Screening for cardiac contractile dysfunction using an a electrocardiogram

Nature Medicine 25, 70-74 DOI: 10.1038/s41591-018-0240-2

Citation Report

#	Article	IF	CITATIONS
1	Machine learning in the electrocardiogram. Journal of Electrocardiology, 2019, 57, S61-S64.	0.4	79
2	An artificial intelligence-enabled ECG algorithm for the identification of patients with atrial fibrillation during sinus rhythm: a retrospective analysis of outcome prediction. Lancet, The, 2019, 394, 861-867.	6.3	794
3	Advancing Drug Discovery via Artificial Intelligence. Trends in Pharmacological Sciences, 2019, 40, 592-604.	4.0	316
4	Development and Validation of Deep-Learning Algorithm for Electrocardiography-Based Heart Failure Identification. Korean Circulation Journal, 2019, 49, 629.	0.7	70
5	Artificial intelligence algorithm for predicting mortality of patients with acute heart failure. PLoS ONE, 2019, 14, e0219302.	1.1	84
6	Response to: Risk stratification for stroke in atrial fibrillation: incorporating neurologists in the comprehensive management. European Heart Journal, 2019, 40, 3060-3060.	1.0	2
7	Usefulness of Blunted Heart Rate Reserve as an Imaging-Independent Prognostic Predictor During Dipyridamole Stress Echocardiography. American Journal of Cardiology, 2019, 124, 972-977.	0.7	28
8	Cardiac tissue engineering: state-of-the-art methods and outlook. Journal of Biological Engineering, 2019, 13, 57.	2.0	89
9	Intelligent sensor of glucose based on CuO nanomaterials. International Journal of Electrochemical Science, 2019, , 11531-11540.	0.5	1
10	Artificial Intelligence Meets Chinese Medicine. Chinese Journal of Integrative Medicine, 2019, 25, 648-653.	0.7	14
11	Age and Sex Estimation Using Artificial Intelligence From Standard 12-Lead ECGs. Circulation: Arrhythmia and Electrophysiology, 2019, 12, e007284.	2.1	213
12	Artificial Intelligence in Nephrology: Core Concepts, Clinical Applications, and Perspectives. American Journal of Kidney Diseases, 2019, 74, 803-810.	2.1	90
13	Automated and Interpretable Patient ECG Profiles for Disease Detection, Tracking, and Discovery. Circulation: Cardiovascular Quality and Outcomes, 2019, 12, e005289.	0.9	111
14	Tele-electrocardiography and bigdata: The CODE (Clinical Outcomes in Digital Electrocardiography) study. Journal of Electrocardiology, 2019, 57, S75-S78.	0.4	42
15	Artificial intelligence to improve the diagnosis of cardiovascular diseases. Nature Reviews Cardiology, 2019, 16, 133-133.	6.1	15
16	Long data from the electrocardiogram. Lancet, The, 2019, 393, 2189.	6.3	6
17	Pragmatic considerations for fostering reproducible research in artificial intelligence. Npj Digital Medicine, 2019, 2, 42.	5.7	27
18	Connected Health Technology for Cardiovascular Disease Prevention and Management. Current Treatment Options in Cardiovascular Medicine, 2019, 21, 29.	0.4	27

ION RE

#	Article	IF	CITATIONS
19	Prospective validation of a deep learning electrocardiogram algorithm for the detection of left ventricular systolic dysfunction. Journal of Cardiovascular Electrophysiology, 2019, 30, 668-674.	0.8	98
20	Artificial intelligenceâ€augmented ECG assessment: The promise and the challenge. Journal of Cardiovascular Electrophysiology, 2019, 30, 675-678.	0.8	6
21	Artificial intelligence in clinical and genomic diagnostics. Genome Medicine, 2019, 11, 70.	3.6	205
22	Digital heart for life. Korean Journal of Physiology and Pharmacology, 2019, 23, 291.	0.6	0
23	Precision Medicine in the Management of Dilated Cardiomyopathy. Journal of the American College of Cardiology, 2019, 74, 2921-2938.	1.2	57
24	Cardiac arrest: prediction models in the early phase of hospitalization. Current Opinion in Critical Care, 2019, 25, 204-210.	1.6	14
25	Ischemic Stroke Risk in Patients WithÂNonvalvularÂAtrial Fibrillation. Journal of the American College of Cardiology, 2019, 74, 3050-3065.	1.2	65
26	Multi-class Arrhythmia Detection based on Neural Network with Multi-stage Features Fusion. , 2019, , .		16
27	Artificial intelligence for the electrocardiogram. Nature Medicine, 2019, 25, 22-23.	15.2	85
28	The electrocardiogram endeavour: from the Holter single-lead recordings to multilead wearable devices supported by computational machine learning algorithms. Europace, 2020, 22, 19-23.	0.7	16
29	World Heart Federation Roadmap for Heart Failure. Global Heart, 2019, 14, 197.	0.9	67
30	ECG Al-Guided Screening for Low Ejection Fraction (EAGLE): Rationale and design of a pragmatic cluster randomized trial. American Heart Journal, 2020, 219, 31-36.	1.2	50
31	Artificial intelligence approaches using natural language processing to advance EHR-based clinical research. Journal of Allergy and Clinical Immunology, 2020, 145, 463-469.	1.5	142
32	Editoral commentary: Beyond the early adopter: The smartwatch ECG goes mainstream. Trends in Cardiovascular Medicine, 2020, 30, 449-450.	2.3	1
33	Wireless monitoring and artificial intelligence: A bright future in cardiothoracic surgery. Journal of Thoracic and Cardiovascular Surgery, 2020, 160, 809-812.	0.4	6
34	Comparing the performance of artificial intelligence and conventional diagnosis criteria for detecting left ventricular hypertrophy using electrocardiography. Europace, 2020, 22, 412-419.	0.7	66
35	Artificial intelligence capable of detecting left ventricular hypertrophy: pushing the limits of the electrocardiogram?. Europace, 2020, 22, 338-339.	0.7	6
36	Digital Health and the Care of the Patient With Arrhythmia. Circulation: Arrhythmia and Electrophysiology, 2020, 13, e007953.	2.1	20

#	Article	IF	CITATIONS
37	The Use of Time-Frequency Moments as Inputs of LSTM Network for ECG Signal Classification. Electronics (Switzerland), 2020, 9, 1452.	1.8	48
38	Failure to rescue: A quality indicator for postoperative care. Bailliere's Best Practice and Research in Clinical Anaesthesiology, 2021, 35, 575-589.	1.7	8
39	Deep Learning Algorithm Classifies Heartbeat Events Based on Electrocardiogram Signals. Frontiers in Physiology, 2020, 11, 569050.	1.3	29
40	Artificial Intelligence in Subspecialties. , 2020, , 267-396.		1
41	Machine Learning Assessment of Left Ventricular Diastolic Function Based on Electrocardiographic Features. Journal of the American College of Cardiology, 2020, 76, 930-941.	1.2	59
42	Artificial Intelligence, Machine Learning, and Cardiovascular Disease. Clinical Medicine Insights: Cardiology, 2020, 14, 117954682092740.	0.6	70
43	A comparison of artificial intelligence-based algorithms for the identification of patients with depressed right ventricular function from 2-dimentional echocardiography parameters and clinical features. Cardiovascular Diagnosis and Therapy, 2020, 10, 859-868.	0.7	7
44	Digital Phenotyping of Myocardial Dysfunction With 12-Lead ECG. Journal of the American College of Cardiology, 2020, 76, 942-944.	1.2	2
45	Artificial intelligence algorithm for predicting cardiac arrest using electrocardiography. Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine, 2020, 28, 98.	1.1	35
46	Deep learning models to detect hidden clinical correlates. The Lancet Digital Health, 2020, 2, e334-e335.	5.9	2
47	The present and future role of artificial intelligence and machine learning in anesthesiology. International Anesthesiology Clinics, 2020, 58, 7-16.	0.3	9
48	Machine Learning in Electrocardiography and Echocardiography: Technological Advances in Clinical Cardiology. Current Cardiology Reports, 2020, 22, 161.	1.3	12
49	Medicina predictiva, aprendizaje automático y anestesia. Revista Española De AnestesiologÃa Y Reanimación, 2020, 67, 535-537.	0.1	0
50	An AI-ECG algorithm for atrial fibrillation risk: steps towards clinical implementation – Authors' reply. Lancet, The, 2020, 396, 236-237.	6.3	5
51	Deep Sequential Feature Learning in Clinical Image Classification of Infectious Keratitis. Engineering, 2021, 7, 1002-1010.	3.2	31
52	Clinical applications of machine learning in the diagnosis, classification, and prediction of heart failure. American Heart Journal, 2020, 229, 1-17.	1.2	85
53	Predictive medicine, machine learning, and anesthesia. Revista Española De AnestesiologÃa Y Reanimación (English Edition), 2020, 67, 535-537.	0.1	0
54	Artificial intelligence algorithm for detecting myocardial infarction using six-lead electrocardiography. Scientific Reports, 2020, 10, 20495.	1.6	61

#	Article	IF	Citations
55	Following Embryonic Stem Cells, Their Differentiated Progeny, and Cell-State Changes During iPS Reprogramming by Raman Spectroscopy. Analytical Chemistry, 2020, 92, 14915-14923.	3.2	14
56	Applying Artificial Intelligence to ECG Analysis. Circulation: Arrhythmia and Electrophysiology, 2020, 13, e009111.	2.1	8
57	A deep learning algorithm to detect anaemia with ECGs: a retrospective, multicentre study. The Lancet Digital Health, 2020, 2, e358-e367.	5.9	67
58	Review of Artificial Intelligence Application in Cardiology. , 2020, , .		28
59	Artificial Intelligence-Enabled ECG Algorithm to Identify Patients With Left Ventricular Systolic Dysfunction Presenting to the Emergency Department With Dyspnea. Circulation: Arrhythmia and Electrophysiology, 2020, 13, e008437.	2.1	81
60	Electrocardiographic myocardial injury and stroke mortality in the general population. Journal of Electrocardiology, 2020, 60, 126-130.	0.4	1
61	Nocturnal low glucose detection in healthy elderly from one-lead ECG using convolutional denoising autoencoders. Biomedical Signal Processing and Control, 2020, 62, 102054.	3.5	18
62	A comprehensive artificial intelligence–enabled electrocardiogram interpretation program. Cardiovascular Digital Health Journal, 2020, 1, 62-70.	0.5	33
63	Clinical Implication of Machine Learning in Predicting the Occurrence of Cardiovascular Disease Using Big Data (Nationwide Cohort Data in Korea). IEEE Access, 2020, 8, 157643-157653.	2.6	42
64	Machine learning does not improve upon traditional regression in predicting outcomes in atrial fibrillation: an analysis of the ORBIT-AF and GARFIELD-AF registries. Europace, 2020, 22, 1635-1644.	0.7	16
65	Modeling and Reconstructing Textile Sensor Noise: Implications for Wearable Technology. , 2020, 2020, 4563-4566.		2
66	Classification of Aortic Stenosis Using ECG by Deep Learning and its Analysis Using Grad-CAM. , 2020, 2020, 1548-1551.		8
67	The Promise of Clinical Decision Support Systems Targetting Low-Resource Settings. IEEE Reviews in Biomedical Engineering, 2020, PP, 1-1.	13.1	6
68	Artificial intelligence in health care: preparing for the fifth Industrial Revolution. Medical Journal of Australia, 2020, 213, 253.	0.8	14
70	Deep-Learning Model to Predict Coronary Artery Calcium Scores in Humans from Electrocardiogram Data. Applied Sciences (Switzerland), 2020, 10, 8746.	1.3	1
71	The Recent Progress and Applications of Digital Technologies in Healthcare: A Review. International Journal of Telemedicine and Applications, 2020, 2020, 1-18.	1.1	68
72	Deep learning to predict elevated pulmonary artery pressure in patients with suspected pulmonary hypertension using standard chest X ray. Scientific Reports, 2020, 10, 19311.	1.6	28
73	Computational Diagnostic Techniques for Electrocardiogram Signal Analysis. Sensors, 2020, 20, 6318.	2.1	42

#	Article	IF	CITATIONS
74	Artificial Intelligence ECG to Detect Left Ventricular Dysfunction in COVID-19. Mayo Clinic Proceedings, 2020, 95, 2464-2466.	1.4	21
75	Machine Learning Enables Prediction of Cardiac Amyloidosis by Routine Laboratory Parameters: A Proof-of-Concept Study. Journal of Clinical Medicine, 2020, 9, 1334.	1.0	13
76	Applications of artificial intelligence and machine learning in respiratory medicine. Thorax, 2020, 75, 695-701.	2.7	49
77	Wide Complex Tachycardia Differentiation: A Reappraisal of the Stateâ€ofâ€theâ€Art. Journal of the American Heart Association, 2020, 9, e016598.	1.6	26
78	Prediction of mortality from 12-lead electrocardiogram voltage data using a deep neural network. Nature Medicine, 2020, 26, 886-891.	15.2	168
79	The electrocardiogram: are we at the dawn of a new era?. European Heart Journal, 2020, 41, 2000-2002.	1.0	2
80	Automatic Triage of 12â€Lead ECGs Using Deep Convolutional Neural Networks. Journal of the American Heart Association, 2020, 9, e015138.	1.6	42
81	Technology and computing. , 2020, , 99-128.		0
82	Automated extraction of left atrial volumes from two-dimensional computer tomography images using a deep learning technique. International Journal of Cardiology, 2020, 316, 272-278.	0.8	22
83	European Heart Rhythm Association (EHRA)/Heart Rhythm Society (HRS)/Asia Pacific Heart Rhythm Society (APHRS)/Latin American Heart Rhythm Society (LAHRS) expert consensus on risk assessment in cardiac arrhythmias: use the right tool for the right outcome, in the right population. Europace, 2020. 22. 1147-1148.	0.7	62
84	European Heart Rhythm Association (EHRA)/Heart Rhythm Society (HRS)/Asia Pacific Heart Rhythm Society (APHRS)/Latin American Heart Rhythm Society (LAHRS) expert consensus on risk assessment in cardiac arrhythmias: use the right tool for the right outcome, in the right population. Journal of Arrhythmia, 2020, 36, 553-607.	0.5	40
85	European Heart Rhythm Association (EHRA)/Heart Rhythm Society (HRS)/Asia Pacific Heart Rhythm Society (APHRS)/Latin American Heart Rhythm Society (LAHRS) expert consensus on risk assessment in cardiac arrhythmias: use the right tool for the right outcome, in the right population. Heart Rhythm, 2020. 17. e269-e316.	0.3	15
86	Innovation Lessons From the COVID-19 Pandemic. Mayo Clinic Proceedings, 2020, 95, 1574-1577.	1.4	34
87	Opportunities and challenges of deep learning methods for electrocardiogram data: A systematic review. Computers in Biology and Medicine, 2020, 122, 103801.	3.9	228
88	Machine Learning of 12-Lead QRS Waveforms to Identify Cardiac Resynchronization Therapy Patients With Differential Outcomes. Circulation: Arrhythmia and Electrophysiology, 2020, 13, e008210.	2.1	29
89	Persistent Value of the Stethoscope in the Age of COVID-19. American Journal of Medicine, 2020, 133, 1143-1150.	0.6	43
90	Automatic multilabel electrocardiogram diagnosis of heart rhythm or conduction abnormalities with deep learning: a cohort study. The Lancet Digital Health, 2020, 2, e348-e357.	5.9	103
91	Artificial Intelligence in Cardiology: Present and Future. Mayo Clinic Proceedings, 2020, 95, 1015-1039.	1.4	127

#	Article	IF	CITATIONS
92	Artificial Intelligence-Enabled ECG: a Modern Lens on an Old Technology. Current Cardiology Reports, 2020, 22, 57.	1.3	23
95	Deep Learning–Based Algorithm for Detecting Aortic Stenosis Using Electrocardiography. Journal of the American Heart Association, 2020, 9, e014717.	1.6	113
96	Going Deep With ECG and Aortic Stenosis: Touchdown or Incomplete Pass?. Journal of the American Heart Association, 2020, 9, e016193.	1.6	8
97	Continuous blood pressure measurement from one-channel electrocardiogram signal using deep-learning techniques. Artificial Intelligence in Medicine, 2020, 108, 101919.	3.8	78
98	Identifying the most important ECG predictors of reduced ejection fraction in patients with suspected acute coronary syndrome. Journal of Electrocardiology, 2020, 61, 81-85.	0.4	6
99	Artificial Intelligence (AI) and Cardiovascular Diseases: An Unexpected Alliance. Cardiology Research and Practice, 2020, 2020, 1-8.	0.5	49
100	TowardÂprecision health: applying artificial intelligence analytics to digital health biometric datasets. Personalized Medicine, 2020, 17, 307-316.	0.8	7
101	Deep Learning for Cardiovascular Risk Stratification. Current Treatment Options in Cardiovascular Medicine, 2020, 22, 1.	0.4	12
102	Artificial Intelligence and Machine Learning in Arrhythmias and Cardiac Electrophysiology. Circulation: Arrhythmia and Electrophysiology, 2020, 13, e007952.	2.1	96
103	How Will Machine Learning Inform the Clinical Care of Atrial Fibrillation?. Circulation Research, 2020, 127, 155-169.	2.0	35
104	Genetics of Atrial Fibrillation in 2020. Circulation Research, 2020, 127, 21-33.	2.0	110
105	Artificial intelligence for detecting mitral regurgitation using electrocardiography. Journal of Electrocardiology, 2020, 59, 151-157.	0.4	42
106	Stateâ€ofâ€ŧheâ€Art Machine Learning Techniques Aiming to Improve Patient Outcomes Pertaining to the Cardiovascular System. Journal of the American Heart Association, 2020, 9, e013924.	1.6	76
107	Detection of Hypertrophic Cardiomyopathy Using a Convolutional Neural Network-Enabled Electrocardiogram. Journal of the American College of Cardiology, 2020, 75, 722-733.	1.2	183
108	Assessing and Mitigating Bias in Medical Artificial Intelligence. Circulation: Arrhythmia and Electrophysiology, 2020, 13, e007988.	2.1	116
109	Precision Medicine and Artificial Intelligence: A Pilot Study on Deep Learning for Hypoglycemic Events Detection based on ECG. Scientific Reports, 2020, 10, 170.	1.6	114
110	The essential skill of ECG interpretation: How do we define and improve competency?. Postgraduate Medical Journal, 2020, 96, 125-127.	0.9	16
111	Current Challenges and Recent Updates in Artificial Intelligence and Echocardiography. Current Cardiovascular Imaging Reports, 2020, 13, 1.	0.4	14

#	Article	IF	CITATIONS
112	Detection and Classification of Cardiac Arrhythmias by a Challenge-Best Deep Learning Neural Network Model. IScience, 2020, 23, 100886.	1.9	106
113	Reversal No Longer Matters: Attention-Based Arrhythmia Detection with Lead-Reversal ECG Data. , 2020, , .		1
115	Left ventricular systolic dysfunction identification using artificial intelligence-augmented electrocardiogram in cardiac intensive care unit patients. International Journal of Cardiology, 2021, 326, 114-123.	0.8	25
116	Artificial Intelligence for Internet of Things and Enhanced Medical Systems. Studies in Computational Intelligence, 2021, , 43-59.	0.7	21
117	Big data and new information technology: what cardiologists need to know. Revista Espanola De Cardiologia (English Ed), 2021, 74, 81-89.	0.4	6
118	Machine Learned Cellular Phenotypes in Cardiomyopathy Predict Sudden Death. Circulation Research, 2021, 128, 172-184.	2.0	35
119	Artificial intelligence in cardiovascular medicine. Current Opinion in Cardiology, 2021, 36, 26-35.	0.8	16
120	Explainable artificial intelligence to detect atrial fibrillation using electrocardiogram. International Journal of Cardiology, 2021, 328, 104-110.	0.8	57
121	Deep Learning for ECG Analysis: Benchmarks and Insights from PTB-XL. IEEE Journal of Biomedical and Health Informatics, 2021, 25, 1519-1528.	3.9	144
122	Preoperative identification of microvascular invasion in hepatocellular carcinoma by XGBoost and deep learning. Journal of Cancer Research and Clinical Oncology, 2021, 147, 821-833.	1.2	95
123	Mobile Application Can Now Assist to Diagnose Arrhythmias with Collective Intelligence. Korean Circulation Journal, 2021, 51, 358.	0.7	0
124	2021 ISHNE/HRS/EHRA/APHRS collaborative statement on mHealth in Arrhythmia Management: Digital Medical Tools for Heart Rhythm Professionals. Journal of Arrhythmia, 2021, 37, 271-319.	0.5	21
125	Artificial Intelligence in Medicine (AIM) for Cardiac Arrest. , 2021, , 1-8.		0
126	Artificial Intelligence in Medicine (AIM) in Cardiovascular Disorders. , 2021, , 1-11.		0
127	ä≌工知èf½ã,'用ã,ãŸå¿fé>»å›³ã«ã, ã,<å¿fç—¾æ,£è¨æ—ï¼^Artificial intelligence expands the possibilities of e 2021, 30, 29-34.	ectrocardi	iographyï¼%
128	Detecting Dynamic Behavior of Brain Fatigue Through 3-D-CNN-LSTM. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52, 90-100.	5.9	29
129	State of the Art in Artificial Intelligence and Machine Learning Techniques for Improving Patient Outcomes Pertaining to the Cardiovascular and Respiratory Systems. , 2021, , 335-352.		2
130	2021 ISHNE/ HRS/ EHRA/ APHRS collaborative statement on mHealth in Arrhythmia Management: Digital Medical Tools for Heart Rhythm Professionals. Annals of Noninvasive Electrocardiology, 2021, 26, e12795.	0.5	29

#	Article	IF	CITATIONS
131	Artificial-Intelligence-Enhanced Mobile System for Cardiovascular Health Management. Sensors, 2021, 21, 773.	2.1	34
132	Modeling and Reproducing Textile Sensor Noise: Implications for Textile-Compatible Signal Processing Algorithms. IEEE Journal of Biomedical and Health Informatics, 2022, 26, 243-253.	3.9	1
133	The year in cardiovascular medicine 2020: digital health and innovation. European Heart Journal, 2021, 42, 732-739.	1.0	20
135	Machine learning: at the heart of failure diagnosis. Current Opinion in Cardiology, 2021, 36, 227-233.	0.8	9
137	Electrocardiographic Machine Learning to Predict Mitral Valve Prolapse in Young Adults. IEEE Access, 2021, 9, 103132-103140.	2.6	4
138	Artificial Intelligence (AI) in medicine as a strategic valuable tool. Pan African Medical Journal, 2021, 38, 184.	0.3	15
139	Electrocardiogram lead selection for intelligent screening of patients with systolic heart failure. Scientific Reports, 2021, 11, 1948.	1.6	5
140	Machine Learning and the Future of Cardiovascular Care. Journal of the American College of Cardiology, 2021, 77, 300-313.	1.2	191
141	Artificial Intelligence in Precision Medicine: A Perspective in Biomarker and Drug Discovery. , 2021, , 71-88.		1
142	Studying accelerated cardiovascular ageing in Russian adults through a novel deep-learning ECG biomarker. Wellcome Open Research, 0, 6, 12.	0.9	8
143	Effectiveness of Transfer Learning for Deep Learning-Based Electrocardiogram Analysis. Healthcare Informatics Research, 2021, 27, 19-28.	1.0	23
144	A method to screen left ventricular dysfunction through ECG based on convolutional neural network. Journal of Cardiovascular Electrophysiology, 2021, 32, 1095-1102.	0.8	15
145	Deep learning and the electrocardiogram: review of the current state-of-the-art. Europace, 2021, 23, 1179-1191.	0.7	111
146	2021 ISHNE/HRS/EHRA/APHRS Expert Collaborative Statement on mHealth in Arrhythmia Management: Digital Medical Tools for Heart Rhythm Professionals: From the International Society for Holter and Noninvasive Electrocardiology/Heart Rhythm Society/European Heart Rhythm Association/Asia-Pacific Heart Rhythm Society. Circulation: Arrhythmia and Electrophysiology, 2021, 14, e009204.	2.1	45
147	Identifying Heart Failure in ECG Data With Artificial Intelligence—A Meta-Analysis. Frontiers in Digital Health, 2020, 2, 584555.	1.5	12
148	Machine Learning in Arrhythmia and Electrophysiology. Circulation Research, 2021, 128, 544-566.	2.0	48
150	2021 ISHNE/HRS/EHRA/APHRS Collaborative Statement on mHealth in Arrhythmia Management: Digital Medical Tools for Heart Rhythm Professionals. Cardiovascular Digital Health Journal, 2021, 2, 4-54.	0.5	10
151	Artificial intelligence to diagnose paroxysmal supraventricular tachycardia using electrocardiography during normal sinus rhythm. European Heart Journal Digital Health, 2021, 2,	0.7	11

#	Article	IF	CITATIONS
152	Vascular Aging Detected by Peripheral Endothelial Dysfunction Is Associated With ECGâ€Đerived Physiological Aging. Journal of the American Heart Association, 2021, 10, e018656.	1.6	25
153	What's lurking in your electrocardiogram?. Lancet, The, 2021, 397, 785.	6.3	7
154	The hidden waves in the ECG uncovered revealing a sound automated interpretation method. Scientific Reports, 2021, 11, 3724.	1.6	13
155	Predicting heart failure with preserved ejection fraction: revisiting an old friend with new knowledge. European Heart Journal Digital Health, 2021, 2, 104-105.	0.7	1
156	Artificial intelligence-enhanced electrocardiography in cardiovascular disease management. Nature Reviews Cardiology, 2021, 18, 465-478.	6.1	298
157	Applications of artificial intelligence in cardiovascular imaging. Nature Reviews Cardiology, 2021, 18, 600-609.	6.1	74
158	Smart wearable devices in cardiovascular care: where we are and how to move forward. Nature Reviews Cardiology, 2021, 18, 581-599.	6.1	319
159	Artificial intelligence for detecting electrolyte imbalance using electrocardiography. Annals of Noninvasive Electrocardiology, 2021, 26, e12839.	0.5	29
161	Electrocardiogram screening for aortic valve stenosis using artificial intelligence. European Heart Journal, 2021, 42, 2885-2896.	1.0	95
162	Precision Medicine and cardiac channelopathies: when dreams meet reality. European Heart Journal, 2021, 42, 1661-1675.	1.0	34
164	Artificial intelligence using electrocardiography: strengths and pitfalls. European Heart Journal, 2021, 42, 2896-2898.	1.0	13
165	Artificial Intelligence–Assisted Prediction of Late-Onset Cardiomyopathy Among Childhood Cancer Survivors. JCO Clinical Cancer Informatics, 2021, 5, 459-468.	1.0	11
166	Smart Wearables for Cardiac Monitoring—Real-World Use beyond Atrial Fibrillation. Sensors, 2021, 21, 2539.	2.1	63
167	External validation of a deep learning electrocardiogram algorithm to detect ventricular dysfunction. International Journal of Cardiology, 2021, 329, 130-135.	0.8	36
168	The 12-lead electrocardiogram as a biomarker of biological age. European Heart Journal Digital Health, 2021, 2, 379-389.	0.7	30
169	2021 ISHNE/HRS/EHRA/APHRS Collaborative Statement on mHealth in Arrhythmia Management: Digital Medical Tools for Heart Rhythm Professionals. Russian Journal of Cardiology, 0, 26, 4420.	0.4	2
170	Predicting cardiac disease from interactions of simultaneously-acquired hemodynamic and cardiac signals. Computer Methods and Programs in Biomedicine, 2021, 202, 105970.	2.6	11
171	The year in cardiovascular medicine 2020: digital health and innovation. Russian Journal of Cardiology, 2021, 26, 4425.	0.4	2

#	Article	IF	CITATIONS
172	A Head-to Head Comparison of Machine Learning Algorithms for Identification of Implanted Cardiac Devices. American Journal of Cardiology, 2021, 144, 77-82.	0.7	10
174	Clinical Utility of Striational Antibodies in Paraneoplastic and Myasthenia Gravis Paraneoplastic Panels. Neurology, 2021, , 10.1212/WNL.000000000012050.	1.5	7
175	Al-based detection of reduced ejection fraction from the electrocardiogram: Is the future here already?. International Journal of Cardiology, 2021, 331, 116-117.	0.8	1
176	Artificial intelligence–enabled electrocardiograms for identification of patients with low ejection fraction: a pragmatic, randomized clinical trial. Nature Medicine, 2021, 27, 815-819.	15.2	154
177	Finding New Meaning in Everyday Electrocardiograms—Leveraging Deep Learning to Expand Our Diagnostic Toolkit. JAMA Cardiology, 2021, 6, 493.	3.0	3
178	Impact of ECG Characteristics on the Performance of an Artificial Intelligence Enabled ECG for Predicting Left Ventricular Dysfunction. Circulation: Arrhythmia and Electrophysiology, 2021, 14, e009871.	2.1	2
179	Clinical applications of artificial intelligence in cardiology on the verge of the decade. Cardiology Journal, 2021, 28, 460-472.	0.5	4
180	Use of Artificial Intelligence and Deep Neural Networks in Evaluation of Patients With Electrocardiographically Concealed Long QT Syndrome From the Surface 12-Lead Electrocardiogram. JAMA Cardiology, 2021, 6, 532.	3.0	65
181	Multiomics, virtual reality and artificial intelligence in heart failure. Future Cardiology, 2021, 17, 1335-1347.	0.5	12
182	Meeting the unmet needs of clinicians from AI systems showcased for cardiology with deep-learning–based ECG analysis. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	23
183	Artificial Intelligence–Assisted Electrocardiography for Early Diagnosis of Thyrotoxic Periodic Paralysis. Journal of the Endocrine Society, 2021, 5, bvab120.	0.1	18
184	Use of Machine Learning Models to Predict Death After Acute Myocardial Infarction. JAMA Cardiology, 2021, 6, 633.	3.0	116
185	Hybrid Al-assistive diagnostic model permits rapid TBS classification of cervical liquid-based thin-layer cell smears. Nature Communications, 2021, 12, 3541.	5.8	36
186	Artificial intelligence in personalized cardiovascular medicine and cardiovascular imaging. Cardiovascular Diagnosis and Therapy, 2021, 11, 911-923.	0.7	15
187	Estimating pulse wave velocity from the radial pressure wave using machine learning algorithms. PLoS ONE, 2021, 16, e0245026.	1.1	24
188	Machine Learning for ECG Diagnosis of LV Dysfunction. JACC: Cardiovascular Imaging, 2021, 14, 1916-1917.	2.3	1
189	ECG for Screening Cardiac Abnormalities: The Premise and Promise of Machine Learning. Circulation: Cardiovascular Imaging, 2021, 14, e012837.	1.3	1
190	Machine Learning of ECG Waveforms toÂlmprove Selection for Testing forÂAsymptomatic Left VentricularÂDysfunction. JACC: Cardiovascular Imaging, 2021, 14, 1904-1915.	2.3	17

#	Article	IF	CITATIONS
191	Machine learning with electrocardiograms: A call for guidelines and best practices for â€~stress testing' algorithms. Journal of Electrocardiology, 2021, 69, 1-6.	0.4	10
192	Cost Effectiveness of an Electrocardiographic Deep Learning Algorithm to Detect Asymptomatic Left Ventricular Dysfunction. Mayo Clinic Proceedings, 2021, 96, 1835-1844.	1.4	15
193	More than meets the eye: Using AI to identify reduced heart function by electrocardiograms. Med, 2021, 2, 791-793.	2.2	0
194	Using ensemble of ensemble machine learning methods to predict outcomes of cardiac resynchronization. Journal of Cardiovascular Electrophysiology, 2021, 32, 2504-2514.	0.8	10
195	A feature extraction based support vector machine model for rectal cancer T-stage prediction using MRI images. Multimedia Tools and Applications, 2021, 80, 30907-30917.	2.6	6
196	Deep neural networks learn by using human-selected electrocardiogram features and novel features. European Heart Journal Digital Health, 2021, 2, 446-455.	0.7	9
197	Spectrum bias in algorithms derived by artificial intelligence: a case study in detecting aortic stenosis using electrocardiograms. European Heart Journal Digital Health, 0, , .	0.7	5
198	Artificial intelligence: the pathway to the future of cardiovascular medicine. European Heart Journal, 2022, 43, 556-558.	1.0	3
199	The Role of Artificial Intelligence and Machine Learning in Clinical Cardiac Electrophysiology. Canadian Journal of Cardiology, 2022, 38, 246-258.	0.8	6
200	A Cloud-Connected Multi-Lead Electrocardiogram (ECG) Sensor Ring. IEEE Sensors Journal, 2021, 21, 16340-16349.	2.4	11
201	The cardiac surgeon's guide to artificial intelligence. Current Opinion in Cardiology, 2021, 36, 637-643.	0.8	6
202	Screening for regenerative therapy responders in heart failure. Biomarkers in Medicine, 2021, 15, 775-783.	0.6	7
203	Deep Learning Algorithm for Management of Diabetes Mellitus via Electrocardiogram-Based Glycated Hemoglobin (ECG-HbA1c): A Retrospective Cohort Study. Journal of Personalized Medicine, 2021, 11, 725.	1.1	18
204	Al Filter Improves Positive Predictive Value of Atrial Fibrillation Detection by an Implantable Loop Recorder. JACC: Clinical Electrophysiology, 2021, 7, 965-975.	1.3	33
205	The application of deep learning in electrocardiogram: Where we came from and where we should go?. International Journal of Cardiology, 2021, 337, 71-78.	0.8	15
206	Nephrology Lagging Behind in Machine Learning Utilization. Kidney Medicine, 2021, 3, 693-695.	1.0	1
207	A novel solution of using deep learning for early prediction cardiac arrest in Sepsis patient: enhanced bidirectional long short-term memory (LSTM). Multimedia Tools and Applications, 2021, 80, 32639-32664.	2.6	10
208	Clinical Application of Machine Learning-Based Artificial Intelligence in the Diagnosis, Prediction, and Classification of Cardiovascular Diseases. Circulation Journal, 2021, 85, 1416-1425.	0.7	13

#	Article	IF	CITATIONS
209	Artificial intelligence in the diagnosis and management of arrhythmias. European Heart Journal, 2021, 42, 3904-3916.	1.0	45
210	Rapid Exclusion of COVID Infection With the Artificial Intelligence Electrocardiogram. Mayo Clinic Proceedings, 2021, 96, 2081-2094.	1.4	15
211	Diagnosis and treatment of new heart failure with reduced ejection fraction by the artificial intelligence–enhanced electrocardiogram. Cardiovascular Digital Health Journal, 2021, 2, 282-284.	0.5	3
212	Deep learning analysis of resting electrocardiograms for the detection of myocardial dysfunction, hypertrophy, and ischaemia: a systematic review. European Heart Journal Digital Health, 2021, 2, 416-423.	0.7	23
213	Development of Novel Artificial Intelligence to Detect the Presence of Clinically Meaningful Coronary Atherosclerotic Stenosis in Major Branch from Coronary Angiography Video. Journal of Atherosclerosis and Thrombosis, 2021, 28, 835-843.	0.9	6
214	Performance of a Convolutional Neural Network and Explainability Technique for 12-Lead Electrocardiogram Interpretation. JAMA Cardiology, 2021, 6, 1285.	3.0	60
215	Deep neural network-estimated electrocardiographic age as a mortality predictor. Nature Communications, 2021, 12, 5117.	5.8	77
216	Detecting cardiomyopathies in pregnancy and the postpartum period with an electrocardiogram-based deep learning model. European Heart Journal Digital Health, 2021, 2, 586-596.	0.7	20
217	Biosignal-Based Digital Biomarkers for Prediction of Ventilator Weaning Success. International Journal of Environmental Research and Public Health, 2021, 18, 9229.	1.2	6
218	Automated ECG Interpretation—A Brief History from High Expectations to Deepest Networks. Hearts, 2021, 2, 433-448.	0.4	10
219	The Role of Artificial Intelligence in Arrhythmia Monitoring. Cardiac Electrophysiology Clinics, 2021, 13, 543-554.	0.7	6
220	Artificial intelligence in ECG screening: Ready for prime time?. International Journal of Cardiology, 2021, 344, 111-112.	0.8	2
221	Deep learning detects heart failure with preserved ejection fraction using a baseline electrocardiogram. European Heart Journal Digital Health, 2021, 2, 699-703.	0.7	8
222	Artificial Intelligence-Enabled Electrocardiography to Screen Patients with Dilated Cardiomyopathy. American Journal of Cardiology, 2021, 155, 121-127.	0.7	15
223	The effect of cardiac rhythm on artificial intelligence-enabled ECG evaluation of left ventricular ejection fraction prediction in cardiac intensive care unit patients. International Journal of Cardiology, 2021, 339, 54-55.	0.8	4
224	Deep learning analysis of electrocardiogram for risk prediction of drug-induced arrhythmias and diagnosis of long QT syndrome. European Heart Journal, 2021, 42, 3948-3961.	1.0	27
225	Application of artificial intelligence to the electrocardiogram. European Heart Journal, 2021, 42, 4717-4730.	1.0	96
227	Artificial Intelligence–Augmented Electrocardiogram Detection of Left Ventricular Systolic Dysfunction in the General Population. Mayo Clinic Proceedings, 2021, 96, 2576-2586.	1.4	15

#	Article	IF	CITATIONS
228	Electrocardiogram Changes in the Spectrum of TTNtv Dilated Cardiomyopathy: Accuracy and Predictive Value of a New Index for LV-Changes Identification. Heart Lung and Circulation, 2021, 30, 1487-1495.	0.2	0
229	Multi-label correlation guided feature fusion network for abnormal ECG diagnosis. Knowledge-Based Systems, 2021, 233, 107508.	4.0	21
230	The Future Role of High-Performance Computing in Cardiovascular Medicine and Science -Impact of Multi-Dimensional Data Analysis Journal of Atherosclerosis and Thrombosis, 2022, 29, 559-562.	0.9	5
231	2021 ISHNE / HRS / EHRA / APHRS Collaborative Statement on mHealth in Arrhythmia Management: Digital Medical Tools for Heart Rhythm Professionals. European Heart Journal Digital Health, 2021, 2, 7-48.	0.7	4
232	Machine learning for predictive analytics. , 2021, , 45-69.		1
233	Risk of <scp>QTc</scp> prolongation among cancer patients treated with tyrosine kinase inhibitors. International Journal of Cancer, 2020, 147, 3160-3167.	2.3	34
234	Digital health innovation in cardiology. Cardiovascular Digital Health Journal, 2020, 1, 6-8.	0.5	6
235	Artificial intelligence for early prediction of pulmonary hypertension using electrocardiography. Journal of Heart and Lung Transplantation, 2020, 39, 805-814.	0.3	55
236	Innovations during COVID-19 pandemic: trends, technologies, prospects. E3S Web of Conferences, 2020, 210, 02005.	0.2	20
237	Prediction of coronary artery calcium scoring from surface electrocardiogram in atherosclerotic cardiovascular disease: a pilot study. European Heart Journal Digital Health, 2020, 1, 51-61.	0.7	5
238	Artificial intelligence assessment for early detection of heart failure with preserved ejection fraction based on electrocardiographic features. European Heart Journal Digital Health, 2021, 2, 106-116.	0.7	19
239	Artificial Intelligence Algorithm for Screening Heart Failure with Reduced Ejection Fraction Using Electrocardiography. ASAIO Journal, 2021, 67, 314-321.	0.9	34
241	CardioLearn: A Cloud Deep Learning Service for Cardiac Disease Detection from Electrocardiogram. , 2020, , .		7
242	Current applications of big data and machine learning in cardiology. Journal of Geriatric Cardiology, 2019, 16, 601-607.	0.2	44
243	Application of Neural Networks to 12-Lead Electrocardiography ― Current Status and Future Directions ―. Circulation Reports, 2019, 1, 481-486.	0.4	13
244	Defining Left Bundle Branch Block Patterns in Cardiac Resynchronisation Therapy: A Return to His Bundle Recordings. Arrhythmia and Electrophysiology Review, 2020, 9, 28-33.	1.3	20
245	Big Data and Artificial Intelligence: Opportunities and Threats in Electrophysiology. Arrhythmia and Electrophysiology Review, 2020, 9, 146-154.	1.3	22
246	Telemedicine, Artificial Intelligence and Humanisation of Clinical Pathways in Heart Failure Management: Back to the Future and Beyond. Cardiac Failure Review, 2020, 6, e16.	1.2	7

		CITATION REPORT		
#	Article		IF	CITATIONS
247	Asymptomatic Left Ventricle Systolic Dysfunction. European Cardiology Review, 2020,	15, e13.	0.7	20
248	Accuracy and Effects of Clinical Decision Support Systems Integrated With BMJ Best Pr Diagnosis: Interrupted Time SeriesÂStudy. JMIR Medical Informatics, 2020, 8, e16912.	actice–Aided	1.3	14
249	Prognostic Machine Learning Models for First-Year Mortality in Incident Hemodialysis P Development and Validation Study. JMIR Medical Informatics, 2020, 8, e20578.	atients:	1.3	7
250	Can artificial Intelligence Prediction Algorithms Exceed Statistical Predictions?. Korean Journal, 2019, 49, 640.	Circulation	0.7	6
251	Discovering hidden information in biosignals from patients using artificial intelligence. I Journal of Anesthesiology, 2020, 73, 275-284.	Korean	0.9	11
252	A deep learning algorithm for detecting acute myocardial infarction. EuroIntervention, 2765-773.	2021, 17,	1.4	31
254	Deep-learning model for screening sepsis using electrocardiography. Scandinavian Jour Resuscitation and Emergency Medicine, 2021, 29, 145.	ıal of Trauma,	1.1	12
257	Neural networks applied to 12-lead electrocardiograms predict body mass index, viscer concurrent cardiometabolic ill-health. Cardiovascular Digital Health Journal, 2021, 2, S1		0.5	5
258	Pushing the Limits of the ECG. JACC: Cardiovascular Imaging, 2021, , .		2.3	0
259	Machine learning aids clinical decision making in patients presenting with angina and n coronary artery disease. European Heart Journal Digital Health, 0, , .	on-obstructive	0.7	3
260	When Natural Peptides Meet Artificial Intelligence to Improve Risk Prediction. Journal o College of Cardiology, 2021, 78, 1632-1634.	f the American	1.2	0
261	Using Deep-Learning Algorithms to Simultaneously Identify Right and Left Ventricular D From the Electrocardiogram. JACC: Cardiovascular Imaging, 2022, 15, 395-410.	ysfunction	2.3	35
262	LabelECG: A Web-Based Tool for Distributed Electrocardiogram Annotation. Lecture No Computer Science, 2019, , 104-111.	tes in	1.0	4
263	Toward a Patient-Centered, Data-Driven Cardiology. Arquivos Brasileiros De Cardiologia 371-373.	, 2019, 112,	0.3	14
267	What will we ask to artificial intelligence for cardiovascular medicine in the next decade Cardiology and Angiology, 2022, 70, .	??. Minerva	0.4	4
269	Noninvasive Risk Stratification for Sudden Cardiac Death. , 2020, , 377-391.			0
270	Cognitive Privacy: Al-enabled Privacy using EEG Signals in the Internet of Things. , 2020	,,.		6
271	Detection of Left Atrial Enlargement Using a Convolutional Neural Network-Enabled Electrocardiogram. Frontiers in Cardiovascular Medicine, 2020, 7, 609976.		1.1	10

#	Article	IF	CITATIONS
272	Tâ€wave and its association with myocardial fibrosis on cardiovascular magnetic resonance examination. Annals of Noninvasive Electrocardiology, 2021, 26, e12819.	0.5	5
273	Arrhythmia Detection and Classification of 12-lead ECGs Using a Deep Neural Network. , 0, , .		5
274	Automatic Diagnosis of Cardiovascular Diseases Using Electrocardiogram Data and Artificial Intelligence Algorithms: A Systematic Review. Communications in Computer and Information Science, 2021, , 104-116.	0.4	0
275	Giant Cell and Hypersensitivity Myocarditis. , 2020, , 223-241.		1
276	Artificial Intelligence in Drug Safety and Metabolism. Methods in Molecular Biology, 2022, 2390, 483-501.	0.4	6
277	The Promise of Big Data and Digital Solutions in Building a Cardiovascular Learning System: Opportunities and Barriers. Methodist DeBakey Cardiovascular Journal, 2021, 16, 212.	0.5	7
279	Concept-based Explanation for Fine-grained Images and Its Application in Infectious Keratitis Classification. , 2020, , .		11
280	Mortality risk stratification using artificial intelligence-augmented electrocardiogram in cardiac intensive care unit patients. European Heart Journal: Acute Cardiovascular Care, 2021, 10, 532-541.	0.4	11
282	Evaluation and Management of Reflex Vasovagal Syncope—A Review. Indian Journal of Clinical Cardiology, 0, , 263246362110501.	0.3	0
283	Analyzing artificial intelligence systems for the prediction of atrial fibrillation from sinus-rhythm ECGs including demographics and feature visualization. Scientific Reports, 2021, 11, 22786.	1.6	6
284	Prospects for cardiovascular medicine using artificial intelligence. Journal of Cardiology, 2022, 79, 319-325.	0.8	6
285	Opportunities and Challenges: Classification of Skin Disease Based on Deep Learning. Chinese Journal of Mechanical Engineering (English Edition), 2021, 34, .	1.9	19
287	A Primer on the Present State and Future Prospects for Machine Learning and Artificial Intelligence Applications in Cardiology. Canadian Journal of Cardiology, 2022, 38, 169-184.	0.8	14
288	Artificial Intelligence in Translational Medicine. International Journal of Translational Medicine, 2021, 1, 223-285.	0.1	2
289	Improving the Efficacy of Deep-Learning Models for Heart Beat Detection on Heterogeneous Datasets. Bioengineering, 2021, 8, 193.	1.6	4
290	The Effectiveness of a Deep Learning Model to Detect Left Ventricular Systolic Dysfunction from Electrocardiograms. International Heart Journal, 2021, 62, 1332-1341.	0.5	10
291	Electrocardiography-Based Artificial Intelligence Algorithm Aids in Prediction of Long-term Mortality After Cardiac Surgery. Mayo Clinic Proceedings, 2021, 96, 3062-3070.	1.4	5
292	Unsupervised feature learning for electrocardiogram data using the convolutional variational autoencoder. PLoS ONE, 2021, 16, e0260612.	1.1	13

#	Article	IF	CITATIONS
293	Point-of-care screening for heart failure with reduced ejection fraction using artificial intelligence during ECG-enabled stethoscope examination in London, UK: a prospective, observational, multicentre study. The Lancet Digital Health, 2022, 4, e117-e125.	5.9	37
295	Current and future implications of the artificial intelligence electrocardiogram: the transformation of healthcare and attendant research opportunities. Cardiovascular Research, 2022, 118, e23-e25.	1.8	4
296	Deep Learning of ECG Waveforms for Diagnosis of Heart Failure With a Reduced Left Ventricular Ejection Fraction. SSRN Electronic Journal, 0, , .	0.4	0
297	Artificial Intelligence Application in Graves Disease. Mayo Clinic Proceedings, 2022, 97, 730-737.	1.4	3
298	Prediction of Sudden Cardiac Arrest in the General Population: Review of Traditional and Emerging Risk Factors. Canadian Journal of Cardiology, 2022, 38, 465-478.	0.8	25
300	Deep learning-based electrocardiogram rhythm and beat features for heart abnormality classification. PeerJ Computer Science, 2022, 8, e825.	2.7	11
301	Quality care in ST-segment elevation myocardial infarction. Journal of the Chinese Medical Association, 2022, Publish Ahead of Print, .	0.6	1
302	The year in cardiovascular medicine 2021: digital health and innovation. European Heart Journal, 2022, 43, 271-279.	1.0	26
303	Detection of Left Atrial Myopathy Using Artificial Intelligence–Enabled Electrocardiography. Circulation: Heart Failure, 2022, 15, CIRCHEARTFAILURE120008176.	1.6	10
304	Detection of Left Ventricular Systolic Dysfunction Using an Artificial Intelligence–Enabled Chest X-Ray. Canadian Journal of Cardiology, 2022, 38, 763-773.	0.8	6
305	Sudden Cardiac Arrest in Sport. Journal of the American College of Cardiology, 2022, 79, 247-249.	1.2	2
306	Point-of-care artificial intelligence-enabled ECG for dyskalemia: a retrospective cohort analysis for accuracy and outcome prediction. Npj Digital Medicine, 2022, 5, 8.	5.7	24
307	AiloMT: IoMT-Based System-Enabled Artificial Intelligence for Enhanced Smart Healthcare Systems. , 2022, , 229-254.		10
308	Successfully implemented artificial intelligence and machine learning applications in cardiology: State-of-the-art review. Trends in Cardiovascular Medicine, 2023, 33, 265-271.	2.3	8
309	Towards an artificial intelligence-augmented, ECG-enabled physical exam. The Lancet Digital Health, 2022, 4, e78-e79.	5.9	0
310	An artificial intelligence electrocardiogram analysis for detecting cardiomyopathy in the peripartum period. International Journal of Cardiology, 2022, 352, 72-77.	0.8	11
311	Disease Progression of Hypertrophic Cardiomyopathy: Modeling Using Machine Learning. JMIR Medical Informatics, 2022, 10, e30483.	1.3	5
312	Artificial intelligence and cardiology: Current status and perspective. Journal of Cardiology, 2022, 79, 326-333.	0.8	10

#	Article	IF	CITATIONS
313	Al and The Cardiologist-When Mind, Heart and Machine Unite. Communications in Computer and Information Science, 2022, , 123-132.	0.4	0
314	Artificial Intelligence and Machine Learning: What You Always Wanted to Know but Were Afraid to Ask. , 2022, 1, 70-78.		9
315	Big Data in electrophysiology. Herzschrittmachertherapie Und Elektrophysiologie, 2022, 33, 26-33.	0.3	1
316	Electrocardiogram-Based Heart Age Estimation by a Deep Learning Model Provides More Information on the Incidence of Cardiovascular Disorders. Frontiers in Cardiovascular Medicine, 2022, 9, 754909.	1.1	28
317	Socio-demographic Heterogeneity in Prevalence of SARS-COV-2 Infection and Death Rate: Relevance to Black College Student Knowledge of COVID-19 and SARS-COV-2. Journal of Racial and Ethnic Health Disparities, 2022, , 1.	1.8	2
318	End-to-End Depression Recognition Based on a One-Dimensional Convolution Neural Network Model Using Two-Lead ECG Signal. Journal of Medical and Biological Engineering, 2022, 42, 225-233.	1.0	14
319	Left ventricular systolic dysfunction predicted by artificial intelligence using the electrocardiogram in Chagas disease patients–The SaMi-Trop cohort. PLoS Neglected Tropical Diseases, 2021, 15, e0009974.	1.3	3
320	Al and the cardiologist: when mind, heart and machine unite. Open Heart, 2021, 8, e001874.	0.9	3
321	Artificial Intelligence in Medicine (AIM) for Cardiac Arrest. , 2022, , 1479-1486.		0
322	Multilabel 12-Lead ECG Classification Based on Leadwise Grouping Multibranch Network. IEEE Transactions on Instrumentation and Measurement, 2022, 71, 1-11.	2.4	4
325	Artificial Intelligence in Medicine (AIM) in Cardiovascular Disorders. , 2022, , 813-823.		0
326	Deep learning model for multi-classification of infectious diseases from unstructured electronic medical records. BMC Medical Informatics and Decision Making, 2022, 22, 41.	1.5	16
327	Artificial Intelligence-Enabled Electrocardiogram Estimates Left Atrium Enlargement as a Predictor of Future Cardiovascular Disease. Journal of Personalized Medicine, 2022, 12, 315.	1.1	12
328	A deep learning-based system capable of detecting pneumothorax via electrocardiogram. European Journal of Trauma and Emergency Surgery, 2022, 48, 3317-3326.	0.8	12
329	Cardiovascular Disease Screening in Women: Leveraging Artificial Intelligence and Digital Tools. Circulation Research, 2022, 130, 673-690.	2.0	29
331	Deep neural networks reveal novel sex-specific electrocardiographic features relevant for mortality risk. European Heart Journal Digital Health, 2022, 3, 245-254.	0.7	6
333	Multimodality Advanced Cardiovascular and Molecular Imaging for Early Detection and Monitoring of Cancer Therapy-Associated Cardiotoxicity and the Role of Artificial Intelligence and Big Data. Frontiers in Cardiovascular Medicine, 2022, 9, 829553.	1.1	11
334	Revisiting the definition of perioperative myocardial infarction after coronary artery bypass grafting. European Heart Journal, 2022, , .	1.0	4

#	Article	IF	CITATIONS
335	How Health Systems Decide to Use Artificial Intelligence for Clinical Decision Support. NEJM Catalyst, 2022, 3, .	0.4	0
336	Artificial Intelligence-Enabled Electrocardiography Predicts Left Ventricular Dysfunction and Future Cardiovascular Outcomes: A Retrospective Analysis. Journal of Personalized Medicine, 2022, 12, 455.	1.1	12
337	A High Precision Machine Learning-Enabled System for Predicting Idiopathic Ventricular Arrhythmia Origins. Frontiers in Cardiovascular Medicine, 2022, 9, 809027.	1.1	5
338	Integration of artificial intelligence and multi-omics in kidney diseases. Fundamental Research, 2023, 3, 126-148.	1.6	5
339	How to use digital devices to detect and manage arrhythmias: an EHRA practical guide. Europace, 2022, 24, 979-1005.	0.7	107
340	Classification of ECG using ensemble of residual CNNs with or without attention mechanism. Physiological Measurement, 2022, 43, 044001.	1.2	4
341	Development of a Visualization Deep Learning Model for Classifying Origins of Ventricular Arrhythmias. Circulation Journal, 2022, 86, 1273-1280.	0.7	4
342	Artificial intelligence opportunities in cardio-oncology: Overview with spotlight on electrocardiography. American Heart Journal Plus, 2022, 15, 100129.	0.3	11
343	Intelligent monitoring of noxious stimulation during anaesthesia based on heart rate variability analysis. Computers in Biology and Medicine, 2022, 145, 105408.	3.9	3
344	Development of the Al-Cirrhosis-ECG Score: An Electrocardiogram-Based Deep Learning Model in Cirrhosis. American Journal of Gastroenterology, 2022, 117, 424-432.	0.2	17
345	Expert-enhanced machine learning for cardiac arrhythmia classification. PLoS ONE, 2021, 16, e0261571.	1.1	6
346	Identifying risk of adverse outcomes in COVID-19 patients via artificial intelligence–powered analysis of 12-lead intake electrocardiogram. Cardiovascular Digital Health Journal, 2022, 3, 62-74.	0.5	5
347	Is it time for a consumerized or home-based 12-lead electrocardiogram?. Europace, 2022, 24, 357-358.	0.7	2
348	Artificial Intelligence-Enabled Electrocardiogram Predicted Left Ventricle Diameter as an Independent Risk Factor of Long-Term Cardiovascular Outcome in Patients With Normal Ejection Fraction. Frontiers in Medicine, 2022, 9, 870523.	1.2	3
349	Artificial intelligence assessment for early detection and prediction of renal impairment using electrocardiography. International Urology and Nephrology, 2022, , 1.	0.6	3
350	Electrocardiogram-Based Machine Learning Emulator Model for Predicting Novel Echocardiography-Derived Phenogroups for Cardiac Risk-Stratification: A Prospective Multicenter Cohort Study. Journal of Patient-centered Research and Reviews, 2022, 9, 98-107.	0.6	0
356	Novel Artificial Intelligence Applications in Cardiology: Current Landscape, Limitations, and the Road to Real-World Applications. Journal of Cardiovascular Translational Research, 2023, 16, 513-525.	1.1	5
358	Computer Vision-Based Medical Cloud Data System for Back Muscle Image Detection. Computational Intelligence and Neuroscience, 2022, 2022, 1-8.	1.1	2

#	Article	IF	CITATIONS
360	Development and Validation of an Artificial Intelligence Electrocardiogram Recommendation System in the Emergency Department. Journal of Personalized Medicine, 2022, 12, 700.	1.1	3
365	rECHOmmend: An ECG-Based Machine Learning Approach for Identifying Patients at Increased Risk of Undiagnosed Structural Heart Disease Detectable by Echocardiography. Circulation, 2022, 146, 36-47.	1.6	21
367	Exploiting exercise electrocardiography to improve early diagnosis of atrial fibrillation with deep learning neural networks. Computers in Biology and Medicine, 2022, 146, 105584.	3.9	5
368	Research output of artificial intelligence in arrhythmia from 2004 to 2021: a bibliometric analysis. Journal of Thoracic Disease, 2022, 14, 1411-1427.	0.6	5
369	The emerging roles of machine learning in cardiovascular diseases: a narrative review. Annals of Translational Medicine, 2022, 10, 611-611.	0.7	4
370	Artificial Intelligence-Enabled Electrocardiogram Improves the Diagnosis and Prediction of Mortality in Patients With Pulmonary Hypertension. JACC Asia, 2022, 2, 258-270.	0.5	7
371	Point-of-care heart failure platform: where are we now and where are we going to?. Expert Review of Cardiovascular Therapy, 2022, , .	0.6	2
372	Real-world performance, long-term efficacy, and absence of bias in the artificial intelligence enhanced electrocardiogram to detect left ventricular systolic dysfunction. European Heart Journal Digital Health, 2022, 3, 238-244.	0.7	8
373	Mortality Prediction in Cardiac Intensive Care Unit Patients: A Systematic Review of Existing and Artificial Intelligence Augmented Approaches. Frontiers in Artificial Intelligence, 2022, 5, .	2.0	4
374	Development and Validation of a Deep-Learning Model to Detect CRP Level from the Electrocardiogram. Frontiers in Physiology, 2022, 13, .	1.3	1
375	Automated detection of low ejection fraction from a one-lead electrocardiogram: application of an Al algorithm to an electrocardiogram-enabled Digital Stethoscope. European Heart Journal Digital Health, 2022, 3, 373-379.	0.7	10
376	Connections for Matters of the Heart: Network Medicine in Cardiovascular Diseases. Frontiers in Cardiovascular Medicine, 2022, 9, .	1.1	6
377	Innovation in Cardiovascular Bioelectronics. , 2022, , 587-602.		0
378	A large-scale multi-label 12-lead electrocardiogram database with standardized diagnostic statements. Scientific Data, 2022, 9, .	2.4	6
380	Artificial intelligence and machine learning in precision and genomic medicine. , 2022, 39, .		53
381	Artificial intelligence versus physicians on interpretation of printed ECG images: Diagnostic performance of ST-elevation myocardial infarction on electrocardiography. International Journal of Cardiology, 2022, 363, 6-10.	0.8	9
382	Artificial Intelligence-Enabled Electrocardiography Detects Hypoalbuminemia and Identifies the Mechanism of Hepatorenal and Cardiovascular Events. Frontiers in Cardiovascular Medicine, 0, 9, .	1.1	4
383	Metabolic detection of malignant brain gliomas through plasma lipidomic analysis and support vector machine-based machine learning. EBioMedicine, 2022, 81, 104097.	2.7	12

#	Article	IF	CITATIONS
384	Machine Learning-Based Prediction of Infarct Size in Patients with ST-Segment Elevation Myocardial Infarction: A Multi-Center Study. SSRN Electronic Journal, 0, , .	0.4	0
386	Applications of Machine Learning in Cardiology. Cardiology and Therapy, 2022, 11, 355-368.	1.1	7
387	Artificial Intelligence in Cardiology—A Narrative Review of Current Status. Journal of Clinical Medicine, 2022, 11, 3910.	1.0	24
388	Frequency, Penetrance, and Variable Expressivity of Dilated Cardiomyopathy–Associated Putative Pathogenic Gene Variants in UK Biobank Participants. Circulation, 2022, 146, 110-124.	1.6	25
389	Role of artificial intelligence in defibrillators: a narrative review. Open Heart, 2022, 9, e001976.	0.9	8
390	Improving explainability of deep neural network-based electrocardiogram interpretation using variational auto-encoders. European Heart Journal Digital Health, 2022, 3, 390-404.	0.7	17
391	Artificial intelligence applications in cardio-oncology: Leveraging high dimensional cardiovascular data. Frontiers in Cardiovascular Medicine, 0, 9, .	1.1	6
392	Preoperative prediction of lymphovascular invasion of CRC by artificial neural network. Precision Medical Sciences, 2022, 11, 62-68.	0.1	0
393	Artificial intelligence using deep neural network learning for automatic location of the interscalene brachial plexus in ultrasound images. European Journal of Anaesthesiology, 2022, 39, 758-765.	0.7	8
394	Artificial intelligence in cardiology: The past, present and future. Indian Heart Journal, 2022, 74, 265-269.	0.2	8
395	Subtle <scp>QRS</scp> changes are associated with reduced ejection fraction, diastolic dysfunction, and heart failure development and therapy responsiveness: Applications for artificial intelligence to <scp>ECG</scp> . Annals of Noninvasive Electrocardiology, 2022, 27, .	0.5	7
396	High-Resolution Digital Phenotypes From Consumer Wearables and Their Applications in Machine Learning of Cardiometabolic Risk Markers: Cohort Study. Journal of Medical Internet Research, 2022, 24, e34669.	2.1	4
397	An artificial intelligence approach for predicting cardiotoxicity in breast cancer patients receiving anthracycline. Archives of Toxicology, 2022, 96, 2731-2737.	1.9	1
398	Digital healthcare: the future. Future Healthcare Journal, 2022, 9, 113-117.	0.6	28
400	Deep-Learning-Based Detection of Paroxysmal Supraventricular Tachycardia Using Sinus-Rhythm Electrocardiograms. Journal of Clinical Medicine, 2022, 11, 4578.	1.0	1
401	Enhancing convolutional neural network predictions of electrocardiograms with left ventricular dysfunction using a novel sub-waveform representation. Cardiovascular Digital Health Journal, 2022, 3, 220-231.	0.5	1
402	Artificial intelligence augments detection accuracy of cardiac insertable cardiac monitors: Results from a pilot prospective observational study. Cardiovascular Digital Health Journal, 2022, 3, 201-211.	0.5	8
403	Automatic diagnosis of arrhythmia with electrocardiogram using multiple instance learning: From rhythm annotation to heartbeat prediction. Artificial Intelligence in Medicine, 2022, 132, 102379.	3.8	5

#	Article	IF	CITATIONS
404	Artificial Intelligence–Enabled Model for Early Detection of Left Ventricular Hypertrophy and Mortality Prediction in Young to Middle-Aged Adults. Circulation: Cardiovascular Quality and Outcomes, 2022, 15, .	0.9	4
405	Artificial intelligence-enabled electrocardiogram to distinguish cavotricuspid isthmus dependence from other atrial tachycardia mechanisms. European Heart Journal Digital Health, 2022, 3, 405-414.	0.7	5
406	Deep learning of ECG waveforms for diagnosis of heart failure with a reduced left ventricular ejection fraction. Scientific Reports, 2022, 12, .	1.6	2
407	Electrocardiogram-Artificial Intelligence and Immune-Mediated Necrotizing Myopathy: Predicting Left Ventricular Dysfunction and Clinical Outcomes. Mayo Clinic Proceedings Innovations, Quality & Outcomes, 2022, 6, 450-457.	1.2	1
408	Artificial intelligence-enabled electrocardiography identifies severe dyscalcemias and has prognostic value. Clinica Chimica Acta, 2022, 536, 126-134.	0.5	1
409	Medicine 2032: The future of cardiovascular disease prevention with machine learning and digital health technology. American Journal of Preventive Cardiology, 2022, 12, 100379.	1.3	21
410	Automatic diagnosis of newly emerged heart failure from serial electrocardiography by repeated structuring & learning procedure. Biomedical Signal Processing and Control, 2023, 79, 104185.	3.5	3
411	Left Ventricular Diastolic Dysfunction Screening by a Smartphone-Case Based on Single Lead ECG. Clinical Medicine Insights: Cardiology, 2022, 16, 117954682211200.	0.6	3
412	The Recent Advances of Mobile Healthcare in Cardiology Practice. Acta Informatica Medica, 2022, 30, 236.	0.5	2
413	Digitizing paper based ECC files to foster deep learning based analysis of existing clinical datasets: An exploratory analysis. Intelligence-based Medicine, 2022, 6, 100070.	1.4	1
414	STCA-Net: Multi-channel ECG Space-Time-Channel Attention Model for Noninvasive Prediction of Catheter Ablation in Atrial Fibrillation. , 2022, , .		0
415	Evaluating and Visualizing the Contribution of ECG Characteristic Waveforms for PPG-Based Blood Pressure Estimation. Micromachines, 2022, 13, 1438.	1.4	1
416	Machine learning in sudden cardiac death risk prediction: a systematic review. Europace, 2022, 24, 1777-1787.	0.7	14
417	Emerging role of artificial intelligence in cardiac electrophysiology. Cardiovascular Digital Health Journal, 2022, 3, 263-275.	0.5	10
419	Artificial intelligence derived cardiac aging is associated with cardiac events post-heart transplantation. European Heart Journal Digital Health, 0, , .	0.7	0
420	From evidence-based medicine to digital twin technology for predicting ventricular tachycardia in ischaemic cardiomyopathy. Journal of the Royal Society Interface, 2022, 19, .	1.5	8
421	Artificial Intelligence Applied to Cardiomyopathies: Is It Time for Clinical Application?. Current Cardiology Reports, 2022, 24, 1547-1555.	1.3	1
423	Redesigning Relations: Coordinating Machine Learning Variables and Sociobuilt Contexts in COVID-19 and Beyond. Future of Business and Finance, 2022, , 179-205.	0.3	1

#	Article	IF	Citations
424	A new machine-learning algorithm for assessing the left ventricular diastolic dysfunction by a single-channel ECG monitor. Kardiologiya I Serdechno-Sosudistaya Khirurgiya, 2022, 15, 496.	0.1	0
425	A New Medical Decision Support System for Diagnosing HFrEF and HFpEF Using ECG and Machine Learning Techniques. IEEE Access, 2022, 10, 107283-107292.	2.6	0
426	Artificial intelligence in cardiology: Hope for the future and power for the present. Frontiers in Cardiovascular Medicine, 0, 9, .	1.1	21
428	Applying Artificial Intelligence to Wearable Sensor Data to Diagnose and Predict Cardiovascular Disease: A Review. Sensors, 2022, 22, 8002.	2.1	21
429	Multiple high-regional-incidence cardiac disease diagnosis with deep learning and its potential to elevate cardiologist performance. IScience, 2022, 25, 105434.	1.9	3
431	Multi-modality cardiac imaging in the management of diabetic heart disease. Frontiers in Cardiovascular Medicine, 0, 9, .	1.1	1
432	Importance of external validation and subgroup analysis of artificial intelligence in the detection of low ejection fraction from electrocardiograms. European Heart Journal Digital Health, 2022, 3, 654-657.	0.7	12
434	Artificial intelligence enabled ECG screening for left ventricular systolic dysfunction: a systematic review. Heart Failure Reviews, 0, , .	1.7	3
435	Prospective evaluation of smartwatch-enabled detection of left ventricular dysfunction. Nature Medicine, 2022, 28, 2497-2503.	15.2	38
436	Community-based participatory research application of an artificial intelligence-enhanced electrocardiogram for cardiovascular disease screening: A FAITH! Trial ancillary study. American Journal of Preventive Cardiology, 2022, 12, 100431.	1.3	6
437	Artificial Intelligence, Sensors and Vital Health Signs: A Review. Applied Sciences (Switzerland), 2022, 12, 11475.	1.3	4
438	Multicenter validation of a machine learning phase space electro-mechanical pulse wave analysis to predict elevated left ventricular end diastolic pressure at the point-of-care. PLoS ONE, 2022, 17, e0277300.	1.1	0
439	Physicians and Machine-Learning Algorithm Performance in Predicting Left-Ventricular Systolic Dysfunction from a Standard 12-Lead-Electrocardiogram. Journal of Clinical Medicine, 2022, 11, 6767.	1.0	2
440	Artificial intelligence-enabled electrocardiogram screens low left ventricular ejection fraction with a degree of confidence. Digital Health, 2022, 8, 205520762211432.	0.9	1
441	Advancing Cardio-Oncology in Asia. Korean Circulation Journal, 2023, 53, 69.	0.7	4
442	ECG classification using Artificial Intelligence: Model Optimization and Robustness Assessment. , 2022, , .		1
444	Deep learning-based age estimation from chest X-rays indicates cardiovascular prognosis. Communications Medicine, 2022, 2, .	1.9	11
445	Highly Stretchable and Biocompatible Wrinkled Nanoclayâ€Composite Hydrogel With Enhanced Sensing Capability for Precise Detection of Myocardial Infarction. Advanced Materials, 2023, 35, .	11.1	23

#	Article	IF	CITATIONS
446	Prediction of Coronary Artery Calcium Using Deep Learning of Echocardiograms. Journal of the American Society of Echocardiography, 2023, 36, 474-481.e3.	1.2	8
447	Machine learning-based prediction of infarct size in patients with ST-segment elevation myocardial infarction: A multi-center study. International Journal of Cardiology, 2022, , .	0.8	2
448	Pragmatic screening for heart failure in the general population using an electrocardiogramâ€based neural network. ESC Heart Failure, 0, , .	1.4	1
449	Artificial Intelligence and Cardiovascular Risk Prediction: All That Clitters is not Gold. European Cardiology Review, 0, 17, .	0.7	7
450	Artificial intelligence-augmented electrocardiography for left ventricular systolic dysfunction in patients undergoing high-sensitivity cardiac troponin T. European Heart Journal: Acute Cardiovascular Care, 0, , .	0.4	2
452	Advancing cardiovascular medicine with machine learning: Progress, potential, and perspective. Cell Reports Medicine, 2022, 3, 100869.	3.3	4
453	A fully-automated paper ECG digitisation algorithm using deep learning. Scientific Reports, 2022, 12, .	1.6	6
454	Explainable AI for ECG-based prediction of cardiac resynchronization therapy outcomes: learning from machine learning?. European Heart Journal, 2023, 44, 693-695.	1.0	4
456	Machine learning and deep learning for blood pressure prediction: a methodological review from multiple perspectives. Artificial Intelligence Review, 2023, 56, 8095-8196.	9.7	1
457	Application of artificial intelligence to the public health education. Frontiers in Public Health, 0, 10, .	1.3	6
458	Recent technologies in cardiac imaging. Frontiers in Medical Technology, 0, 4, .	1.3	8
459	Non-invasive detection of cardiac allograft rejection among heart transplant recipients using an electrocardiogram based deep learning model. European Heart Journal Digital Health, 2023, 4, 71-80.	0.7	5
460	Detecting heart failure using novel bio-signals and a knowledge enhanced neural network. Computers in Biology and Medicine, 2023, 154, 106547.	3.9	1
461	Improved prediction of sudden cardiac death in patients with heart failure through digital processing of electrocardiography. Europace, 2023, 25, 922-930.	0.7	11
462	Clinical applications of artificial intelligence and machine learning in the modern cardiac intensive care unit. Intelligence-based Medicine, 2023, 7, 100089.	1.4	8
463	Ethics and governance of trustworthy medical artificial intelligence. BMC Medical Informatics and Decision Making, 2023, 23, .	1.5	51
464	Artificial Intelligence Applications in Cardiology. Journal of Ankara University Faculty of Medicine, 2022, 75, 41-45.	0.0	0
466	A Comprehensive Survey on ECG Signal Graph Interpretation. , 2022, , 82-86.		0

#	Article	IF	CITATIONS
467	Assessing electrocardiogram changes after ischemic stroke with artificial intelligence. PLoS ONE, 2022, 17, e0279706.	1.1	0
468	Assessment of left ventricular systolic function using a single-channel ECG monitor with photoplethysmography based on machine learning models. Kardiologiya I Serdechno-Sosudistaya Khirurgiya, 2023, 16, 46.	0.1	0
469	Early recognition of risk of critical adverse events based on deep neural decision gradient boosting. Frontiers in Public Health, 0, 10, .	1.3	0
471	Porous liquid metal–elastomer composites with high leakage resistance and antimicrobial property for skin-interfaced bioelectronics. Science Advances, 2023, 9, .	4.7	29
473	The Digitization and Decentralization of Clinical Trials. Mayo Clinic Proceedings, 2023, 98, 1568-1578.	1.4	0
474	Artificial intelligence in cardiovascular imaging. , 2023, , 51-72.		0
475	Internet of medical things for enhanced smart healthcare systems. , 2023, , 1-28.		1
476	Clinical applications of machine learning in heart failure. , 2023, , 217-233.		0
477	Artificial Intelligence-Augmented Electrocardiogram in Determining Sex. Mayo Clinic Proceedings, 2023, 98, 541-548.	1.4	3
478	Performance enhancement of IoMT using artificial intelligence algorithms. , 2023, , 61-81.		1
479	Current Status and Development Tendency of Wearable Cardiac Health Monitoring. Chinese Journal of Electrical Engineering, 2023, 9, 71-92.	2.3	0
480	Deep cross-modal feature learning applied to predict acutely decompensated heart failure using in-home collected electrocardiography and transthoracic bioimpedance. Artificial Intelligence in Medicine, 2023, 140, 102548.	3.8	1
481	Comparison of two artificial intelligence-augmented ECG approaches: Machine learning and deep learning. Journal of Electrocardiology, 2023, 79, 75-80.	0.4	3
482	Extensive deep learning model to enhance electrocardiogram application via latent cardiovascular feature extraction from identity identification. Computer Methods and Programs in Biomedicine, 2023, 231, 107359.	2.6	3
483	Electrocardiogram Detection of Pulmonary Hypertension Using Deep Learning. Journal of Cardiac Failure, 2023, 29, 1017-1028.	0.7	7
484	Artificial intelligence–enabled electrocardiogram to distinguish atrioventricular re-entrant tachycardia from atrioventricular nodal re-entrant tachycardia. Cardiovascular Digital Health Journal, 2023, 4, 60-67.	0.5	3
485	Possibilities of a portable electrocardiogram and pulse wave recorder in detecting left ventricular systolic dysfunction. Complex Issues of Cardiovascular Diseases, 2023, 11, 34-46.	0.3	0
486	Evaluate prognostic accuracy of SOFAÂcomponentÂscore for mortality among adults with sepsis by machine learning method. BMC Infectious Diseases, 2023, 23, .	1.3	4

#	Article	IF	CITATIONS
487	Correlation between artificial intelligence-enabled electrocardiogram and echocardiographic features in aortic stenosis. European Heart Journal Digital Health, 0, , .	0.7	0
488	Physiological Age by Artificial Intelligence–Enhanced Electrocardiograms as a Novel Risk Factor of Mortality in Kidney Transplant Candidates. Transplantation, 2023, 107, 1365-1372.	0.5	3
489	Meta-analysis on the Effectiveness of ECG Screening for Conditions Related to Sudden Cardiac Death in Young Athletes. Clinical Pediatrics, 2023, 62, 1158-1168.	0.4	3
490	Deep learning augmented ECG analysis to identify biomarker-defined myocardial injury. Scientific Reports, 2023, 13, .	1.6	Ο
491	Prediction of Short-Term Mortality of Cardiac Care Unit Patients Using Image-Transformed ECG Waveforms. IEEE Journal of Translational Engineering in Health and Medicine, 2023, 11, 191-198.	2.2	0
492	Can Artificial Intelligence Identify Physiologically "Old―Hearts?. Mayo Clinic Proceedings, 2023, 98, 360-362.	1.4	0
493	An Artificial Intelligence-Enabled ECG Algorithm for Predicting the Risk of Recurrence in Patients with Paroxysmal Atrial Fibrillation after Catheter Ablation. Journal of Clinical Medicine, 2023, 12, 1933.	1.0	4
494	Artificial Intelligence–Derived Electrocardiogram Assessment of Cardiac Age and Molecular Markers of Senescence in Heart Failure. Mayo Clinic Proceedings, 2023, 98, 372-385.	1.4	1
495	Wearable Devices in Cardiovascular Medicine. Circulation Research, 2023, 132, 652-670.	2.0	18
496	Accurate detection of arrhythmias on raw electrocardiogram images: An aggregation attention multi-label model for diagnostic assistance. Medical Engineering and Physics, 2023, 114, 103964.	0.8	1
497	Artificial intelligence-enabled electrocardiographic screening for left ventricular systolic dysfunction and mortality risk prediction. Frontiers in Cardiovascular Medicine, 0, 10, .	1.1	4
498	Application of Artificial Intelligence in Measuring Novel pH-Impedance Metrics for Optimal Diagnosis of GERD. Diagnostics, 2023, 13, 960.	1.3	1
499	The prognostic predictive value of the components of the PR interval in hospitalized patients with heart failure. BMC Cardiovascular Disorders, 2023, 23, .	0.7	1
500	Retinal imageâ€based artificial intelligence in detecting and predicting kidney diseases: Current advances and future perspectives. View, 0, , 20220070.	2.7	0
501	Convolution Neural Network Algorithm for Shockable Arrhythmia Classification Within a Digitally Connected Automated External Defibrillator. Journal of the American Heart Association, 2023, 12, .	1.6	3
502	Hypertrophic cardiomyopathy risk stratification based on clinical or dynamic electrophysiological features: two sides of the same coin. Europace, 0, , .	0.7	1
503	Screening for peripartum cardiomyopathies using artificial intelligence in Nigeria (SPEC-Al Nigeria): Clinical trial rationale and design. American Heart Journal, 2023, 261, 64-74.	1.2	2
504	Primer on Machine Learning in Electrophysiology. Arrhythmia and Electrophysiology Review, 0, 12, .	1.3	0

#	Article	IF	CITATIONS
505	Utility of an Artificial Intelligence Enabled Electrocardiogram for Risk Assessment in Liver Transplant Candidates. Digestive Diseases and Sciences, 0, , .	1.1	1
506	Fourier space approach for convolutional neural network (CNN) electrocardiogram (ECG) classification: A proof-of-concept study. Journal of Electrocardiology, 2023, 80, 24-33.	0.4	4
507	Artificial intelligence-estimated biological heart age using a 12-lead electrocardiogram predicts mortality and cardiovascular outcomes. Frontiers in Cardiovascular Medicine, 0, 10, .	1.1	5
508	Deep Learning Algorithms for Estimation of Demographic and Anthropometric Features from Electrocardiograms. Journal of Clinical Medicine, 2023, 12, 2828.	1.0	1
509	An explainable artificial intelligence-enabled electrocardiogram analysis model for the classification of reduced left ventricular function. European Heart Journal Digital Health, 2023, 4, 254-264.	0.7	2
510	Current and Future Use of Artificial Intelligence in Electrocardiography. Journal of Cardiovascular Development and Disease, 2023, 10, 175.	0.8	10
512	Historical Medical Principles Applied to the Future of Artificial Intelligence Software. , 2023, 1, 115-119.		0
513	Artificial Intelligence in Cardiology: Applications and Obstacles. Current Problems in Cardiology, 2023, 48, 101750.	1.1	4
528	Al Enabled Internet of Medical Things in Smart Healthcare. , 2023, , 141-161.		4
530	Artificial Intelligence as an Emerging Tool for Cardiologists. , 0, , .		0
540	Breakthrough in Management of Cardiovascular Diseases by Artificial Intelligence in Healthcare Settings. , 2023, , 177-193.		0
556	Deep learning for clinical decision-making and improved healthcare outcome. , 2023, , 187-201.		0
558	Self-supervised Classification of Clinical Multivariate Time Series using Time Series Dynamics. , 2023, , .		0
559	ECGGAN: A Framework for Effective and Interpretable Electrocardiogram Anomaly Detection. , 2023, , .		0
564	An Efficient IoMT-Based Heart Disease Prediction System Using Cuttlefish Algorithm with Cascaded LSTM. , 2023, , .		0
568	Soft bioelectronics for the management of cardiovascular diseases. , 2024, 2, 8-24.		4
580	Intelligence-based cardiovascular disease prevention. , 2024, , 265-270.		0
581	Artificial intelligence in heart failure. , 2024, , 255-260.		0

		CHATION REPORT	
#	Article	IF	Citations
582	Artificial intelligence in cardio-oncology. , 2024, , 309-313.		0
583	Artificial intelligence in electrophysiology. , 2024, , 173-177.		Ο
584	Industry perspective of artificial intelligence in medicine and surgery. , 2024, , 431-434.		0
590	Artificial intelligence in cardiac electrophysiology. , 2024, , 475-496.		0
592	Artificial intelligence in general internal medicine. , 2024, , 15-24.		0
609	Adopting artificial intelligence in cardiovascular medicine: a scoping review. Hypertension Researc 2024, 47, 685-699.	h, 1.5	5
616	Deep Learning—Autoencoders. , 2023, , 203-220.		0
629	Artificial intelligence-powered electronic skin. Nature Machine Intelligence, 2023, 5, 1344-1355.	8.3	4
633	Predicting Ejection Fraction from Electrocardiogram Signals using a Multi-task Learning Model. , 2023, , .		0
634	Cardiovascular Disease Prediction Using Machine Learning Algorithms. , 2023, , .		0
645	CardioDiverse: A Balanced ECG Dataset for Improved Association of Heart Diseases with Relevant Leads. , 2023, , .		0
665	CNN Based Deep Learning to Detect Low Ejection Fraction Using Single Lead ECG. , 2023, , .		0
677	Combining 1D CNN and LSTM for Automated Myocardial Infarction Detection from ECG Signals. , 561-571.	2024, ,	0