2020, 12, 38829-38844.	4.0	39
41	Low-Temperature Triggered Shape Transformation of Liquid Metal Microdroplets. ACS Applied Materials & Interfaces, 2020, 12, 38386-38396.	4.0	28
42	Programmable and sophisticated shape-memory behavior <i>via</i> tailoring spatial distribution of polymer crosslinks. Journal of Materials Chemistry A, 2020, 8, 17193-17201.	5.2	12
43	Polymeric Microcuboids Programmable for Temperatureâ€Memory. Macromolecular Materials and Engineering, 2020, 305, 2000333.	1.7	4
44	An elegant coupling: Freeze-casting and versatile polymer composites. Progress in Polymer Science, 2020, 109, 101289.	11.8	69
45	Vitrimer-Like Shape Memory Polymers: Characterization and Applications in Reshaping and Manufacturing. Polymers, 2020, 12, 2330.	2.0	24
46	Stimuli responsive optical polymers through omnidirectional and reconfigurable porosity. Polymer, 2020, 210, 123041.	1.8	3
47	Metal mesh embedded in colorless shape memory polyimide for flexible transparent electric-heater and actuators. Applied Materials Today, 2020, 21, 100797.	2.3	15
48	Stress-Free Two-Way Shape Memory Effects of Semicrystalline Polymer Networks Enhanced by Self-Nucleated Crystallization. ACS Macro Letters, 2020, 9, 1325-1331.	2.3	31
49	Foundations for Soft, Smart Matter by Active Mechanical Metamaterials. Advanced Science, 2020, 7, 2001384.	5.6	52
50	Stimuli-responsive functional materials for soft robotics. Journal of Materials Chemistry B, 2020, 8, 8972-8991.	2.9	118
51	Wireless Control of Two- and Three-Dimensional Actuations of Kirigami Patterns Composed of Magnetic-Particles–Polymer Composites. ACS Nano, 2020, 14, 17589-17596.	7.3	30
52	Programmable and Self-Healing Light-Driven Actuators through Synergetic Use of Water-Shaping and -Welding Methods. ACS Applied Materials & Interfaces, 2020, 12, 55125-55133.	4.0	17
53	Hierarchical Polymer Composites as Smart Reactor for Formulating Simple/Tandem-Commutative Catalytic Ability. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30, 4394-4407.	1.9	3
54	3D printing of multi-material composites with tunable shape memory behavior. Materials and Design, 2020, 193, 108785.	3.3	36

#	Article	IF	CITATIONS
55	3D constitutive modeling of electro-magneto-visco-hyperelastic elastomers: a semi-analytical solution for cylinders under large torsion–extension deformation. Smart Materials and Structures, 2020, 29, 085031.	1.8	19
56	Shape memory thin films of Polyurethane: Does graphene content affect the recovery behavior of Polyurethane nanocomposites?. Polymer Composites, 2020, 41, 3376-3388.	2.3	21
57	Epoxide and oxetane based liquid crystals for advanced functional materials. Soft Matter, 2020, 16, 5106-5119.	1.2	14
58	Mussel cuticle-mimetic ultra-tough, self-healing elastomers with double-locked nanodomains exhibit fast stimuli-responsive shape transformation. Journal of Materials Chemistry A, 2020, 8, 12463-12471.	5.2	22
59	MEMS actuators for biomedical applications: a review. Journal of Micromechanics and Microengineering, 2020, 30, 073001.	1.5	54
60	Recent progress of morphable 3D mesostructures in advanced materials. Journal of Semiconductors, 2020, 41, 041604.	2.0	9
61	Lignin-based smart materials: a roadmap to processing and synthesis for current and future applications. Materials Horizons, 2020, 7, 2237-2257.	6.4	129
62	Shape-Memory Actuation of Individual Micro-/Nanofibers. MRS Advances, 2020, 5, 2391-2399.	0.5	2
63	Reversible Actuation via Photoisomerization-Induced Melting of a Semicrystalline Poly(Azobenzene). ACS Macro Letters, 2020, 9, 902-909.	2.3	46
64	4D printed auxetic structures with tunable mechanical properties. Additive Manufacturing, 2020, 35, 101364.	1.7	20
65	Shapeâ€Memory Polymers for Biomedical Applications. Advanced Functional Materials, 2020, 30, 1909047.	7.8	173
66	Spatiotemporally Controlled Photoresponsive Hydrogels: Design and Predictive Modeling from Processing through Application. Advanced Functional Materials, 2020, 30, 2000639.	7.8	51
67	Athermal Shape Memory Effect in Magnetoactive Elastomers. ACS Applied Materials & Interfaces, 2020, 12, 16930-16936.	4.0	21
68	A facile approach to fabricate two-way shape memory polyurethane with large reversible strain and high shape stability. Smart Materials and Structures, 2020, 29, 055033.	1.8	13
69	Origami-inspired self-deployment 4D printed honeycomb sandwich structure with large shape transformation. Smart Materials and Structures, 2020, 29, 065015.	1.8	41
70	Blueprinting Photothermal Shapeâ€Morphing of Liquid Crystal Elastomers. Advanced Materials, 2020, 32, e2000609.	11.1	110
71	Engineering Heart Morphogenesis. Trends in Biotechnology, 2020, 38, 835-845.	4.9	10
72	Materials, design, and fabrication of shape programmable polymers. Multifunctional Materials, 2020, 3, 032002.	2.4	17

#	Article	IF	CITATIONS
73	Recyclable, Self-Healing, Thermadapt Triple-Shape Memory Polymers Based on Dual Dynamic Bonds. ACS Applied Materials & Interfaces, 2020, 12, 9833-9841.	4.0	88
74	Shaping and Locomotion of Soft Robots Using Filament Actuators Made from Liquid Crystal Elastomer–Carbon Nanotube Composites. Advanced Intelligent Systems, 2020, 2, 1900163.	3.3	80
75	Vision Statement: Interactive Materials—Drivers of Future Robotic Systems. Advanced Materials, 2020, 32, e1905953.	11.1	10
76	Stiffness Selfâ€Tuned Shape Memory Hydrogels for Embolization of Aneurysms. Advanced Functional Materials, 2020, 30, 1910197.	7.8	38
77	Polyelectrolyte Complex Fiber of Alginate and Poly(diallyldimethylammonium chloride): Humidity-Induced Shape Memory and Mechanical Transition. ACS Applied Polymer Materials, 2020, 2, 2119-2125.	2.0	16
78	Fractionation of Lignin for Selective Shape Memory Effects at Elevated Temperatures. Materials, 2020, 13, 1940.	1.3	3
79	Shape memory materials for electrically-powered soft machines. Journal of Materials Chemistry B, 2020, 8, 4539-4551.	2.9	52
80	Mechanical Sciences. , 2021, , .		1
81	Functional Fibers and Fabrics for Soft Robotics, Wearables, and Human–Robot Interface. Advanced Materials, 2021, 33, e2002640.	11.1	278
82	Superwetting Shape Memory Microstructure: Smart Wetting Control and Practical Application. Advanced Materials, 2021, 33, e2001718.	11.1	73
83	Advances in Physiologically Relevant Actuation of Shape Memory Polymers for Biomedical Applications. Polymer Reviews, 2021, 61, 280-318.	5.3	18
84	Multiâ€Field Synergy Manipulating Soft Polymeric Hydrogel Transformers. Advanced Intelligent Systems, 2021, 3, 2000208.	3.3	35
85	Electrical Actuation of Coated and Composite Fibers Based on Poly[ethylene―co â€(vinyl acetate)]. Macromolecular Materials and Engineering, 2021, 306, 2000579.	1.7	11
86	Stimuli Responsive Shape Memory Microarchitectures. Advanced Functional Materials, 2021, 31, 2008380.	7.8	22
87	Recent Progress in Artificial Muscles for Interactive Soft Robotics. Advanced Materials, 2021, 33, e2003088.	11.1	139
88	A Review of Shape Memory Polymers and Composites: Mechanisms, Materials, and Applications. Advanced Materials, 2021, 33, e2000713.	11.1	558
89	A bioinspired and hierarchically structured shape-memory material. Nature Materials, 2021, 20, 242-249.	13.3	96
90	Introduction to 4D printing. , 2021, , 303-342.		6

	CITATION	CITATION REPORT	
#	Article	IF	CITATIONS
91	Hybrid covalent adaptable networks from cross-reactive poly(ε-caprolactone) and poly(ethylene oxide) stars towards advanced shape-memory materials. Materials Advances, 2021, 2, 7077-7087.	2.6	4
92	Triple-shape memory, magneto-response, and piezo-resistive flexible composites: multiple-sensing and switchable actuating. Journal of Materials Chemistry C, 2021, 9, 6568-6578.	2.7	10
93	Self-healing and self-sensing smart polymer composites. , 2021, , 307-357.		1
94	Shapeâ€Memory Metallopolymers Based on Two Orthogonal Metal–Ligand Interactions. Advanced Materials, 2021, 33, e2006655.	11.1	31
95	4D Printed Cardiac Construct with Aligned Myofibers and Adjustable Curvature for Myocardial Regeneration. ACS Applied Materials & amp; Interfaces, 2021, 13, 12746-12758.	4.0	82
96	Dynamic Covalent Polymer Networks: A Molecular Platform for Designing Functions beyond Chemical Recycling and Self-Healing. Chemical Reviews, 2021, 121, 1716-1745.	23.0	587
97	Recent progress in the shape deformation of polymeric hydrogels from memory to actuation. Chemical Science, 2021, 12, 6472-6487.	3.7	46
98	A programmable powerful and ultra-fast water-driven soft actuator inspired by the mutable collagenous tissue of the sea cucumber. Journal of Materials Chemistry A, 2021, 9, 15937-15947.	5.2	8
99	Moisture-Responsive Shape Memory Polymers and Their Composites. , 2021, , .		0
100	Realization of a Simultaneous Position-Stiffness Controllable Antagonistic Joint Driven by Twisted-Coiled Polymer Actuators Using Model Predictive Control. IEEE Access, 2021, 9, 26071-26082.	2.6	6
101	Sensing Materials: Bio-inspired Materials. , 2021, , .		0
102	A Mechanical Analysis of Chemically Stimulated Linear Shape Memory Polymer Actuation. Materials, 2021, 14, 481.	1.3	8
103	Three-dimensional graphene coated shape memory polyurethane foam with fast responsive performance. Journal of Materials Chemistry C, 2021, 9, 7444-7451.	2.7	24
104	Intelligence-assisted predesign for the sustainable recycling of lithium-ion batteries and beyond. Energy and Environmental Science, 2021, 14, 5801-5815.	15.6	59
105	Shape-Memory Polymer Nanocomposites of Poly(ε-caprolactone) with the Polystyrene- <i>block</i> -polybutadiene- <i>block</i> -polystyrene-tri- <i>block</i> Copolymer Encapsulated with Metal Oxides. ACS Omega, 2021, 6, 6261-6273.	1.6	19
106	Anisotropy Effects in the Shapeâ€Memory Performance of Polymer Foams. Macromolecular Materials and Engineering, 2021, 306, 2000730.	1.7	4
107	Core–Shell Magnetic Micropillars for Reprogrammable Actuation. ACS Nano, 2021, 15, 4747-4758.	7.3	30
108	Snakeâ€Inspired, Nanoâ€Stepped Surface with Tunable Frictional Anisotropy Made from a Shapeâ€Memory Polymer for Unidirectional Transport of Microparticles. Advanced Functional Materials, 2021, 31, 2009611.	7.8	7

#	Article	IF	CITATIONS
109	Effect of Water on Crystallization and Melting of Telechelic Oligo(ε aprolactone)s in Ultrathin Films. Advanced Materials Interfaces, 2021, 8, 2001940.	1.9	1
110	Multi-modal commutative dynamics in semi-crystalline polymers undergoing multiple shape memory behavior. Smart Materials and Structures, 2021, 30, 045003.	1.8	5
111	Triple and Two-Way Reversible Shape Memory Polymer Networks with Body Temperature and Water Responsiveness. Chemistry of Materials, 2021, 33, 1190-1200.	3.2	55
112	Tuning the Properties of Shapeâ€Memory Polyurethanes via the Nature of the Polyester Switching Segment. Macromolecular Materials and Engineering, 2021, 306, 2000770.	1.7	7
113	Shape Memory Alloys and Polymers for MEMS/NEMS Applications: Review on Recent Findings and Charlenges in Design, Preparation, and Characterization. Metals, 2021, 11, 415.	1.0	43
114	Study of an eccentric dielectric elastomer motor and its application for soft robots. Smart Materials and Structures, 2021, 30, 045014.	1.8	4
115	Highly crystalline PCL ultrathin films as thermally switchable biomaterial coatings. MRS Advances, 2021, 6, 283-290.	0.5	1
116	Dynamic Carboxylate Linkage Based Reprocessable and Self-Healable Segmented Polyurethane Vitrimers Displaying Creep Resistance Behavior and Triple Shape Memory Ability. ACS Applied Polymer Materials, 2021, 3, 2166-2177.	2.0	40
117	Reconfigurable Threeâ€Dimensional Mesotructures of Spatially Programmed Liquid Crystal Elastomers and Their Ferromagnetic Composites. Advanced Functional Materials, 2021, 31, 2100338.	7.8	36
118	Shapeâ€Memory Balloon Structures by Pneumatic Multiâ€material 4D Printing. Advanced Functional Materials, 2021, 31, 2010872.	7.8	30
119	Biodegradable shape-memory polymers and composites. ChemistrySelect, 2023, 8, 2049-2070.	0.7	3
120	Fiber diameter as design parameter for tailoring the macroscopic shape-memory performance of electrospun meshes. Materials and Design, 2021, 202, 109546.	3.3	12
121	Functional biopolyesters based on cross-linked Poly(-malic acid): Network engineering towards tailoring brittle-ductile transition and shape-memory performance. Polymer, 2021, 221, 123628.	1.8	6
122	Shape memory poly(methyl methacrylate) nanocomposites: design and methodical trends. Polymer-Plastics Technology and Materials, 0, , 1-16.	0.6	3
123	Thermally-Induced Shape-Memory Behavior of Degradable Gelatin-Based Networks. International Journal of Molecular Sciences, 2021, 22, 5892.	1.8	10
124	Actuator Behaviour of Tailored Poly(thiourethane) Shape Memory Thermosets. Polymers, 2021, 13, 1571.	2.0	4
125	Grasping with kirigami shells. Science Robotics, 2021, 6, .	9.9	86
126	A bidirectionally reversible light-responsive actuator based on shape memory polyurethane bilayer. Composites Part A: Applied Science and Manufacturing, 2021, 144, 106322.	3.8	13

#	Article	IF	Citations
" 127	Universal Strain Energy-Mediated Dynamic Porosity in Physically Networked Elastomers and Their	4.0	0
127	Applications. ACS Applied Materials & amp; Interfaces, 2021, 13, 22987-22999. Novel Near-Infrared Light-Induced Triple-Shape Memory Composite Based on		
128	Poly(ethylene- <i>co</i> -vinyl alcohol) and Iron Tannate. ACS Applied Materials & amp; Interfaces, 2021, 13, 23011-23019.	4.0	20
129	Selective entanglement coupling of nanoparticles in polymer nanocomposite with high shape recovery stress. Composites Science and Technology, 2021, 207, 108728.	3.8	19
130	Anomalous thermally expanded polymer networks for flexible perceptual devices. Matter, 2021, 4, 1832-1862.	5.0	10
131	Flying Squirrel-Inspired Motion Control of a Light-Deformed Pt-PAzoMA Micromotor through Drag Force Manipulation. ACS Applied Materials & Interfaces, 2021, 13, 30106-30117.	4.0	9
132	Non-woven shape-memory polymer blend actuators. MRS Advances, 2021, 6, 781-785.	0.5	3
133	Linear Shape Memory Polyester with Programmable Splitting of Crystals. Macromolecular Materials and Engineering, 2021, 306, 2100254.	1.7	6
134	Quantifying the Shape Memory Performance of a Three-Dimensional-Printed Biobased Polyester/Cellulose Composite Material. 3D Printing and Additive Manufacturing, 2021, 8, 193-200.	1.4	9
135	Origami hand for soft robotics driven by thermally controlled polymeric fiber actuators. MRS Communications, 2021, 11, 476-482.	0.8	8
136	Regulating Asynchronous Deformations of Biopolyester Elastomers via Photoprogramming and Strain-Induced Crystallization. Macromolecules, 2021, 54, 5694-5704.	2.2	17
137	Magnetic Dynamic Polymers for Modular Assembling and Reconfigurable Morphing Architectures. Advanced Materials, 2021, 33, e2102113.	11.1	88
138	Fluorescence visualization directly monitors microphase separation behavior of shape memory polyurethanes. Applied Materials Today, 2021, 23, 100986.	2.3	5
139	Degradation kinetics of oligo(Îμ-caprolactone) ultrathin films: Influence of crystallinity. MRS Advances, 0, , 1.	0.5	0
140	An Innovative Solventâ€Responsive Coiling–Expanding Stent. Advanced Materials, 2021, 33, e2101005.	11.1	33
141	Nanoâ€metal oxide fillers in thermoâ€responsive polycaprolactoneâ€based polymer nanocomposites smart materials: Impact on thermoâ€mechanical, and shape memory properties. Journal of Vinyl and Additive Technology, 2021, 27, 768-780.	1.8	9
142	4D Printing of Multiâ€Responsive Membrane for Accelerated In Vivo Bone Healing Via Remote Regulation of Stem Cell Fate. Advanced Functional Materials, 2021, 31, 2103920.	7.8	48
143	4D polycarbonates via stereolithography as scaffolds for soft tissue repair. Nature Communications, 2021, 12, 3771.	5.8	59
144	Topologically engineered 3D printed architectures with superior mechanical strength. Materials Today, 2021, 48, 72-94.	8.3	37

#	Article	IF	CITATIONS
145	Shapeâ€Memory Photonic Thermoplastics from Cellulose Nanocrystals. Advanced Functional Materials, 2021, 31, 2103268.	7.8	30
146	Bio-inspired and computer-supported design of modulated shape changes in polymer materials. MRS Communications, 2021, 11, 462-469.	0.8	0
147	Hydrogen-Bonded Supramolecular Liquid Crystal Polymers: Smart Materials with Stimuli-Responsive, Self-Healing, and Recyclable Properties. Chemical Reviews, 2022, 122, 4946-4975.	23.0	161
148	Versatile Applications of Metallopolymers. Progress in Polymer Science, 2021, 119, 101428.	11.8	29
149	Systemâ€Engineered Miniaturized Robots: From Structure to Intelligence. Advanced Intelligent Systems, 2021, 3, 2000284.	3.3	18
150	Development of Photocrosslinked Poly(glycerol dodecanedioate)—A Biodegradable Shape Memory Polymer for 3Dâ€Printed Tissue Engineering Applications. Advanced Engineering Materials, 2021, 23, 2100219.	1.6	14
151	Programmable Humidity-Responsive Actuation of Polymer Films Enabled by Combining Shape Memory Property and Surface-Tunable Hygroscopicity. ACS Applied Materials & Interfaces, 2021, 13, 38773-38782.	4.0	25
152	3D Temporaryâ€Magnetized Soft Robotic Structures for Enhanced Energy Harvesting. Advanced Materials, 2021, 33, e2102691.	11.1	23
153	Tracing evolutions in electro-activated shape memory polymer composites with 4D printing strategies: A systematic review. Composites Part A: Applied Science and Manufacturing, 2021, 147, 106444.	3.8	55
154	Reversible Curvature Reversal of Monolithic Liquid Crystal Elastomer Film and Its Smart Valve Application. Macromolecular Rapid Communications, 2021, 42, e2100404.	2.0	6
155	Smart Refreshable Braille Display Device Based on Magnetoâ€Resistive Composite with Triple Shape Memory. Advanced Materials Technologies, 2022, 7, 2100777.	3.0	14
156	NIR-II light-responsive biodegradable shape memory composites based on cuprorivaite nanosheets for enhanced tissue reconstruction. Chemical Engineering Journal, 2021, 419, 129437.	6.6	24
157	Shape-Memory Polymers Designed in View of Thermomechanical Energy Storage and Conversion Systems. ACS Central Science, 2021, 7, 1599-1601.	5.3	1
158	Electrical characterization of flexible hafnium oxide capacitors on deformable softening polymer substrate. Microelectronic Engineering, 2021, 249, 111618.	1.1	11
159	Smart biomaterials—A proposed definition and overview of the field. Current Opinion in Biomedical Engineering, 2021, 19, 100311.	1.8	29
160	Multifunctional Ti ₃ C ₂ T _{<i>x</i>} MXene/Low-Density Polyethylene Soft Robots with Programmable Configuration for Amphibious Motions. ACS Applied Materials & Interfaces, 2021, 13, 45833-45842.	4.0	29
161	High Energy Density Shape Memory Polymers Using Strain-Induced Supramolecular Nanostructures. ACS Central Science, 2021, 7, 1657-1667.	5.3	43
162	Advancing Regenerative Medicine Through the Development of Scaffold, Cell Biology, Biomaterials and Strategies of Smart Material. Regenerative Engineering and Translational Medicine, 0, , 1.	1.6	0

ARTICLE IF CITATIONS # Potential use of smart coatings for icephobic applications: A review. Surface and Coatings 163 2.2 30 Technology, 2021, 424, 127656. Tunable reversible deformation of semicrystalline polymer networks based on temperature memory 164 1.8 effect. Polymer, 2021, 232, 124157. 165 Dynamic cell instructive platforms., 2021, , 171-217. 1 Salt-responsive polyampholyte-based hydrogel actuators with gradient porous structures. Polymer Chemistry, 2021, 12, 670-679. Progresses in Tensile, Torsional, and Multifunctional Soft Actuators. Advanced Functional Materials, 167 7.8 88 2021, 31, 2007437. Biomimetic scaffolds with programmable pore structures for minimum invasive bone repair. Nanoscale, 2021, 13, 16680-16689. 2.8 Dual crosslinked metallopolymers using orthogonal metal complexes as rewritable shape-memory 169 5.2 9 polymers. Journal of Materials Chemistry A, 2021, 9, 15051-15058. Viewpoint: Pavlovian Materialsâ€"Functional Biomimetics Inspired by Classical Conditioning. Advanced 11.1 21 Materials, 2020, 32, e1906619. 171 Biomimetic micro/nano structures for biomedical applications. Nano Today, 2020, 35, 100980. 6.2 69 Developing Advanced Functional Polymers for Biomedical Applications. Biomacromolecules, 2020, 21, 2.6 273-275. Self-Optimization of the Shape-Memory Effect during Programming Cycle Tests. Macromolecules, 2021, 173 2.2 5 54, 214-224. Shape-programmable and healable materials and devices using thermo- and photo-responsive vitrimer. 174 2.4 Multifunctional Materials, 2020, 3, 045001. Shape memory nanocomposite fibers for untethered high-energy microengines. Science, 2019, 365, 175 6.0 151 155-158. Tunable optical metasurfaces enabled by multiple modulation mechanisms. Nanophotonics, 2020, 9, 4407-4431. Two-Way and Multiple-Way Shape Memory Polymers for Soft Robotics: An Overview. Actuators, 2020, 177 1.2 104 9, 10. Enhanced biomineralization of shape memory composite scaffolds from citrate functionalized amorphous calcium phosphate for bone repair. Journal of Materials Chemistry B, 2021, 9, 9191-9203. Switching microobjects from low to high aspect ratios using a shape-memory effect. Soft Matter, 2021, 17, 9326-9331. 179 1.2 2 Composites of functional polymers: Toward physical intelligence using flexible and soft materials. 1.2 Journal of Materials Research, 2022, 37, 2-24.

#	Article	IF	CITATIONS
181	An Insight into Skeletal Networks Analysis for Smart Hydrogels. Advanced Functional Materials, 2022, 32, 2108489.	7.8	10
182	Photothermal and pH dual-responsive self-healing coating for smart corrosion protection. Journal of Materials Science and Technology, 2022, 107, 34-42.	5.6	37
183	Stiff, Strong, Tough, and Highly Stretchable Hydrogels Based on Dual Stimuli-Responsive Semicrystalline Poly(urethane–urea) Copolymers. ACS Applied Polymer Materials, 2021, 3, 5683-5695.	2.0	4
184	Fiber-reinforced soft polymeric manipulator with smart motion scaling and stiffness tunability. Cell Reports Physical Science, 2021, 2, 100600.	2.8	6
185	Electroâ€Active and Photoâ€Active Vanadium Oxide Nanowire Thermoâ€Hygroscopic Actuators for Kirigami Popâ€up. Advanced Science, 2021, 8, e2102064.	5.6	10
186	Meta-Aerogels: Auxetic Shape-Memory Polyurethane Aerogels. ACS Applied Polymer Materials, 2021, 3, 5727-5738.	2.0	15
187	The shape – morphing performance of magnetoactive soft materials. Materials and Design, 2021, 211, 110172.	3.3	94
188	Actuators Based on Oligo[(Îμ-caprolactone)-co-glycolide] with Accelerated Hydrolytic Degradation. MRS Advances, 2020, 5, 655-666.	0.5	0
189	Origami MEMS. , 2021, , 197-239.		2
190	Paper-based origami transducer capable of both sensing and actuation. Extreme Mechanics Letters, 2021, 49, 101507.	2.0	7
191	Multiscale Structural Characterization of a Smectic Liquid Crystalline Elastomer upon Mechanical Deformation Using Neutron Scattering. Macromolecules, 2021, 54, 10574-10582.	2.2	3
192	The status, barriers, challenges, and future in design for 4D printing. Materials and Design, 2021, 212, 110193.	3.3	55
193	Degradable smart composite foams for bone regeneration. Composites Science and Technology, 2022, 217, 109124.	3.8	4
194	ANSYS research of shape memory effects in cross-linked polyethylene products. Computational Continuum Mechanics, 2020, 13, 134-149.	0.1	1
195	Thermally Reconfigurable Hologram Fabricated by Spatially Modulated Femtosecond Pulses on a Heat-Shrinkable Shape Memory Polymer for Holographic Multiplexing. ACS Applied Materials & Interfaces, 2021, 13, 51736-51745.	4.0	16
196	Shapeâ€Changing Particles: From Materials Design and Mechanisms to Implementation. Advanced Materials, 2022, 34, e2105758.	11.1	19
197	Understanding the impact of crystal lamellae organization on small molecule diffusion using a Monte Carlo approach. MRS Advances, 2020, 5, 2737-2749.	0.5	2
198	Stimuli responsive graphene-based materials. , 2022, , 117-144.		0

#	Article	IF	CITATIONS
199	Effect of graphene oxide doping on anti-/deicing performance of shape memory epoxy resin. Materials Today Communications, 2022, 30, 103025.	0.9	5
200	4D-actuators by 3D-printing combined with water-based curing. Materials Today Communications, 2022, 30, 102966.	0.9	4
201	Ethanol Phase Change Actuator Based on Thermally Conductive Material for Fast Cycle Actuation. Polymers, 2021, 13, 4095.	2.0	2
202	A comparative review of artificial muscles for microsystem applications. Microsystems and Nanoengineering, 2021, 7, 95.	3.4	21
203	Precise Control of Shape-Variable Nanomicelles in Nanofibers Reveals the Enhancement Mechanism of Passive Delivery. ACS Applied Materials & Interfaces, 2021, 13, 54715-54726.	4.0	3
204	On Demand Sequential Release of (Sub)Micron Particles Controlled by Size and Temperature. Small, 2022, 18, e2104621.	5.2	2
205	Wavelength-selective responsive hybrid structures utilizing shape memory poly(aryl ether ketone). European Polymer Journal, 2022, 164, 110955.	2.6	5
206	Freeze/thawed polyvinyl alcohol hydrogels: Present, past and future. European Polymer Journal, 2022, 164, 110974.	2.6	134
207	Harnessing ultra-high programmability and controllability for smart composite architecture using quadruple shape memory poly(aryl ether ketone)s. Composites Science and Technology, 2022, 220, 109246.	3.8	5
208	Roadmap on soft robotics: multifunctionality, adaptability and growth without borders. Multifunctional Materials, 2022, 5, 032001.	2.4	37
209	Bioinspired Self-Shaping Clay Composites for Sustainable Development. Biomimetics, 2022, 7, 13.	1.5	3
210	Shape memory polymer/graphene nanocomposites: State-of-the-art. E-Polymers, 2022, 22, 165-181.	1.3	25
211	An Inverse Shapeâ€Memory Hydrogel Scaffold Switching Upon Cooling in a Tissueâ€Tolerated Temperature Range. Advanced Materials Interfaces, 2022, 9, .	1.9	1
212	Tunable shape memory effect and omnidirectional shape change of polyetheretherketone. Journal of Materials Science, 2022, 57, 4850-4861.	1.7	1
213	A dynamic passive thermoregulation fabric using metallic microparticles. Nanoscale, 2022, 14, 1421-1431.	2.8	4
214	Anisotropic conductive shape-memory aerogels as adaptive reprogrammable wearable electronics for accurate long-term pressure sensing. Journal of Materials Chemistry A, 2022, 10, 3933-3943.	5.2	13
215	Tuning the dual- and triple-shape-memory effect of thermoplastic polyurethane/polylactic acid/poly(propylene carbonate) ternary blends via morphology control. Polymer, 2022, 242, 124546.	1.8	8
216	A Miniaturized Light-Driven Soft Crawler Based On Liquid Crystal Elastomer with High-Efficient Photothermal Thin-Film. , 2022, , .		2

#	Article	IF	CITATIONS
217	Stiffness Variable Polymers Comprising Phaseâ€Changing Sideâ€Chains: Material Syntheses and Application Explorations. Advanced Materials, 2022, 34, e2109798.	11.1	24
218	Recent and Future Strategies of Mechanotherapy for Tissue Regenerative Rehabilitation. ACS Biomaterials Science and Engineering, 2022, 8, 4639-4642.	2.6	9
219	4D Printing of Shape Memory Polymers: From Macro to Micro. Advanced Functional Materials, 2022, 32, .	7.8	73
220	Tunable volume memory poly(acrylic acid sodium) hydrogel by metal ionsd. Functional Materials Letters, 0, , .	0.7	2
221	Healable, Recyclable, and Programmable Shape Memory Organogels Based on Highly Malleable Catalyst-Free Carboxylate Linkages. ACS Applied Materials & Interfaces, 2022, , .	4.0	6
222	Bioactive NIRâ€II Lightâ€Responsive Shape Memory Composite Based on Cuprorivaite Nanosheets for Endometrial Regeneration. Advanced Science, 2022, 9, e2102220.	5.6	25
223	Mechanisms Affecting Physical Aging and Swelling by Blending an Amphiphilic Component. International Journal of Molecular Sciences, 2022, 23, 2185.	1.8	3
224	Sustainable, Malleable, and Recyclable Castor Oil-Derived Poly(urethane urea) Networks with Tunable Mechanical Properties and Shape Memory Performance Based on Dynamic Piperazine–Urea Bonds. Macromolecules, 2022, 55, 2243-2251.	2.2	50
225	Bistable and Multistable Actuators for Soft Robots: Structures, Materials, and Functionalities. Advanced Materials, 2022, 34, e2110384.	11.1	133
226	4D printed TPU/PLA/CNT wave structural composite with intelligent thermal-induced shape memory effect and synergistically enhanced mechanical properties. Composites Part A: Applied Science and Manufacturing, 2022, 158, 106946.	3.8	35
227	Cold-induced shape memory hydrogels for strong and programmable artificial muscles. Science China Materials, 2022, 65, 2274-2280.	3.5	18
228	Hierarchically non-uniform structures determine the hydro-actuated bending deformation of camel hair. Cell Reports Physical Science, 2022, 3, 100793.	2.8	2
229	Electrohydraulic actuator based on multiple pouch modules for bending and twisting. Sensors and Actuators A: Physical, 2022, 337, 113450.	2.0	3
230	Remote Propulsion of Miniaturized Mechanical Devices via Infraredâ€Irradiated Reversible Shape Memory Polymers. Advanced Intelligent Systems, 0, , 2200006.	3.3	0
231	Smart Shapeâ€memory Polymeric String for the Contraction of Blood Vessels in Fetal Surgery of Sacrococcygeal Teratoma. Advanced Healthcare Materials, 2022, , 2200050.	3.9	3
232	Novel monomers for photopolymer networks. Progress in Polymer Science, 2022, 128, 101529.	11.8	31
233	4D printing of multiple shape memory polymer and nanocomposites with biocompatible, programmable and selectively actuated properties. Additive Manufacturing, 2022, 53, 102689.	1.7	19
234	Bio-inspired fluorescence color-tunable soft actuators with a self-healing and reconfigurable nature. Materials Today Chemistry, 2022, 24, 100855.	1.7	5

#	Article	IF	CITATIONS
235	Reprogrammable, light-driven and sensing actuators based on Chinese ink composite: A synergetic use of shape-memory and self-healing strategies. Sensors and Actuators B: Chemical, 2022, 362, 131776.	4.0	6
236	Biocompatible Poly(ε-caprolactone)-based Shape-memory Polyurethane Composite Scaffold with Bone-induced Activity. Journal of Bionic Engineering, 2022, 19, 167-178.	2.7	3
237	Reprogrammable Soft Robot Actuation by Synergistic Magnetic and Light Fields. Advanced Functional Materials, 2022, 32, .	7.8	31
238	A Photoorganizable Triple Shape Memory Polymer for Deployable Devices. Small, 2022, 18, e2106443.	5.2	25
239	Ultrastretchable, Adhesive, Fast Self-Healable, and Three-Dimensional Printable Photoluminescent Ionic Skin Based on Hybrid Network Ionogels. ACS Applied Materials & Interfaces, 2022, 14, 2029-2037.	4.0	54
240	Development of Trans-1,4-Polyisoprene Shape-Memory Polymer Composites Reinforced with Carbon Nanotubes Modified by Polydopamine. Polymers, 2022, 14, 110.	2.0	7
241	Electrothermallyâ€Driven Elongatingâ€Contracting Film Actuators Based on Twoâ€Way Shape Memory Carbon Nanotube/Ethyleneâ€Vinyl Acetate Composites. Advanced Materials Technologies, 2022, 7, .	3.0	5
242	Converse two-way shape memory effect through a dynamic covalent network design. Journal of Materials Chemistry A, 2022, 10, 10350-10354.	5.2	10
243	Low Melting Point Alloys Enabled Stiffness Tunable Advanced Materials. Advanced Functional Materials, 2022, 32, .	7.8	38
244	Bioinspired Semicrystalline Dynamic Ionogels with Adaptive Mechanics and Tactile Sensing. ACS Applied Materials & Interfaces, 2022, 14, 20132-20138.	4.0	5
245	A brief review on mechanical designs for 4D printing. , 2022, 01, .		1
246	Waterâ€Triggered Stiffening of Shapeâ€Memory Polyurethanes Composed of Hard Backbone Dangling PEG Soft Segments. Advanced Materials, 2022, 34, e2201914.	11.1	27
247	Formation of rolls from liquid crystal elastomer bistrips. Soft Matter, 2022, 18, 4077-4089.	1.2	2
248	Actuation Mechanisms of a Semicrystalline Elastomer-Based Polymer Artificial Muscle with High Actuation Strain. Macromolecules, 2022, 55, 3986-3999.	2.2	6
250	Bio-based castor oil and lignin sulphonate: aqueous dispersions and shape-memory films. , 2022, 1, .		0
251	Recyclable Shape Memory Polymers with Independent Honeycomb Crosslinked Polymer Actuators and Temperature Response Switches Inspired by Bow Principle â€. SSRN Electronic Journal, 0, , .	0.4	0
252	Photothermal driven polymorph pattern in semicrystalline polymers towards programmable shape morphing. Chemical Engineering Journal, 2022, 446, 137346.	6.6	3
253	Smart Polyurethane and Its Promising Applications. ACS Symposium Series, 0, , 327-361.	0.5	1

		CITATION REPORT	
# 254	ARTICLE Responsive materials architected in space and time. Nature Reviews Materials, 2022, 7, 683-701.	IF 23.3	CITATIONS 80
204	Responsive materials architected in space and time. Nature Reviews Materials, 2022, 7, 005-701.	23.3	80
255	4D printing: Technological developments in robotics applications. Sensors and Actuators A: Physical, 2022, 343, 113670.	2.0	60
256	Rubber-like composites with tunable thermal- and photo-responsive shape memory properties. Chemical Engineering Journal, 2022, 447, 137534.	6.6	14
257	Design and fabrication of fiber mesh actuators. Applied Materials Today, 2022, 29, 101562.	2.3	1
258	Hierarchical motion of 4D-printed structures using the temperature memory effect. , 2022, , 279-310.		0
259	4D Microprinting. , 2022, , 231-263.		1
260	Bimorph electrothermal micro-gripper with large deformation, precise and rapid response, and low operating voltage. Applied Physics Letters, 2022, 121, 023502.	1.5	3
261	Controllable Droplet Sliding on a Smart Shapeâ€Memory Slippery Surface. Chemistry - an Asian Journal, 0, , .	1.7	1
262	Dual ontrol Mechanism of Water and Temperature in Automatically Programmable Shape Memory Polymers. Macromolecular Materials and Engineering, 2022, 307, .	1.7	3
263	Semiâ€Crystalline Rubber as a Lightâ€Responsive, Programmable, Resilient Robotic Material. Advanced Functional Materials, 2022, 32, .	7.8	4
264	Thermal Paper and Time Temperature Integrators Made From a Structural Colored Polymer Crosslinked With Hydrogen Bonded Cyclohexanoic Acid Derivatives. Advanced Optical Materials, 2022, 10, .	3.6	3
265	Rapidly reprogrammable actuation of liquid crystal elastomers. Matter, 2022, 5, 2409-2413.	5.0	4
266	Reconfigurable and Actuating Microbowls with Variable Steps. ACS Applied Polymer Materials, 0, , .	2.0	0
267	Thermal transport in 3D printed shape memory polymer metamaterials. APL Materials, 2022, 10, .	2.2	7
268	Switchable Piezoelectricity of Polyvinylidene Fluoride Films Induced by Crystal Transition in Shape Memory Process. ACS Applied Materials & Interfaces, 2022, 14, 40331-40343.	4.0	4
269	Recent advances in shape memory superhydrophobic surfaces: Concepts, mechanism, classification, applications and challenges. Polymer, 2022, 256, 125193.	1.8	10
270	Molecularly Engineered Unparalleled Strength and Supertoughness of Poly(ureaâ€urethane) with Shape Memory and Clusterizationâ€Triggered Emission. Advanced Materials, 2022, 34, .	11.1	31
271	Shape-reconfigurable transparent wood based on solid-state plasticity of polythiourethane for smart building materials with tunable light guiding, energy saving, and fire alarm actuating functions. Composites Part B: Engineering, 2022, 246, 110260.	5.9	25

#	Article	IF	CITATIONS
272	4D Printed Chiral Metamaterials with Negative Swelling Behavior. SSRN Electronic Journal, 0, , .	0.4	0
273	Adaptive Ir- and Water-Gating Textile Based on ShapeÂMemory Fibers. SSRN Electronic Journal, 0, , .	0.4	0
274	Photo-induced spatial gradient network for shape memory polymer with pattern-memorizing surface. Materials Horizons, 2022, 9, 3078-3086.	6.4	3
275	Shapeâ€Memory Electrochemical Energy Storage Devices. Batteries and Supercaps, 0, , .	2.4	1
276	Recyclable shape memory polymers with independent honeycomb crosslinked polymer actuators and temperature response switches inspired by bow principle. Journal of Applied Polymer Science, 2022, 139, .	1.3	2
277	Morphing of stiffness-heterogeneous liquid crystal elastomers via mechanical training and locally controlled photopolymerization. Matter, 2022, 5, 4332-4346.	5.0	5
279	Role of Maleic Anhydride-Grafted Poly(lactic acid) in Improving Shape Memory Properties of Thermoresponsive Poly(ethylene glycol) and Poly(lactic acid) Blends. Polymers, 2022, 14, 3923.	2.0	10
280	Stress-Free Two-Way Shape Memory Effect of Poly(ethylene glycol)/Poly(ε-caprolactone) Semicrystalline Networks. Macromolecules, 2022, 55, 8533-8547.	2.2	10
282	Thermomechanical Energy Converters for Harvesting Thermal Energy: A Review. Journal of Renewable Materials, 2023, 11, 1555-1600.	1.1	3
283	A Multiple Remotely Controlled Platform from Recyclable Polyurethane Composite Network with Shapeâ€Memory Effect and Selfâ€Healing Ability. Small, 2022, 18, .	5.2	8
284	Multiple/Twoâ€Way Shape Memory Poly(urethaneâ€ureaâ€amide) Elastomers. Macromolecular Rapid Communications, 2023, 44, .	2.0	1
285	4D Printing of Shape Memory Polymers, Blends, and Composites and Their Advanced Applications: A Comprehensive Literature Review. Advanced Engineering Materials, 2023, 25, .	1.6	13
286	4D Printing of Single-Network Shape Memory Polyurethanes with Two-Way Actuation Properties. ACS Applied Polymer Materials, 2022, 4, 8574-8583.	2.0	9
287	Thermo-responsive programmable shape memory polymer based on amidation cured natural rubber grafted with poly(methyl methacrylate). Polymer, 2022, 262, 125444.	1.8	4
288	Merging the Interfaces of Different Shapeâ€ S hifting Polymers Using Hybrid Exchange Reactions. Advanced Materials, 2023, 35, .	11.1	11
289	Photo-crosslinkable and ultrastable poly(1,4-butadiene) based organogel with record-high reversible elongation upon cooling and contraction upon heating. Polymer, 2022, 262, 125477.	1.8	5
290	4D- Printed Shape Memory Polymer Based Solar Tracker. , 2022, , .		0
291	Advances in shape memory polymers: Remote actuation, multi-stimuli control, 4D printing and prospective applications. Materials Science and Engineering Reports, 2022, 151, 100702.	14.8	34

#	Article	IF	CITATIONS
292	Magnetic field–driven particle assembly and jamming for bistable memory and response plasticity. Science Advances, 2022, 8, .	4.7	5
293	Active tissue adhesive activates mechanosensors and prevents muscle atrophy. Nature Materials, 2023, 22, 249-259.	13.3	18
294	Reversible stimuli responsive lanthanide-polyoxometalate-based luminescent hydrogel with shape memory and self-healing properties for advanced information security storage. Polymer, 2022, 263, 125509.	1.8	8
295	Fabrication of controllable and reversible bidirectional shape memory fabric composites based on multiblock copolyimide and their properties. Polymer, 2023, 265, 125608.	1.8	4
296	Responses to single and multiple temperature-, medium-, and pH-stimuli triggering reversible shape shifts in hydrogel actuators. Materials and Design, 2023, 225, 111511.	3.3	6
297	Thermomechanical buckling of tubularly chiral thermo-metamaterials. Thin-Walled Structures, 2023, 183, 110344.	2.7	2
298	Constrained shape-memory behaviors of multiple network elastomers. Materials Letters, 2023, 334, 133676.	1.3	1
299	Properties and mechanism of two-way shape memory polyurethane composite under stress-free condition. Advanced Composites and Hybrid Materials, 2023, 6, .	9.9	36
300	Smart-Temporary-Film-Based Local-Delivery System with Controllable Drug-Release Behavior. Gels, 2022, 8, 773.	2.1	0
301	Adaptive IR- and Water-Gating Textiles Based on Shape Memory Fibers. ACS Applied Materials & Interfaces, 2022, 14, 55217-55226.	4.0	7
302	Thermally insulating and electroactive cellular nanocellulose composite cryogels from hybrid nanofiber networks. Chemical Engineering Journal, 2023, 455, 140638.	6.6	10
303	Additive manufacturing and investigation of shape memory properties of polylactic acid/thermoplastic polyurethane blend. Journal of Elastomers and Plastics, 2023, 55, 201-222.	0.7	8
304	Utilizing 4D Printing to Design Smart Gastroretentive, Esophageal, and Intravesical Drug Delivery Systems. Advanced Healthcare Materials, 2023, 12, .	3.9	15
305	Carbon nanofiber-reinforced shape memory polyurethanes based on HTPB/PTMG blend as anticorrosive coatings. Polymer-Plastics Technology and Materials, 2023, 62, 563-581.	0.6	1
306	Shape memory effect and light-induced deformation in Schiff base molecular crystals/PVDF ferroelectric polymer composites. Chemical Engineering Journal, 2023, 455, 140693.	6.6	3
307	Shape Memory Polymer Foam for Autonomous Climate-Adaptive Building Envelopes. Buildings, 2022, 12, 2236.	1.4	3
308	Triple Stimuliâ€Responsive Flexible Shape Memory Foams with Superâ€Amphiphilicity. Small, 2023, 19, .	5.2	4
309	Effects of Chemical Composition on the Shape Memory Property of Poly(<scp>d</scp> <scp>l</scp> -lactide- <i>co</i> -trimethylene carbonate) as Self-Morphing Small-Diameter Vascular Scaffolds. ACS Biomaterials Science and Engineering, 0, , .	2.6	2

#	Article	IF	CITATIONS
310	Self-Healing Superwetting Surfaces, Their Fabrications, and Properties. Chemical Reviews, 2023, 123, 663-700.	23.0	18
311	Effects of vacuum thermal cycling, ultraviolet radiation and atomic oxygen on the mechanical properties of carbon fiber/epoxy shape memory polymer composite. Polymer Testing, 2023, 118, 107915.	2.3	6
312	4D printed chiral metamaterials with negative swelling behavior. Smart Materials and Structures, 2023, 32, 015014.	1.8	4
313	Artificial Intelligence Assisted Fabrication of 3D, 4D and 5D Printed Formulations or Devices for Drug Delivery, 2023, 20, 752-769.	0.8	7
314	A Semicrystalline Poly(azobenzene) Exhibiting Room Temperature Light-Induced Melting, Crystallization, and Alignment. Macromolecules, 2022, 55, 10330-10340.	2.2	3
315	A Review of Smart Superwetting Surfaces Based on Shapeâ€Memory Micro/Nanostructures. Small, 2023, 19, .	5.2	15
317	Bio-Based, Self-Healing, Recyclable, Reconfigurable Multifunctional Polymers with Both One-Way and Two-Way Shape Memory Properties. ACS Applied Materials & Interfaces, 2023, 15, 3497-3506.	4.0	16
318	Application of electrolaminates for the development of biomimetic morphing unmanned aerial vehicles. Journal of Composite Materials, 2023, 57, 759-769.	1.2	0
319	Porous recyclable sponges with controllable and durable shape memory. Materials Advances, 2023, 4, 1075-1080.	2.6	1
320	Stressâ€Induced Shapeâ€5hifting Materials Possessing Autonomous Selfâ€Healing and Scratchâ€Resistant Ability. Chemistry - an Asian Journal, 2023, 18, .	1.7	2
321	An investigation on multilayer shape memory polymers under finite bending through nonlinear thermo-visco-hyperelasticity. Applied Mathematics and Mechanics (English Edition), 2023, 44, 73-88.	1.9	6
322	Smart Space Deployable Truss Based on Shape-Memory Releasing Mechanisms and Actuation Laminates. Journal of Spacecraft and Rockets, 0, , 1-15.	1.3	0
323	Encroachments in stimuli-responsive polymer/C60 systems. , 2023, , 131-152.		1
324	Hydration Activates Dualâ€Confined Shapeâ€Memory Effects of Coldâ€Reprogrammable Photonic Crystals. Advanced Materials, 2023, 35, .	11.1	10
325	Localized Photoactuation of Polymer Pens for Nanolithography. Molecules, 2023, 28, 1171.	1.7	3
326	The need for fused deposition modeling of composite materials. , 2023, , 39-89.		0
327	Fused deposition modeling of composite materials at a glance – supplementary tables. , 2023, , 329-445.		1
328	Water-actuated reversible shape-memory polydimethylsiloxane for potential biomedical applications. Journal of Materials Chemistry B, 0, , .	2.9	0

#	Article	IF	CITATIONS
329	Narrow response temperature range with excellent reversible shape memory effect for semi-crystalline networks as soft actuators. Materials Horizons, 2023, 10, 2464-2475.	6.4	2
330	Polymer-dispersed liquid crystal elastomers as moldable shape-programmable material. Nature Communications, 2023, 14, .	5.8	7
331	Shape Memory Graphene Nanocomposites—Fundamentals, Properties, and Significance. Processes, 2023, 11, 1171.	1.3	5
332	Design and fabrication of shape memory polyurethane network with rapid recoverable plastic deformation. Materials Today Communications, 2023, 35, 105777.	0.9	1
333	A review on shape memory polymers. Polymer-Plastics Technology and Materials, 2023, 62, 467-485.	0.6	6
334	Actuation of shape memory poly(vinyl alcohol) and graphene oxide film in water. Functional Materials Letters, 2023, 16, .	0.7	0
335	Antibacterial polyurethane composite scaffolds for minimally invasive alveolar bone repair. Applied Materials Today, 2023, 31, 101752.	2.3	1
336	Thermally Triggered Multilevel Diffractive Optical Elements Tailored by Shape-Memory Polymers for Temperature History Sensors. ACS Applied Materials & Interfaces, 2023, 15, 9813-9819.	4.0	6
337	Continuously-deformable and stiffness-tunable soft manipulator achieving unmanned COVID-19 pandemic sampling. Heliyon, 2023, 9, e13731.	1.4	0
338	Configurational Entropy Regulation in Polyolefin Elastomer/Paraffin Wax Vitrimers by Thermally Responsive Liquid–Solid Transition for Force Storage. ACS Applied Materials & Interfaces, 2023, 15, 12423-12433.	4.0	2
339	4D Printed Shape Memory Anastomosis Ring with Controllable Shape Transformation and Degradation. Advanced Functional Materials, 2023, 33, .	7.8	8
340	Multiphase PCL semi-interpenetrating networks exhibiting the triple- and stress-free two-way shape memory effect. Polymer Chemistry, 2023, 14, 1478-1487.	1.9	4
341	Electrothermal properties of short carbon fiber/ <scp>PLA</scp> composite structure and its fast response behavior. Journal of Applied Polymer Science, 2023, 140, .	1.3	2
342	A Magnetically Actuated Variable Stiffness Manipulator Based on Deployable Shape Memory Polymer Springs. Advanced Intelligent Systems, 2024, 6, .	3.3	4
343	Ultrafast Shapeâ€Reconfigurable Chiral Mechanical Metamaterial based on Prestressed Bistable Shells. Advanced Functional Materials, 2023, 33, .	7.8	6
344	Phase Change Thermal Storage Materials for Interdisciplinary Applications. Chemical Reviews, 2023, 123, 6953-7024.	23.0	79
345	ANSYS Study of the Shape-Memory Effect in Cross-Linked Polyethylene Products. Journal of Applied Mechanics and Technical Physics, 2022, 63, 1138-1154.	0.1	0
346	Imparting Reprocessability, Quadruple Shape Memory, Self-Healing, and Vibration Damping Characteristics to a Thermosetting Poly(urethane-urea). ACS Applied Polymer Materials, 2023, 5, 3079-3095.	2.0	3

#	Article	IF	CITATIONS
347	Mechanochromic Self-Healing Materials with Good Stretchability, Shape Memory Behavior, Cyclability, and Reversibility Based on Multiple Hydrogen Bonds. ACS Applied Materials & Interfaces, 2023, 15, 19362-19373.	4.0	6
348	Sustainable Approach for the Synthesis of a Semicrystalline Polymer with a Reversible Shape-Memory Effect. ACS Macro Letters, 2023, 12, 563-569.	2.3	2
349	Mechanics-guided design of inflatable heterogeneous shape memory polymer vascular stents. International Journal of Mechanical Sciences, 2023, 254, 108405.	3.6	7
350	Shape memory polymer-based thermal-responsive circuit switches. Journal of Materials Chemistry C, 2023, 11, 6276-6289.	2.7	3
351	Shape memory mechanical metamaterials. Materials Today, 2023, 66, 36-49.	8.3	19
352	A shape-reconfigurable, light and magnetic dual-responsive shape-memory micropillar array chip for droplet manipulation. Chinese Chemical Letters, 2024, 35, 108494.	4.8	1
375	Dancing Delicacies: Designing Computational Food for Dynamic Dining Trajectories. , 2023, , .		1
376	Recent advances in multifunctional shape memory photonic crystals and practical applications. Nano Research, 2024, 17, 79-96.	5.8	2
379	FRESH-Printing of a Multi-actuator Biodegradable Robot Arm for Articulation and Grasping. Lecture Notes in Computer Science, 2023, , 130-141.	1.0	0
385	Shape memory photonic materials: fabrication and emerging applications. Journal of Materials Chemistry C, 2023, 11, 12466-12485.	2.7	2
417	Shape Memory Hydrogel with Remodelable Permanent Shapes and Programmable Cold-Induced Shape Recovery Behavior. Soft Matter, 0, , .	1.2	0
425	Carbon quantum dots (CQDs)-modified polymers: a review of non-optical applications. Nanoscale, 2024, 16, 2265-2288.	2.8	2
432	Polyurethane in shape memory nanomaterials. , 2024, , 41-62.		0
433	Multipurpose shape memory nanocomposites: sensors, actuators, supercapacitors, electronics, and smart textiles. , 2024, , 213-236.		0