Liquid exfoliation of g-C3N4 nanosheets to construct 2D for enhanced photocatalytic H2 production activity

Applied Catalysis B: Environmental

246, 120-128

DOI: 10.1016/j.apcatb.2019.01.043

Citation Report

#	Article	IF	CITATIONS
2	Self-assembly method assisted synthesis of g-C3N4/ZnO heterostructure nanocomposites with enhanced photocatalytic performance. Optical Materials, 2019, 96, 109266.	3.6	37
3	The synergetic effect of carbon nanotubes and MoS2 as co-catalysts for enhancing the photocatalytic oxygen evolution of Ag3PO4. Ceramics International, 2019, 45, 21120-21126.	4.8	27
4	Fabrication of an ultrathin 2D/2D C3N4/MoS2 heterojunction photocatalyst with enhanced photocatalytic performance. Journal of Alloys and Compounds, 2019, 808, 151681.	5 . 5	56
5	Photoelectrochemical biosensor for 5hmC detection based on the photocurrent inhibition effect of ZnO on MoS2/C3N4 heterojunction. Biosensors and Bioelectronics, 2019, 142, 111516.	10.1	48
6	Versatile Functional Porous Cobalt–Nickel Phosphide–Carbon Cocatalyst Derived from a Metal–Organic Framework for Boosting the Photocatalytic Activity of Graphitic Carbon Nitride. ACS Applied Materials & Interfaces, 2019, 11, 28918-28927.	8.0	69
7	2D/1D Zn0.7Cd0.3S p-n heterogeneous junction enhanced with NiWO4 for efficient photocatalytic hydrogen evolution. Journal of Colloid and Interface Science, 2019, 554, 113-124.	9.4	77
8	Superior synergy of g-C3N4/Cd compounds and Al-MOF-derived nanoporous carbon for photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2019, 257, 117906.	20.2	62
9	Investigation on photocatalytic mechanism of graphitic SiC (g-SiC)/MoS ₂ van der Waals heterostructured photocatalysts for overall water splitting. Physical Chemistry Chemical Physics, 2019, 21, 15372-15379.	2.8	30
10	Modified Graphitic Carbon Nitride Nanosheets for Efficient Photocatalytic Hydrogen Evolution. ChemSusChem, 2019, 12, 4996-5006.	6.8	43
11	Synthesis of sol–gel derived holmium aluminium garnet on exfoliated g-C3N4: a novel visible-light-driven Z-scheme photocatalyst for the degradation of sunset yellow FCF. Journal of Materials Science: Materials in Electronics, 2019, 30, 20132-20143.	2.2	6
12	Accelerated photocatalytic degradation of quinolone antibiotics over Z-scheme MoO3/g-C3N4 heterostructure by peroxydisulfate under visible light irradiation: Mechanism; kinetic; and products. Journal of the Taiwan Institute of Chemical Engineers, 2019, 104, 250-259.	5. 3	51
13	The 2D nickel‑molybdenum bimetals sulfide synergistic modified hollow cubic CdS towards enhanced photocatalytic water splitting hydrogen production. Applied Surface Science, 2019, 497, 143769.	6.1	25
14	Doubly Q-switched Tm:YAP laser with g-C3N4 saturable absorber and AOM. Optical Materials, 2019, 96, 109306.	3.6	15
15	An overview of photocatalysis facilitated by 2D heterojunctions. Nanotechnology, 2019, 30, 502002.	2.6	66
16	Preparation of WO3/g-C3N4 composites with enhanced photocatalytic hydrogen production performance. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	2.3	9
17	Fabrication of CdS@1T-MoS2 core-shell nanostructure for enhanced visible-light-driven photocatalytic H2 evolution from water splitting. Journal of the Taiwan Institute of Chemical Engineers, 2019, 105, 57-64.	5.3	11
18	AgBr Nanoparticles in Situ Growth on 2D MoS ₂ Nanosheets for Rapid Bacteria-Killing and Photodisinfection. ACS Applied Materials & Interfaces, 2019, 11, 34364-34375.	8.0	58
19	High performance hydrogen production of MoS2-modified perovskite LaNiO3 under visible light. lonics, 2019, 25, 4533-4546.	2.4	22

#	Article	IF	CITATIONS
20	The 2D petaloid MoS2 lamellas modified cubic CaTiO3 nanocomposites towards photocatalytic hydrogen production enhancement. Journal of Alloys and Compounds, 2019, 811, 152067.	5 . 5	24
21	Facile synthesis of a robust visible-light-driven AgCl/WO3 composite microrod photocatalyst. Journal of Alloys and Compounds, 2019, 809, 151844.	5.5	24
22	Rich active-edge-site MoS2 anchored on reduction sites in metal sulfide heterostructure: Toward robust visible light photocatalytic hydrogen sulphide splitting. Applied Catalysis B: Environmental, 2019, 256, 117870.	20.2	63
23	Density functional theory calculation on two-dimensional MoS2/BiOX (X = Cl, Br, I) van der Waals heterostructures for photocatalytic action. Applied Surface Science, 2019, 492, 157-165.	6.1	65
24	Visible light active metal-free photocatalysis: N-doped graphene covalently grafted with g-C3N4 for highly robust degradation of methyl orange. Solid State Sciences, 2019, 94, 99-105.	3.2	22
25	Enhanced Photocatalytic Activities of RhB Degradation and H ₂ Evolution from in Situ Formation of the Electrostatic Heterostructure MoS ₂ /NiFe LDH Nanocomposite through the Z-Scheme Mechanism via p–n Heterojunctions. ACS Applied Materials & Diterfaces, 2019, 11, 20923-20942.	8.0	263
26	Hydrothermal synthesis of Co2P-modified MoS2: a highly efficient non-precious metal catalyst of light. Ionics, 2019, 25, 5003-5011.	2.4	2
27	Dual role of a g-C ₃ N ₄ /carbon intra-Schottky junction in charge carrier generation and separation for efficient solar H ₂ production. Catalysis Science and Technology, 2019, 9, 3493-3503.	4.1	31
28	Next-Generation Multifunctional Carbon–Metal Nanohybrids for Energy and Environmental Applications. Environmental Science &	10.0	109
29	Metallic molybdenum sulfide nanodots as platinum-alternative co-catalysts for photocatalytic hydrogen evolution. Journal of Catalysis, 2019, 374, 237-245.	6.2	37
30	Cobalt@nitrogen-doped bamboo-structured carbon nanotube to boost photocatalytic hydrogen evolution on carbon nitride. Applied Catalysis B: Environmental, 2019, 254, 443-451.	20.2	72
31	Photocatalytic Hydrogen Production: Role of Sacrificial Reagents on the Activity of Oxide, Carbon, and Sulfide Catalysts. Catalysts, 2019, 9, 276.	3.5	214
32	Role of SnS ₂ in 2D–2D SnS ₂ /TiO ₂ Nanosheet Heterojunctions for Photocatalytic Hydrogen Evolution. ACS Applied Nano Materials, 2019, 2, 2144-2151.	5.0	69
33	Superior Photocatalytic Generation of H ₂ in Water Medium Through Grafting a Cobalt Molecule Co atalyst from Carbon Nitride Nanosheets. ChemCatChem, 2019, 11, 2657-2666.	3.7	19
34	Visual observation of hydrogen bubble generation from monodisperse CoP QDs on ultrafine g-C3N4 fiber under visible light irradiation. Journal of Materials Chemistry A, 2019, 7, 25908-25914.	10.3	26
35	Construction of 2D/2D Ni ₂ P/CdS heterojunctions with significantly enhanced photocatalytic H ₂ evolution performance. Catalysis Science and Technology, 2019, 9, 6929-6937.	4.1	34
36	One-step scalable synthesis of honeycomb-like g-C ₃ N ₄ with broad sub-bandgap absorption for superior visible-light-driven photocatalytic hydrogen evolution. RSC Advances, 2019, 9, 32674-32682.	3.6	20
37	Metal-free broad-spectrum PTCDA/g-C3N4 Z-scheme photocatalysts for enhanced photocatalytic water oxidation. Applied Catalysis B: Environmental, 2020, 260, 118179.	20.2	89

#	Article	IF	CITATIONS
38	Nitrogen doped carbon ribbons modified g-C3N4 for markedly enhanced photocatalytic H2-production in visible to near-infrared region. Chemical Engineering Journal, 2020, 382, 122870.	12.7	169
39	Co-doped Mo-Mo2C cocatalyst for enhanced g-C3N4 photocatalytic H2 evolution. Applied Catalysis B: Environmental, 2020, 260, 118220.	20.2	113
40	In-situ homodispersely immobilization of Ag@AgCl on chloridized g-C3N4 nanosheets as an ultrastable plasmonic photocatalyst. Chemical Engineering Journal, 2020, 384, 123259.	12.7	64
41	Two-dimensional ultrathin MoS2-modified black Ti3+–TiO2 nanotubes for enhanced photocatalytic water splitting hydrogen production. Journal of Energy Chemistry, 2020, 43, 188-194.	12.9	79
42	Construction of CdLa2S4/MIL-88A(Fe) heterojunctions for enhanced photocatalytic H2-evolution activity via a direct Z-scheme electron transfer. Chemical Engineering Journal, 2020, 379, 122389.	12.7	54
43	Ultrastable metal-free near-infrared-driven photocatalysts for H2 production based on protonated 2D g-C3N4 sensitized with Chlorin e6. Applied Catalysis B: Environmental, 2020, 260, 118137.	20.2	69
44	Highly Efficient Polarized GeS/MoSe ₂ van der Waals Heterostructure for Water Splitting from Ultraviolet to Nearâ€Infrared Light. Physica Status Solidi - Rapid Research Letters, 2020, 14, 1900582.	2.4	14
45	In Situ Growth of BiOI/MoS 2 Heterostructure as Pt Supports for Visible Lightâ€Assisted Electrocatalytic Methanol Oxidation Reaction. Energy Technology, 2020, 8, 1900731.	3.8	7
46	Enhanced Effect of Ni3Se4 Modified CdS Nanorod for Efficient Hydrogen Production. Catalysis Letters, 2020, 150, 849-860.	2.6	4
47	Rapid production of few layer graphene for energy storage via dry exfoliation of expansible graphite. Composites Science and Technology, 2020, 185, 107895.	7.8	16
48	Mesoporous SiO2-derived g-C3N4@CdS core-shell heteronanostructure for efficient and stable photocatalytic H2 production. Ceramics International, 2020, 46, 2384-2391.	4.8	16
49	Facile synthesis of sulfur-doped polymeric carbon nitride/MoS2 face-to-face heterojunction for highly efficient photocatalytic interfacial charge separation. Chemical Engineering Journal, 2020, 384, 123330.	12.7	57
50	Oneâ€step synthesis of a WO ₃ uS nanosheet heterojunction with enhanced photocatalytic performance for methylene blue degradation and Cr(VI) reduction. Journal of Chemical Technology and Biotechnology, 2020, 95, 665-674.	3.2	34
51	Monolithic Ag-Mt dispersed Z-scheme pCN-TiO2 heterojunction for dynamic photocatalytic H2 evolution using liquid and gas phase photoreactors. International Journal of Hydrogen Energy, 2020, 45, 4355-4375.	7.1	52
52	Remarkable photocatalytic activity enhancement of CO2 conversion over 2D/2D g-C3N4/BiVO4 Z-scheme heterojunction promoted by efficient interfacial charge transfer. Carbon, 2020, 160, 342-352.	10.3	165
53	Enhanced photocatalytic hydrogen evolution over TiO2/g-C3N4 2D heterojunction coupled with plasmon Ag nanoparticles. Ceramics International, 2020, 46, 5725-5732.	4.8	34
54	Black phosphorus photocatalysts for photocatalytic H2 generation: A review. Chemical Engineering Journal, 2020, 386, 123997.	12.7	87
55	Vertical grown BiOI nanosheets on TiO2 NTs/Ti meshes toward enhanced photocatalytic performances. Journal of Alloys and Compounds, 2020, 820, 153109.	5.5	44

#	Article	IF	CITATIONS
56	Ultrafast plasma immersion strategy for rational modulation of oxygen-containing and amino groups in graphitic carbon nitride. Carbon, 2020, 159, 51-64.	10.3	43
57	One-pot bottom-up fabrication of a 2D/2D heterojuncted nanozyme towards optimized peroxidase-like activity for sulfide ions sensing. Sensors and Actuators B: Chemical, 2020, 306, 127565.	7.8	69
58	High-efficient precious-metal-free g-C3N4-Fe3O4 \hat{l}^2 -FeOOH photocatalyst based on double-heterojunction for visible-light-driven hydrogen evolution. Applied Surface Science, 2020, 506, 144948.	6.1	30
59	Band structure engineering and efficient injection rich-ï€-electrons into ultrathin g-C3N4 for boosting photocatalytic H2-production. Applied Surface Science, 2020, 505, 144564.	6.1	35
60	Nanocages of Polymeric Carbon Nitride from Lowâ€Temperature Supramolecular Preorganization for Photocatalytic CO ₂ Reduction. Solar Rrl, 2020, 4, 1900469.	5.8	38
61	Floating and stable g-C3N4/PMMA/CFs porous film: an automatic photocatalytic reaction platform for dye water treatment under solar light. Journal of Porous Materials, 2020, 27, 465-472.	2.6	14
62	Three-dimension branched crystalline carbon nitride: A high efficiency photoelectrochemical sensor of trace Cu2+ detection. Electrochimica Acta, 2020, 330, 135336.	5.2	27
63	Superior uniform carbon nanofibers@g-C3N4 core-shell nanostructures embedded by Au nanoparticles for high-efficiency photocatalyst. Journal of Hazardous Materials, 2020, 388, 121759.	12.4	24
64	A latest overview on photocatalytic application of g-C3N4 based nanostructured materials for hydrogen production. International Journal of Hydrogen Energy, 2020, 45, 337-379.	7.1	175
65	Switching g-C3N4 morphology from double-walled to single-walled microtubes induced high photocatalytic H2-production performance. Journal of Alloys and Compounds, 2020, 820, 153166.	5.5	8
66	Synthesis of carbon nitride nanosheets with tunable size by hydrothermal method for tetracycline degradation. Materials Letters, 2020, 264, 127005.	2.6	8
67	One-step synthesis of magnetic recoverable Ag2S/Fe3O4/MoS2 nanocomposites for enhanced visible light photocatalysis. Journal of Materials Science: Materials in Electronics, 2020, 31, 1047-1056.	2.2	4
68	Aminated flower-like ZnIn2S4 coupled with benzoic acid modified g-C3N4 nanosheets via covalent bonds for ameliorated photocatalytic hydrogen generation. Applied Catalysis B: Environmental, 2020, 268, 118462.	20.2	127
69	Morphological effect of 1D/1D In2O3/TiO2 NRs/NWs heterojunction photo-embedded with Cu-NPs for enhanced photocatalytic H2 evolution under visible light. Applied Surface Science, 2020, 506, 145034.	6.1	59
70	Facile One-Step Preparation and Efficient Photocatalytic Hydrogen Production of Composite MoS ₂ /g-C ₃ N ₄ Sensitized by Erythrosin B. Nano, 2020, 15, 2050127.	1.0	4
71	Photoreduction of CO2 in the presence of CH4 over g-C3N4 modified with TiO2 nanoparticles at room temperature. Green Energy and Environment, 2021, 6, 938-951.	8.7	26
72	Mo incorporated Ni nanosheet as high-efficiency co-catalyst for enhancing the photocatalytic hydrogen production of g-C3N4. International Journal of Hydrogen Energy, 2020, 45, 18912-18921.	7.1	25
73	Visible-light-driven photocatalytic degradation of rhodamine B in water by BiOClxI1â^'x solid solutions. Water Science and Technology, 2020, 81, 1080-1089.	2.5	13

#	Article	IF	CITATIONS
74	Heterojunction Photocatalysts Based on 2D Materials: The Role of Configuration. Advanced Sustainable Systems, 2020, 4, 2000130.	5.3	120
75	Few-Layer In ₂ S ₃ in Laponite Interlayers: A Colloidal Route Toward Heterostructured Nanohybrids with Enhanced Photocatalysis. Chemistry of Materials, 2020, 32, 10015-10024.	6.7	23
76	Graphitic C3N4/CdS composite photocatalyst: Synthesis, characterization and photodegradation of methylene blue under visible light. Physica B: Condensed Matter, 2020, 595, 412367.	2.7	29
77	Boosted insights of novel accordion-like (2D/2D) hybrid photocatalyst for the removal of cationic dyes: Mechanistic and degradation pathways. Journal of Environmental Management, 2020, 273, 111125.	7.8	45
78	Strong interfacial coupling for NiS thin layer covered CdS nanorods with highly efficient photocatalytic hydrogen production. New Journal of Chemistry, 2020, 44, 19083-19090.	2.8	21
79	2D Porous N-Deficient g-C ₃ N ₄ Nanosheet Decorated with CdS Nanoparticles for Enhanced Visible-Light-Driven Photocatalysis. ACS Sustainable Chemistry and Engineering, 2020, 8, 16897-16904.	6.7	50
80	Cu2O/MoS2 composites: a novel photocatalyst for photocatalytic degradation of organic dyes under visible light. Ionics, 2020, 26, 6359-6369.	2.4	23
81	Tunable Syngas Synthesis from Photocatalytic CO2 Reduction Under Visible-Light Irradiation by Interfacial Engineering. Transactions of Tianjin University, 2020, 26, 352-361.	6.4	33
82	Synthesis and Characterization of Amorphous Molybdenum Sulfide (MoSx)/CdIn2S4 Composite Photocatalyst: Co-Catalyst Using in the Hydrogen Evolution Reaction. Catalysts, 2020, 10, 1455.	3.5	11
83	A Mini Review of the Preparation and Photocatalytic Properties of Two-Dimensional Materials. Frontiers in Chemistry, 2020, 8, 582146.	3.6	27
84	Synthesis, characterization, and photocatalytic performance of Ag/AgFeO2 decorated on g-C3N4-nanosheet under the visible light irradiation. Journal of the Taiwan Institute of Chemical Engineers, 2020, 115, 279-292.	5. 3	35
85	Two-Dimensional Materials and Composites as Potential Water Splitting Photocatalysts: A Review. Catalysts, 2020, 10, 464.	3.5	30
86	An effective method to understand photo-generated charge transfer processes of Z-scheme Ti/l±-Fe2O3/g-C3N4 photocatalysts for hydrogen evolution. Catalysis Communications, 2020, 142, 106028.	3.3	19
87	Fabrication of 2D–2D Heterojunction Catalyst with Covalent Organic Framework (COF) and MoS ₂ for Highly Efficient Photocatalytic Degradation of Organic Pollutants. Inorganic Chemistry, 2020, 59, 6942-6952.	4.0	107
88	Highly Efficient Visibleâ€Lightâ€Driven Photocatalytic Hydrogen Production Using Robust Nobleâ€Metalâ€Free Zn 0.5 Cd 0.5 S@Graphene Composites Decorated with MoS 2 Nanosheets. Advanced Materials Interfaces, 2020, 7, 2000010.	3.7	21
89	Co-monomer engineering optimized electron delocalization system in carbon-bridging modified g-C3N4 nanosheets with efficient visible-light photocatalytic performance. Applied Catalysis B: Environmental, 2020, 274, 119116.	20.2	92
90	Recent development in band engineering of binary semiconductor materials for solar driven photocatalytic hydrogen production. International Journal of Hydrogen Energy, 2020, 45, 15985-16038.	7.1	187
91	Design of a p–n heterojunction in 0D/3D MoS ₂ /g-C ₃ N ₄ composite for boosting the efficient separation of photogenerated carriers with enhanced visible-light-driven H ₂ evolution. RSC Advances, 2020, 10, 19169-19177.	3.6	18

#	Article	IF	CITATIONS
92	2D/2D Heterostructured Photocatalysts: An Emerging Platform for Artificial Photosynthesis. Solar Rrl, 2020, 4, 2000132.	5.8	94
93	Palladium modified ZnFe2O4/g-C3N4 nanocomposite as an efficiently magnetic recycling photocatalyst. Journal of Solid State Chemistry, 2020, 288, 121389.	2.9	40
94	In situ plasmonic Bi grown on Iâ [^] doped Bi2WO6 for enhanced visible-light-driven photocatalysis to mineralize diverse refractory organic pollutants. Separation and Purification Technology, 2020, 250, 117119.	7.9	45
95	Toward enhanced photocatalytic activity of graphite carbon nitride through rational design of noble metal-free dual cocatalysts. Nanoscale, 2020, 12, 13829-13837.	5.6	41
96	A Nitrogen-Rich Covalent Triazine Framework as a Photocatalyst for Hydrogen Production. Advances in Polymer Technology, 2020, 2020, 1-12.	1.7	6
97	Synergy between van der waals heterojunction and vacancy in Znln2S4/g-C3N4 2D/2D photocatalysts for enhanced photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2020, 277, 119254.	20.2	316
98	Construction of ultrathin 2D/2D g-C3N4/In2Se3 heterojunctions with high-speed charge transfer nanochannels for promoting photocatalytic hydrogen production. Applied Surface Science, 2020, 528, 146858.	6.1	37
99	Mineralization and toxicity reduction of the benzophenone-1 using 2D/2D Cu2WS4/BiOCl Z-scheme system: Simultaneously improved visible-light absorption and charge transfer efficiency. Chemical Engineering Journal, 2020, 400, 125913.	12.7	57
100	Enhanced interfacial electron transfer and boosted visible-light photocatalytic hydrogen evolution activity of g-C3N4 by noble-metal-free MoSe2 nanoparticles. Journal of Materials Science, 2020, 55, 13114-13126.	3.7	22
101	Cobalt (II)-based openâ€framework systems constructed on g-C3N4 for extraordinary enhancing photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2020, 277, 119207.	20.2	37
102	Construction of a Z-scheme MoS2/CaTiO3 heterostructure by the morphology-controlled strategy towards enhancing photocatalytic activity. Chemical Engineering Journal, 2020, 399, 125721.	12.7	95
103	A review on 2D MoS2 cocatalysts in photocatalytic H2 production. Journal of Materials Science and Technology, 2020, 56, 89-121.	10.7	364
104	A light-induced self-powered competitive immunosensor for the detection of platelet derived growth factor-BB via an elaborately assembled bioconjugate. Sensors and Actuators B: Chemical, 2020, 316, 128130.	7.8	14
105	Efficient degradation of antibiotics in different water matrices through the photocatalysis of inverse opal K-g-C3N4: Insights into mechanism and assessment of antibacterial activity. Chemical Engineering Journal, 2020, 400, 125902.	12.7	54
106	Pressure tuned photoluminescence and band gap in two-dimensional layered g-C ₃ N ₄ : the effect of interlayer interactions. Nanoscale, 2020, 12, 12300-12307.	5.6	25
107	N2 photofixation by Z-scheme single-layer g-C3N4/ZnFe2O4 for cleaner ammonia production. Materials Research Bulletin, 2020, 127, 110853.	5. 2	39
108	Mesoporous TiO2/g-C3N4 composites with O-Ti-N bridge for improved visible-light photodegradation of enrofloxacin. Science of the Total Environment, 2020, 724, 138280.	8.0	38
109	Zeolitic Imidazolate Framework-67-Derived CoP/Co@N,P-Doped Carbon Nanoparticle Composites with Graphitic Carbon Nitride for Enhanced Photocatalytic Production of H ₂ and H ₂ O ₂ . ACS Applied Nano Materials, 2020, 3, 3558-3567.	5.0	29

#	Article	IF	CITATIONS
110	Deposited CuBi2O4 and Bi3ClO4 nanoparticles on g-C3N4 nanosheet: a promising visible light-induced photocatalyst toward the removal of tetracycline hydrochloride and rhodamine B. Journal of Materials Science, 2020, 55, 7775-7791.	3.7	27
111	Path of electron transfer created in S-doped NH ₂ -UiO-66 bridged ZnIn ₂ S ₄ /MoS ₂ nanosheet heterostructure for boosting photocatalytic hydrogen evolution. Catalysis Science and Technology, 2020, 10, 2531-2539.	4.1	22
112	Dodecahedron ZIF-67 anchoring ZnCdS particles for photocatalytic hydrogen evolution. Molecular Catalysis, 2020, 485, 110832.	2.0	61
113	Engineering donor-acceptor conjugated organic polymers with boron nitride to enhance photocatalytic performance towards visible-light-driven metal-free selective oxidation of sulfides. Applied Catalysis B: Environmental, 2020, 277, 119274.	20.2	42
114	Efficiently enhanced nitrogen fixation performance of g-C3N4 nanosheets by decorating Ni3V2O8 nanoparticles under visible-light irradiation. Ceramics International, 2020, 46, 24472-24482.	4.8	30
115	Enhancement of catalytic hydrogen evolution by NiS modification of ZnCo2O4 with cubic morphology. Journal of Materials Science: Materials in Electronics, 2020, 31, 12026-12040.	2.2	8
116	Bi2O3/ g-C3N4 nanocomposites as proficient photocatalysts for hydrogen generation from aqueous glycerol solutions beneath visible light. Ceramics International, 2020, 46, 24873-24881.	4.8	27
117	Ni(acac)2/Mo-MOF-derived difunctional MoNi@MoO2cocatalyst to enhance the photocatalytic H2evolution activity of g-C3N4. Applied Catalysis B: Environmental, 2020, 268, 118739.	20.2	36
118	Polymeric g-C3N4 Derived from the Mixture of Dicyandiamide and Mushroom Waste for Photocatalytic Degradation of Methyl Blue. Topics in Catalysis, 2020, 63, 1182-1192.	2.8	6
119	Construction of a Stable Two-Dimensional MAX Supported Protonated Graphitic Carbon Nitride (pg-C ₃ N ₄)/Ti ₃ AC ₂ /TiO ₂ Z-Scheme Multiheterojunction System for Efficient Photocatalytic CO ₂ Reduction through Dry Reforming of Methanol, Energy & Dry Support States (Support Support Supp	5.1	77
120	Powerful combination of 2D g-C3N4 and 2D nanomaterials for photocatalysis: Recent advances. Chemical Engineering Journal, 2020, 390, 124475.	12.7	205
121	Different behaviors between interband and intraband transitions generated hot carriers on g-C3N4/Au for photocatalytic H2 production. Applied Surface Science, 2020, 513, 145830.	6.1	26
122	Carbon inserted defect-rich MoS2â^'X nanosheets@CdSnanospheres for efficient photocatalytic hydrogen evolution under visible light irradiation. Journal of Colloid and Interface Science, 2020, 569, 89-100.	9.4	34
123	Band Modulation and Interfacial Engineering to Generate Efficient Visible-Light-Induced Bifunctional Photocatalysts. ACS Sustainable Chemistry and Engineering, 2020, 8, 2919-2930.	6.7	35
124	Two-dimensional/one-dimensional molybdenum sulfide (MoS2) nanoflake/graphitic carbon nitride (g-C3N4) hollow nanotube photocatalyst for enhanced photocatalytic hydrogen production activity. Journal of Colloid and Interface Science, 2020, 567, 300-307.	9.4	93
125	Constructing MoS2/g-C3N4 heterojunction with enhanced oxygen evolution reaction activity: A theoretical insight. Applied Surface Science, 2020, 510, 145489.	6.1	76
126	Na2Fe2Ti6O16 as a hybrid co-catalyst on g-C3N4 to enhance the photocatalytic hydrogen evolution under visible light illumination. Applied Surface Science, 2020, 509, 145357.	6.1	9
127	Preparation and characterization of g-C3N4/Ag–TiO2 ternary hollowsphere nanoheterojunction catalyst with high visible light photocatalytic performance. Journal of Alloys and Compounds, 2020, 823, 153851.	5.5	77

#	Article	IF	CITATIONS
128	Surface electron state engineering enhanced hydrogen evolution of hierarchical molybdenum disulfide in acidic and alkaline media. Applied Catalysis B: Environmental, 2020, 266, 118649.	20.2	55
129	Microwave-assisted synthesis of triple 2D g-C3N4/Bi2WO6/rGO composites for ibuprofen photodegradation: Kinetics, mechanism and toxicity evaluation of degradation products. Chemical Engineering Journal, 2020, 387, 124098.	12.7	93
130	Fabrication of a novel 3D E-Fe2O3-Pi-MoS2 film with highly enhanced carrier mobility and photoelectrocatalytic activity. Electrochimica Acta, 2020, 337, 135748.	5.2	8
131	Two-dimensional materials for energy conversion and storage. Progress in Materials Science, 2020, 111, 100637.	32.8	134
132	Enhanced visible-light-assisted photocatalytic hydrogen generation by MoS2/g-C3N4 nanocomposites. International Journal of Hydrogen Energy, 2020, 45, 8497-8506.	7.1	37
133	Metal-free 2D/2D heterojunction of covalent triazine-based frameworks/graphitic carbon nitride with enhanced interfacial charge separation for highly efficient photocatalytic elimination of antibiotic pollutants. Journal of Hazardous Materials, 2020, 391, 122204.	12.4	54
134	Photocatalytic properties and energy band offset of a tungsten disulfide/graphitic carbon nitride van der Waals heterojunction. RSC Advances, 2020, 10, 5260-5267.	3.6	13
135	Localized Ostwald Ripening Guided Dissolution/Regrowth to Ancient Chinese Coinâ€shaped VO ₂ Nanoplates with Enhanced Mass Transfer for Zinc Ion Storage. Advanced Functional Materials, 2020, 30, 2000472.	14.9	76
136	Fabrication of BiFeO3-g-C3N4-WO3 Z-scheme heterojunction as highly efficient visible-light photocatalyst for water reduction and 2,4-dichlorophenol degradation: Insight mechanism. Journal of Hazardous Materials, 2020, 397, 122708.	12.4	102
137	2D/2D heterostructured photocatalyst: Rational design for energy and environmental applications. Science China Materials, 2020, 63, 2119-2152.	6.3	71
138	Visible light photocatalytic degradation of tetracycline with porous Ag/graphite carbon nitride plasmonic composite: Degradation pathways and mechanism. Journal of Colloid and Interface Science, 2020, 574, 110-121.	9.4	105
139	Metal-free SiOC/g-C3N4 heterojunction composites with efficient visible-light photocatalytic H2 production. Applied Surface Science, 2020, 520, 146335.	6.1	16
140	Rational design 2D/2D BiOCl/H+Ti2NbO7â^ heterojunctions for enhanced photocatalytic degradation activity. Applied Surface Science, 2020, 521, 146334.	6.1	22
141	Investigation on various photo-generated carrier transfer processes of SnS2/g-C3N4 heterojunction photocatalysts for hydrogen evolution. Journal of Colloid and Interface Science, 2020, 578, 431-440.	9.4	46
142	Tunable type-I/type-II transition in g-C3N4/graphyne heterostructure by BN-doping: A promising photocatalyst. Solar Energy Materials and Solar Cells, 2020, 210, 110516.	6.2	23
143	Accelerated charge transfer of Cd _{0.5} Zn _{0.5} S@ZnS core–shell nano-spheres <i>via</i> decoration of Ni ₂ P and g-C ₃ N ₄ toward efficient visible-light-driven H ₂ production. Dalton Transactions, 2020, 49, 6259-6269.	3.3	11
144	Long lifetime g-C3N4 photocatalyst coupled with phosphorescent material working under dark condition. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 396, 112520.	3.9	13
145	2D/2D step-scheme α-Fe2O3/Bi2WO6 photocatalyst with efficient charge transfer for enhanced photo-Fenton catalytic activity. Chinese Journal of Catalysis, 2021, 42, 97-106.	14.0	131

#	ARTICLE	IF	CITATIONS
146	MoO3/g-C3N4 Z-scheme (S-scheme) system derived from MoS2/melamine dual precursors for enhanced photocatalytic H2 evolution driven by visible light. International Journal of Hydrogen Energy, 2021, 46, 2927-2935.	7.1	59
147	Synthesis of core-shell nanostructured Cr2O3/C@TiO2 for photocatalytic hydrogen production. Chinese Journal of Catalysis, 2021, 42, 225-234.	14.0	43
148	In-situ self-assembly construction of hollow tubular g-C3N4 isotype heterojunction for enhanced visible-light photocatalysis: Experiments and theories. Journal of Hazardous Materials, 2021, 401, 123355.	12.4	157
149	Rapid thermal surface engineering of g-C3N4 for efficient hydrogen evolution. Applied Surface Science, 2021, 539, 148308.	6.1	14
150	A first-principles investigation of Janus MoSSe as a catalyst for photocatalytic water-splitting. Applied Surface Science, 2021, 537, 147919.	6.1	36
151	One-pot synthesis of array-like sulfur-doped carbon nitride with covalently crosslinked ultrathin MoS2 cocatalyst for drastically enhanced photocatalytic hydrogen evolution. Journal of Materials Science and Technology, 2021, 75, 59-67.	10.7	16
152	In situ preparation of g-C3N4 nanosheet/FeOCl: Achievement and promoted photocatalytic nitrogen fixation activity. Journal of Colloid and Interface Science, 2021, 587, 538-549.	9.4	59
153	One-step construction of S-scheme heterojunctions of N-doped MoS2 and S-doped g-C3N4 for enhanced photocatalytic hydrogen evolution. Chemical Engineering Journal, 2021, 404, 126498.	12.7	214
154	A direct Z-scheme oxygen vacant BWO/oxygen-enriched graphitic carbon nitride polymer heterojunction with enhanced photocatalytic activity. Chemical Engineering Journal, 2021, 403, 126363.	12.7	72
155	Boosting charge separation and surface defects for superb photocatalytic activity of magnesium oxide/graphene nanosheets. Applied Surface Science, 2021, 535, 147658.	6.1	13
156	Photo-assisted separation of noble-metal-free oxidation and reduction cocatalysts for graphitic carbon nitride nanosheets with efficient photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2021, 280, 119456.	20.2	91
157	Future roadmap on nonmetal-based 2D ultrathin nanomaterials for photocatalysis. Chemical Engineering Journal, 2021, 406, 126780.	12.7	39
158	Photocatalytic conversion of biomass-based monosaccharides to lactic acid by ultrathin porous oxygen doped carbon nitride. Applied Catalysis B: Environmental, 2021, 283, 119520.	20.2	108
159	Carbon dots anchored high-crystalline g-C3N4 as a metal-free composite photocatalyst for boosted photocatalytic degradation of tetracycline under visible light. Journal of Materials Science, 2021, 56, 2226-2240.	3.7	106
160	Double photoelectron-transfer mechanism in Agâ^'AgCl/WO3/g-C3N4 photocatalyst with enhanced visible-light photocatalytic activity for trimethoprim degradation. Journal of Hazardous Materials, 2021, 403, 123964.	12.4	116
161	Photocatalytic degradation of different pollutants by the novel gCN-NS/Black-TiO2 heterojunction photocatalyst under visible light: Introducing a photodegradation model and optimization by response surface methodology (RSM). Materials Chemistry and Physics, 2021, 258, 123912.	4.0	60
162	Single metal atom decorated photocatalysts: Progress and challenges. Nano Research, 2021, 14, 934-944.	10.4	62
163	One-step synthesis of Mo and S co-doped porous g-C3N4 nanosheets for efficient visible-light photocatalytic hydrogen evolution. Applied Surface Science, 2021, 536, 147743.	6.1	55

#	Article	IF	CITATIONS
164	Biomimetic design and synthesis of visible-light-driven g-C3N4 nanotube @polydopamine/NiCo-layered double hydroxides composite photocatalysts for improved photocatalytic hydrogen evolution activity. Journal of Colloid and Interface Science, 2021, 584, 464-473.	9.4	52
165	Ultrathin sulfur-doped holey carbon nitride nanosheets with superior photocatalytic hydrogen production from water. Applied Catalysis B: Environmental, 2021, 284, 119742.	20.2	88
166	FeS2 bridging function to enhance charge transfer between MoS2 and g–C3N4 for efficient hydrogen evolution reaction. Chemical Engineering Journal, 2021, 421, 127804.	12.7	51
167	A novel materials manganese cadmium sulfide/cobalt nitride for efficiently photocatalytic hydrogen evolution. Journal of Colloid and Interface Science, 2021, 585, 217-228.	9.4	36
168	Recent Progress of Transition Metal Phosphides for Photocatalytic Hydrogen Evolution. ChemSusChem, 2021, 14, 539-557.	6.8	76
169	One-pot solution-free construction for hybrids of molybdenum carbide nanoparticles and porous N-doped carbon nanoplates as efficient electrocatalyst of hydrogen evolution. Journal of Alloys and Compounds, 2021, 861, 157935.	5.5	8
170	Fabrication of visible-light-response face-contact ZnSnO3@g-C3N4 core–shell heterojunction for highly efficient photocatalytic degradation of tetracycline contaminant and mechanism insight. Journal of Materials Science, 2021, 56, 4366-4379.	3.7	63
171	Evaluating the promotional effects of WO3 underlayers in BiVO4 water splitting photoanodes. Chemical Engineering Journal, 2021, 417, 128095.	12.7	27
172	Ultrathin Porous Carbon Nitride Bundles with an Adjustable Energy Band Structure toward Simultaneous Solar Photocatalytic Water Splitting and Selective Phenylcarbinol Oxidation. Angewandte Chemie, 2021, 133, 4865-4872.	2.0	19
173	Environment friendly and remarkably efficient photocatalytic hydrogen evolution based on metal organic framework derived hexagonal/cubic In2O3 phase-junction. Applied Catalysis B: Environmental, 2021, 282, 119602.	20.2	81
174	Ultrathin Porous Carbon Nitride Bundles with an Adjustable Energy Band Structure toward Simultaneous Solar Photocatalytic Water Splitting and Selective Phenylcarbinol Oxidation. Angewandte Chemie - International Edition, 2021, 60, 4815-4822.	13.8	233
175	Advances in 2D/2D Zâ€Scheme Heterojunctions for Photocatalytic Applications. Solar Rrl, 2021, 5, 2000397.	5.8	82
176	Ultrathin Z-scheme 2D/2D N-doped HTiNbO5 nanosheets/g-C3N4 porous composites for efficient photocatalytic degradation and H2 generation under visible light. Journal of Colloid and Interface Science, 2021, 583, 58-70.	9.4	59
177	A review of the current status of graphitic carbon nitride. Critical Reviews in Solid State and Materials Sciences, 2021, 46, 189-217.	12.3	160
178	CHAPTER 6. Atomic and Molecular Functionalization of Graphitic Carbon Nitride for Solar Cell Applications. RSC Nanoscience and Nanotechnology, 2021, , 221-261.	0.2	2
179	MoS2/Ag2CO3 Z-scheme system with enhancing water splitting photocatalytic activity. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	2.3	3
180	Engineering MoS 2 Cocatalysts as Active Sites over Porous Pâ€Doped g 3 N 4 Nanosheets to Enhance Photocatalytic Hydrogen Production. Physica Status Solidi - Rapid Research Letters, 0, , 2000513.	2.4	6
181	Metal Nitrides and Graphitic Carbon Nitrides as Novel Photocatalysts for Hydrogen Production and Environmental Remediation. , 2021, , 485-519.		40

#	Article	IF	CITATIONS
182	Anchoring Zn _{0.5} Cd _{0.5} S solid solution onto 2D porous Co–CoO nanosheets for highly improved photocatalytic H ₂ generation. Materials Chemistry Frontiers, 2021, 5, 7208-7215.	5.9	9
183	The CoSx-modified g-C3N4 nanosheets towards photocatalytic water splitting hydrogen production enhancement. Journal of Materials Science: Materials in Electronics, 2021, 32, 2385-2394.	2.2	1
184	A novel design of SiH/CeO ₂ (111) van der Waals type-II heterojunction for water splitting. Physical Chemistry Chemical Physics, 2021, 23, 2812-2818.	2.8	49
185	Hydroxyl-group-modified polymeric carbon nitride with the highly selective hydrogenation of nitrobenzene to <i>N</i> -phenylhydroxylamine under visible light. Green Chemistry, 2021, 23, 3612-3622.	9.0	22
186	Graphitic carbon nitride: Synthesis and characterization. , 2021, , 573-590.		3
187	Combination of Carbon Nitride and Semiconductors for the Enhancement of the Photocatalytic Degradation of Organic Pollutants and Hydrogen Production. RSC Nanoscience and Nanotechnology, 2021, , 318-370.	0.2	0
188	A two-dimensional arsenene/g-C ₃ N ₄ van der Waals heterostructure: a highly efficient photocatalyst for water splitting. Sustainable Energy and Fuels, 2021, 5, 2249-2256.	4.9	20
189	Nitrogen-doped graphene/graphitic carbon nitride with enhanced charge separation and two-electron-transferring reaction activity for boosting photocatalytic hydrogen peroxide production. Sustainable Energy and Fuels, 2021, 5, 1511-1520.	4.9	13
190	Green synthesis of bio-based Au@g-C3N4 nanocomposite for photocatalytic degradation of methyl orange. Materials Today: Proceedings, 2021, 47, 1218-1223.	1.8	7
191	Experimental determination of charge carrier dynamics in carbon nitride heterojunctions. Chemical Communications, 2021, 57, 1550-1567.	4.1	22
192	Construction of Bi2WO6/MoSe2/Bi12O17ClxBr2â^'x heterostructures for the production of hydrogen energy and degradation of methylene blue. Applied Nanoscience (Switzerland), 2021, 11, 951-959.	3.1	3
193	Rational design of the Z-scheme hollow-structure Co ₉ S ₈ /g-C ₃ N ₄ as an efficient visible-light photocatalyst for tetracycline degradation. Physical Chemistry Chemical Physics, 2021, 23, 3351-3360.	2.8	10
194	Transferable Active Centers of Strongly Coupled MoS ₂ @Sulfur and Molybdenum Co-doped g-C ₃ N ₄ Heterostructure Electrocatalysts for Boosting Hydrogen Evolution Reaction in Both Acidic and Alkaline Media. Inorganic Chemistry, 2021, 60, 2604-2613.	4.0	22
195	Enhanced solar-to-chemical energy conversion of graphitic carbon nitride by two-dimensional cocatalysts. EnergyChem, 2021, 3, 100051.	19.1	87
196	Exfoliated Boron Nitride (e-BN) Tailored Exfoliated Graphitic Carbon Nitride (e-CN): An Improved Visible Light Mediated Photocatalytic Approach towards TCH Degradation and H ₂ Evolution. Inorganic Chemistry, 2021, 60, 5021-5033.	4.0	60
197	Enhanced interfacial electronic transfer of BiVO ₄ coupled with 2D gâ€C ₃ N ₄ for visibleâ€light photocatalytic performance. Journal of the American Ceramic Society, 2021, 104, 3004-3018.	3.8	13
198	Solar to hydrocarbon production using metal-free water-soluble bulk heterojunction of conducting polymer nanoparticle and graphene oxide. Journal of Chemical Physics, 2021, 154, 164707.	3.0	2
199	A promising Zn-Ti layered double hydroxide/Fe-bearing montmorillonite composite as an efficient photocatalyst for Cr(VI) reduction: Insight into the role of Fe impurity in montmorillonite. Applied Surface Science, 2021, 546, 148835.	6.1	30

#	Article	IF	Citations
200	Natural molybdenite mineral enhanced polymeric carbon nitride nano-composites for efficient noble-metal-free photocatalytic hydrogen evolution. Materials Research Bulletin, 2021, 136, 111158.	5.2	7
201	Engineered Graphitic Carbon Nitride-Based Photocatalysts for Visible-Light-Driven Water Splitting: A Review. Energy & Energy & Review. Energy & Ene	5.1	160
202	Investigating the Influential Effect of Etchant Time in Constructing $2 < i > D < i > 2D HCN MX$ ene Heterojunction with Controlled Growth of TiO $<$ sub $>$ 2 $<$ /sub $>$ NPs for Stimulating Photocatalytic H $<$ sub $>$ 2 $<$ /sub $>$ Production. Energy & Fuels, 2021, 35, 6807-6822.	5.1	31
203	An Overview of the Recent Progress in Polymeric Carbon Nitride Based Photocatalysis. Chemical Record, 2021, 21, 1811-1844.	5.8	29
204	Two-dimensional nanomaterials with engineered bandgap: Synthesis, properties, applications. Nano Today, 2021, 37, 101059.	11.9	82
205	A 2D/3D Heterojunction Photocatalyst Using 2D Nanosheet Sm 2 MoO 6 on 3D Spherical NiS: A Novel Highâ€Efficiency Photocatalyst. Physica Status Solidi (A) Applications and Materials Science, 2021, 218, 2100026.	1.8	4
206	Bilayer MoTe2/XS2 (XÂ=ÂHf,Sn,Zr) heterostructures with efficient carrier separation and light absorption for photocatalytic water splitting into hydrogen. Applied Surface Science, 2021, 544, 148842.	6.1	24
207	A step-by-step synergistic stripping approach toward ultra-thin porous g-C3N4 nanosheets with high conduction band position for photocatalystic CO2 reduction. Journal of Colloid and Interface Science, 2021, 589, 179-186.	9.4	50
208	Visible-light-activated g-C3N4 nanosheet/carbon dot/FeOCl nanocomposites: Photodegradation of dye pollutants and tetracycline hydrochloride. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 617, 126424.	4.7	38
209	Bi-layer molybdenum disulfide obtains from molybdenum disulfide-melamine cyanurate superlattice with a thermal shock. Advanced Powder Technology, 2021, 32, 1594-1601.	4.1	2
210	Electrochemical immunosensor development based on core-shell high-crystalline graphitic carbon nitride@carbon dots and Cd0.5Zn0.5S/d-Ti3C2Tx MXene composite for heart-type fatty acid–binding protein detection. Mikrochimica Acta, 2021, 188, 182.	5.0	85
211	Controlled Loading of MoS ₂ on Hierarchical Porous TiO ₂ for Enhanced Photocatalytic Hydrogen Evolution. Journal of Physical Chemistry C, 2021, 125, 11950-11962.	3.1	40
212	Ultra-Thin Red Phosphor Nanosheets as an Efficient Photocatalyst for Hydrogen Evolution Under Visible Light. Topics in Catalysis, 2021, 64, 559-566.	2.8	3
213	Efficient Advanced Oxidation Process (AOP) for Photocatalytic Contaminant Degradation Using Exfoliated Metal-Free Graphitic Carbon Nitride and Visible Light-Emitting Diodes. Catalysts, 2021, 11, 662.	3.5	18
214	A facile and green microwave hydrothermal method for fabricating g-C3N4 nanosheets with improved hydrogen evolution performance. Journal of Alloys and Compounds, 2021, 863, 158448.	5.5	20
215	Activation Strategy of WS ₂ as an Efficient Photocatalytic Hydrogen Evolution Cocatalyst through Co ²⁺ Doping to Adjust the Highly Exposed Active (100) Facet. Solar Rrl, 2021, 5, 2100223.	5.8	21
216	A highly efficient photocatalyst based on layered g-C3N4/SnS2 composites. Current Nanoscience, 2021, 17, .	1.2	0
217	Investigation on the Photocatalytic Hydrogen Evolution Properties of Z-Scheme Au NPs/CulnS ₂ /NCN-CN <i>_×/i> Composite Photocatalysts. ACS Sustainable Chemistry and Engineering, 2021, 9, 7286-7297.</i>	6.7	27

#	Article	IF	CITATIONS
218	Hydrothermal construction of flower-like MoS2 on TiO2 NTs for highly efficient environmental remediation and photocatalytic hydrogen evolution. Separation and Purification Technology, 2021, 265, 118463.	7.9	54
219	Preparation of MoS2–Ag/g-C3N4 Composite for Rhodamine B Degradation. Nano, 2021, 16, 2150078.	1.0	1
220	ZIF-67 derived Co@NC/g-C3N4 as a photocatalyst for enhanced water splitting H2 evolution. Environmental Research, 2021, 197, 111002.	7. 5	21
221	OD, 1D, 2D molybdenum disulfide functionalized by 2D polymeric carbon nitride for photocatalytic water splitting. Nanotechnology, 2021, 32, 355703.	2.6	4
222	Exceptional Photocarriers Separation Efficiency Over Bi2WO6/BiOI Chemical Bonding Interface for Removal Organic Pollutant. Journal of Inorganic and Organometallic Polymers and Materials, 2021, 31, 3262-3271.	3.7	5
223	Peroxymonosulfate-assisted g-C3N4@Bi2MoO6 photocatalytic system for degradation of nimesulide through phenyl ether bond cleavage under visible light irradiation. Separation and Purification Technology, 2021, 264, 118288.	7.9	38
224	Visible-light-response g-C3N4@N,S-TiO2 nanocomposites for superior photocatalysis and photoelectrochemical performance. Journal of Alloys and Compounds, 2021, 866, 158964.	5.5	24
225	MOFsâ€Derived Fusiform In ₂ O ₃ Mesoporous Nanorods Anchored with Ultrafine CdZnS Nanoparticles for Boosting Visibleâ€Light Photocatalytic Hydrogen Evolution. Small, 2021, 17, e2102307.	10.0	65
226	Enhanced peroxymonosulfate decomposition into OH and 1O2 for sulfamethoxazole degradation over Se doped g-C3N4 due to induced exfoliation and N vacancies formation. Separation and Purification Technology, 2021, 267, 118664.	7.9	24
227	Molybdenum sulfide-modified metal-free graphitic carbon nitride/black phosphorus photocatalyst synthesized via high-energy ball-milling for efficient hydrogen evolution and hexavalent chromium reduction. Journal of Hazardous Materials, 2021, 413, 125400.	12.4	59
228	Facile fabrication of (2D/2D) MoS2@MIL-88(Fe) interface-driven catalyst for efficient degradation of organic pollutants under visible light irradiation. Journal of Hazardous Materials, 2021, 414, 125522.	12.4	90
229	Few-layered g-C ₃ N ₄ -derived core–shell isotype heterojunction photocatalysts for efficient environmental remediation. Functional Materials Letters, 2021, 14, 2151032.	1.2	1
230	Analysis of Photocatalytic Degradation of Phenol with Exfoliated Graphitic Carbon Nitride and Light-Emitting Diodes Using Response Surface Methodology. Catalysts, 2021, 11, 898.	3.5	15
231	One-pot synthesis of S-scheme MoS2/g-C3N4 heterojunction as effective visible light photocatalyst. Scientific Reports, 2021, 11, 14787.	3.3	60
232	Constructing Ni 3 C/2D g 3 N 4 Photocatalyst and the Internal Catalytic Mechanism Study. Physica Status Solidi (A) Applications and Materials Science, 2021, 218, 2100171.	1.8	0
233	Visible-light driven S-scheme Mn0.2Cd0.8S/CoTiO3 heterojunction for photocatalytic hydrogen evolution. Renewable Energy, 2021, 173, 389-400.	8.9	74
234	1T and 2H mixed phase MoS2 nanobelts coupled with Ti3+ self-doped TiO2 nanosheets for enhanced photocatalytic degradation of RhB under visible light. Applied Surface Science, 2021, 556, 149768.	6.1	38
235	Spatial distribution of ZnIn2S4 nanosheets on g-C3N4 microtubes promotes photocatalytic CO2 reduction. Chemical Engineering Journal, 2021, 418, 129476.	12.7	84

#	Article	IF	CITATIONS
236	Synergistic effect of reduced graphene oxide and near-infrared light on MoS2-mediated electrocatalytic hydrogen evolution. Chemical Engineering Journal, 2021, 418, 129343.	12.7	60
237	S doped Ta2O5 decorated CdS nanosphere via interfacial diffusion for enhanced and stable photocatalytic hydrogen production. Chemical Engineering Journal, 2022, 436, 131673.	12.7	13
238	Fabrication of bulk, nanosheets and quantum dots of graphitic carbon nitride on electrodes: Morphology dependent electrocatalytic activity. Journal of Electroanalytical Chemistry, 2021, 895, 115474.	3.8	4
239	Rationally designed ternary CdSe/WS2/g-C3N4 hybrid photocatalysts with significantly enhanced hydrogen evolution activity and mechanism insight. International Journal of Hydrogen Energy, 2021, 46, 30344-30354.	7.1	24
240	Designing Efficient MoS ₂ /gâ€C ₃ N ₄ Hybrid Photocatalysts by Regulating the Interlayer Spacing of MoS ₂ . European Journal of Inorganic Chemistry, 2021, 2021, 3719-3726.	2.0	5
241	Ru-embedded 3D g-C3N4 hollow nanosheets (3D CNHNS) with proficient charge transfer for stimulating photocatalytic H2 production. International Journal of Hydrogen Energy, 2021, 46, 27997-28010.	7.1	28
242	In-situ construction of metallic Ni3C@Ni coreâ€"shell cocatalysts over g-C3N4 nanosheets for shell-thickness-dependent photocatalytic H2 production. Applied Catalysis B: Environmental, 2021, 291, 120104.	20.2	258
243	Review on application of perylene diimide (PDI)-based materials in environment: Pollutant detection and degradation. Science of the Total Environment, 2021, 780, 146483.	8.0	49
244	Sustainable hydrogen production by CdO/exfoliated g-C3N4 via photoreforming of formaldehyde containing wastewater. International Journal of Hydrogen Energy, 2021, 46, 30988-30999.	7.1	19
245	Facile preparation of metallic 1T phase molybdenum selenide as cocatalyst coupled with graphitic carbon nitride for enhanced photocatalytic H2 production. Journal of Colloid and Interface Science, 2021, 598, 172-180.	9.4	68
246	Flower-Like Dual-Defective Z-Scheme Heterojunction g-C3N4/Znln2S4 High-Efficiency Photocatalytic Hydrogen Evolution and Degradation of Mixed Pollutants. Nanomaterials, 2021, 11, 2483.	4.1	9
247	2D MoS2: structure, mechanisms, and photocatalytic applications. Materials Today Sustainability, 2021, 13, 100073.	4.1	54
248	g ₃ N ₄ â€Based 2D/2D Composite Heterojunction Photocatalyst. Small Structures, 2021, 2, 2100086.	12.0	127
249	A metal-free mesoporous g-C3N4 nanosheets for selective and sensitive recognition of ethanol at room temperature. Sensors and Actuators B: Chemical, 2021, 349, 130828.	7.8	7
250	Significantly Enhanced Photocatalytic Hydrogen Generation over a 2D/2D Z-Scheme La ₂ NiO ₄ /g-C ₃ N ₄ Hybrid Free of Noble Metal Cocatalyst. ACS Applied Energy Materials, 2021, 4, 10721-10730.	5.1	13
251	Engineering of g-C3N4-based photocatalysts to enhance hydrogen evolution. Advances in Colloid and Interface Science, 2021, 295, 102488.	14.7	52
252	Tungstenâ€doped foam g ₃ N ₄ with improved photocatalytic properties for degradation of pollutant and hydrogen evolution. Journal of the American Ceramic Society, 2022, 105, 1052-1061.	3.8	7
253	Sustainable and continuous removal of trimethylamine in a bioâ€photoelectrochemical reactor using g 3 N 4 /TiO 2 photocathode with power generation. Journal of Chemical Technology and Biotechnology, 2022, 97, 218.	3.2	0

#	Article	IF	CITATIONS
254	Protonated 2D carbon nitride sensitized with Ce6 as a smart metal-free nanoplatform for boosted acute multimodal photo-sono tumor inactivation and long-term cancer immunotherapy. Chemical Engineering Journal, 2021, 422, 130089.	12.7	29
255	Synthesis of MoS2/P-g-C3N4 nanocomposites with enhanced visible-light photocatalytic activity for the removal of uranium (VI). Journal of Solid State Chemistry, 2021, 302, 122305.	2.9	21
256	Electrically tunable bandgaps for g-ZnO/ZnX (XÂ= S, Se, Te) 2D semiconductor bilayers. Vacuum, 2021, 192, 110386.	3.5	1
257	A novel layer-layer crossed structure of bentonite/g-C3N4 for enhanced photocatalytic oxidation of arsenic(III) in a wide pH range. Surfaces and Interfaces, 2021, 26, 101365.	3.0	9
258	Construction of nano-TiO2 decorated titanosilicate core-shell structure: Highly efficient oxygen activation for the degradation of Rhodamine B under visible light and excellent recycling performance. Journal of Environmental Chemical Engineering, 2021, 9, 105815.	6.7	8
259	Efficient synthesis of tunable band-gap CulnZnS decorated g-C3N4 hybrids for enhanced CO2 photocatalytic reduction and near-infrared-triggered photodegradation performance. Applied Surface Science, 2021, 564, 150396.	6.1	21
260	Enhanced photocatalytic hydrogen evolution of 2D/2D N-Sn3O4/g-C3N4 S-scheme heterojunction under visible light irradiation. Applied Surface Science, 2021, 567, 150903.	6.1	63
261	Structural and Optical Properties of Ultra-thin g-C3N4 nanotubes based g-C3N4/Ag/Ag2CrO4 ternary composite photocatalyst with Z-scheme carrier transfer mechanism. Optical Materials, 2021, 121, 111608.	3.6	12
262	Construction of MoO3 nanopaticles /g-C3N4 nanosheets OD/2D heterojuntion photocatalysts for enhanced photocatalytic degradation of antibiotic pollutant. Chemosphere, 2021, 282, 131049.	8.2	57
263	Intrinsic point defects and charge carrier trapping in monolayer BiOX (X = I, Br, and Cl). Ceramics International, 2021, 47, 30523-30530.	4.8	5
264	S-scheme bimetallic sulfide ZnCo2S4/g-C3N4 heterojunction for photocatalytic H2 evolution. Ceramics International, 2021, 47, 30194-30202.	4.8	30
265	Oxygen vacancy dependent photocatalytic CO2 reduction activity in liquid-exfoliated atomically thin BiOCl nanosheets. Applied Catalysis B: Environmental, 2021, 297, 120426.	20.2	77
266	A review on particulate photocatalytic hydrogen production system: Progress made in achieving high energy conversion efficiency and key challenges ahead. Renewable and Sustainable Energy Reviews, 2021, 152, 111694.	16.4	76
267	Interfacial charge transfer in carbon nitride heterojunctions monitored by optical methods. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2021, 49, 100453.	11.6	26
268	Construction of fish-scale tubular carbon nitride-based heterojunction with boosting charge separation in photocatalytic tetracycline degradation and H2O2 production. Chemical Engineering Journal, 2021, 426, 130831.	12.7	92
269	A novel semi-metallic 1T′-MoReS3 co-catalyst. Chemical Engineering Journal, 2021, 425, 130525.	12.7	16
270	Photocatalytic H2 production with simultaneous wastewater purification over flower-like 1T/2H-MoS2-decorated CNT/CNU isotype heterojunction photocatalyst. Applied Surface Science, 2021, 569, 151072.	6.1	10
271	Synthesis of core–shell SnS2/CdIn2S4 heterojunction photocatalyst for visible light driven hydrogen evolution. Materials Letters, 2021, 304, 130611.	2.6	12

#	Article	IF	CITATIONS
272	Efficient photoreduction strategy for uranium immobilization based on graphite carbon nitride/perovskite oxide heterojunction nanocomposites. Applied Catalysis B: Environmental, 2021, 298, 120625.	20.2	51
273	Recent advances in graphitic carbon nitride semiconductor: Structure, synthesis and applications. Materials Science in Semiconductor Processing, 2022, 137, 106181.	4.0	49
274	Highly efficient solar-driven photocatalytic hydrogen evolution with FeMoSx/mpg-C3N4 heterostructure. Chemical Engineering Journal, 2022, 427, 131507.	12.7	4
275	Metal-free BN quantum dots/graphitic C3N4 heterostructure for nitrogen reduction reaction. Journal of Colloid and Interface Science, 2022, 606, 204-212.	9.4	101
276	Tube wall delamination engineering induces photogenerated carrier separation to achieve photocatalytic performance improvement of tubular g-C3N4. Journal of Hazardous Materials, 2022, 424, 127177.	12.4	85
277	Controllable fabrication of nitrogen-deficient graphitic carbon nitride/magnetic ferric oxide and N2 photofixation on the active sites of surface defects. Materials Research Bulletin, 2022, 145, 111523.	5.2	4
278	Fabrication of graphitic carbon Nitride/Nonstoichiometric molybdenum oxide nanorod composite with the nonmetal plasma enhanced photocatalytic hydrogen evolution activity. Journal of Colloid and Interface Science, 2022, 606, 848-859.	9.4	21
279	Effects of doping on photocatalytic water splitting activities of PtS ₂ /SnS ₂ van der Waals heterostructures. Physical Chemistry Chemical Physics, 2021, 23, 18125-18136.	2.8	17
280	Catalytic transfer hydrogenation of ethyl levulinate to \hat{I}^3 -valerolactone over supported MoS ₂ catalysts. Catalysis Science and Technology, 0, , .	4.1	15
281	Ternary NiTiO ₃ @g-C ₃ N ₄ â€"Au nanofibers with a synergistic Z-scheme core@shell interface and dispersive Schottky contact surface for enhanced solar photocatalytic activity. Materials Chemistry Frontiers, 2021, 5, 2730-2741.	5.9	14
282	A review on vertical and lateral heterostructures of semiconducting 2D-MoS ₂ with other 2D materials: a feasible perspective for energy conversion. Nanoscale, 2021, 13, 9908-9944.	5.6	53
283	Electron-assisted synthesis of g-C ₃ N ₄ /MoS ₂ composite with dual defects for enhanced visible-light-driven photocatalysis. RSC Advances, 2021, 11, 78-86.	3.6	10
284	Strain effects on stability, electronic and optical properties of two-dimensional $C \cdot sub \cdot 4 \cdot /sub \cdot X \cdot sub \cdot 2 \cdot /sub \cdot (X = F, Cl, Br)$. Journal of Materials Chemistry C, 2021, 9, 4505-4513.	5.5	44
285	Emerging triâ€sâ€triazineâ€based graphitic carbon nitride: A potential signalâ€transducing nanostructured material for sensor applications. Nano Select, 2021, 2, 712-743.	3.7	27
286	Facile synthesis of intercalated Z-scheme Bi2O4/g-C3N4 composite photocatalysts for effective removal of 2-Mercaptobenzothiazole: Degradation pathways and mechanism. Journal of the Taiwan Institute of Chemical Engineers, 2020, 111, 212-221.	5.3	26
287	Piezo-Photocatalytic Reduction of Au(I) by Defect-Rich MoS ₂ Nanoflowers for Efficient Gold Recovery from a Thiosulfate Solution. ACS Sustainable Chemistry and Engineering, 2021, 9, 589-598.	6.7	34
288	Two-dimensional polarized MoTe ₂ /GeS heterojunction with an intrinsic electric field for photocatalytic water-splitting. RSC Advances, 2021, 11, 34048-34058.	3.6	11
289	Synthesis of CdS/g ₃ N ₄ /Vermiculite Heterostructures with Enhanced Visible Photocatalytic Activity for Dye Degradation. ChemistrySelect, 2021, 6, 9941-9950.	1.5	1

#	Article	IF	Citations
290	Flexible Allâ€Inorganic Roomâ€Temperature Chemiresistors Based on Fibrous Ceramic Substrate and Visibleâ€Lightâ€Powered Semiconductor Sensing Layer. Advanced Science, 2021, 8, e2102471.	11.2	21
291	Composites of MoS ₂ Nanosheets and Graphitic Carbon Nitride Nanosheets for Photocatalytic Mercury Removal. ACS Applied Nano Materials, 2021, 4, 11861-11869.	5.0	7
292	The fabrication of graphitic carbon nitride hollow nanocages with semi-metal 1T' phase molybdenum disulfide as co-catalysts for excellent photocatalytic nitrogen fixation. Journal of Colloid and Interface Science, 2022, 608, 1229-1237.	9.4	26
293	In situ fabrication of niobium pentoxide/graphitic carbon nitride type-II heterojunctions for enhanced photocatalytic hydrogen evolution reaction. Journal of Colloid and Interface Science, 2022, 608, 1951-1959.	9.4	38
294	Synthesis of Atomically Thin g-C ₃ N ₄ Nanosheets via Supercritical CO ₂ Doping with Single-Atom Cobalt for Photocatalytic Hydrogen Evolution. ACS Applied Materials & Samp; Interfaces, 2021, 13, 52560-52570.	8.0	35
295	In-situ synthesized and photocatalytic performance evaluation of MoS2-C-g-C3N4 heterostructure photocatalyts. Advanced Powder Technology, 2021, 32, 4805-4813.	4.1	4
296	Nanostructure Engineering of Graphitic Carbon Nitride for Electrochemical Applications. ACS Nano, 2021, 15, 18777-18793.	14.6	61
297	In situ growth of g-C3N4 on clay minerals of kaolinite, sepiolite, and talc for enhanced solar photocatalytic energy conversion. Applied Clay Science, 2022, 216, 106337.	5.2	13
298	An efficient B/Na co-doped porous g-C3N4 nanosheets photocatalyst with enhanced photocatalytic hydrogen evolution and degradation of tetracycline under visible light. Applied Surface Science, 2022, 576, 151837.	6.1	33
299	Highly metallic Co-doped MoS2 nanosheets as an efficient cocatalyst to boost photoredox dual reaction for H2 production and benzyl alcohol oxidation. Carbon, 2022, 188, 70-80.	10.3	54
300	Nitrogen defects/boron dopants engineered tubular carbon nitride for efficient tetracycline hydrochloride photodegradation and hydrogen evolution. Applied Catalysis B: Environmental, 2022, 303, 120932.	20.2	127
301	One-pot synthesis of Ru/Nb2O5@Nb2C ternary photocatalysts for water splitting by harnessing hydrothermal redox reactions. Applied Catalysis B: Environmental, 2022, 303, 120910.	20.2	28
302	Flower-Like BiOCl/g-C3N4 Hybrid with Oxygen Vacancies Assembled by Nanosheets: In Situ Pyrolysis Associated with Ultrasonic Process and Photocatalytic Properties. Journal of Electronic Materials, 2022, 51, 22-29.	2.2	1
303	The effects of cotton cellulose on both energy band gap of g-C3N4–TiO2 nanoparticles and enhanced photocatalytic properties of cotton-g-C3N4–TiO2 composites. Cellulose, 2022, 29, 193-212.	4.9	11
304	A facile approach for surface modification of TiO2 nanosheets to enhance photocatalytic hydrogen evolution activity. Journal of Nanoparticle Research, 2021, 23, 1.	1.9	2
305	Boosting Photocatalytic Activity Using Carbon Nitride Based 2D/2D van der Waals Heterojunctions. Chemistry of Materials, 2021, 33, 9012-9092.	6.7	88
306	Rationally Designed Bi2M2O9 (M = Mo/W) Photocatalysts with Significantly Enhanced Photocatalytic Activity. Molecules, 2021, 26, 7334.	3.8	6
307	Insight into the multiple roles of nitrogen doped carbon quantum dots in an ultrathin 2D-0D-2D all-solid-state Z scheme heterostructure and its performance in tetracycline degradation under LED illumination. Chemical Engineering Journal, 2022, 431, 133914.	12.7	28

#	Article	IF	CITATIONS
308	Enhanced Photocatalytic Hydrogen Production Based on Laminated MoS ₂ /g-C ₃ N ₄ Photocatalysts. SSRN Electronic Journal, 0, , .	0.4	0
309	Graphitic Carbon Nitride for Photoelectrochemical Detection of Environmental Pollutants. ACS ES&T Engineering, 2022, 2, 140-157.	7.6	41
310	All-Solid-State Z-scheme Ta3N5/Bi/CaTaO2N photocatalyst transformed from perovskite CaBi2Ta2O9 for efficient overall water splitting. Chemical Engineering Journal, 2022, 431, 134041.	12.7	22
311	Synergistic effect of nitrogen vacancy on ultrathin graphitic carbon nitride porous nanosheets for highly efficient photocatalytic H2 evolution. Chemical Engineering Journal, 2022, 431, 134101.	12.7	74
312	Construction of S-scheme CdS/g-C3N4 nanocomposite with improved visible-light photocatalytic degradation of methylene blue. Environmental Research, 2022, 206, 112556.	7.5	28
313	Cl/S co-doped carbon nitride nanotube clusters effectively drive the metal-free photo-Fenton reaction under visible light: A new ROS conversion mechanism. Carbon, 2022, 190, 32-46.	10.3	21
314	Visible-light-responsive Cl/S co-doped carbon nitride nanotubes for photocatalytic denitrification: A new reaction pathway dominated by photo-electrons. Applied Catalysis B: Environmental, 2022, 305, 121018.	20.2	30
315	Construction of MOFs/g-C ₃ N ₄ Composite for Accelerating Visible-Light-Driven Hydrogen Evolution. SSRN Electronic Journal, 0, , .	0.4	0
316	Preparation of Pumice Stone Morphology AgalO ₂ @ZnO S-Type Heterojunction Photocatalyst with Synergistic Effect between Photocatalytic Degradation and Hydrogen Production. SSRN Electronic Journal, 0, , .	0.4	0
317	g ₃ N ₄ Homophase Junction with High Crystallinity Using MoS ₂ as Cocatalyst for Robust Visibleâ€Lightâ€Driven Photocatalytic Pollutant Degradation. ChemistrySelect, 2022, 7, .	1.5	4
318	Indium-Based Metal–Organic Framework for Efficient Photocatalytic Hydrogen Evolution. Inorganic Chemistry, 2022, 61, 2587-2594.	4.0	20
319	Graphitic carbon nitride/antimonene van der Waals heterostructure with enhanced photocatalytic CO2 reduction activity. Journal of Materials Science and Technology, 2022, 116, 192-198.	10.7	52
320	Ultrasensitive Photoelectrochemical Aptasensor for Detecting Telomerase Activity Based on Ag ₂ s/Ag Decorated ZnIn ₂ S ₄ /C ₃ N ₄ 3D/2D Z-Scheme Heterostructures and Amplified by Au/Cu ²⁺ -Boron-Nitride Nanozyme. SSRN Electronic Journal, 0, , .	0.4	0
321	Advanced 2D Nanomaterial Composites: Applications in Adsorption of Water Pollutants and Toxic Gases. Materials Horizons, 2022, , 97-124.	0.6	5
322	Zinc oxide quantum dots/graphitic carbon nitride nanosheets based visible-light photocatalyst for efficient tetracycline hydrochloride degradation. Journal of Porous Materials, 2022, 29, 571-581.	2.6	5
323	Significantly enhanced photocatalytic in-situ H2O2 production and consumption activities for efficient sterilization by Znln2S4/g-C3N4 heterojunction. Carbon, 2022, 190, 337-347.	10.3	73
324	Ultrasensitive photoelectrochemical aptasensor for detecting telomerase activity based on Ag2S/Ag decorated Znln2S4/C3N4 3D/2D Z-scheme heterostructures and amplified by Au/Cu2+-boron-nitride nanozyme. Biosensors and Bioelectronics, 2022, 203, 114048.	10.1	57
325	Nanoarchitectonics of uniformly distributed noble-metal-free CoP in g-C3N4 via in-situ fabrication for enhanced photocatalytic and electrocatalytic hydrogen production. Journal of Alloys and Compounds, 2022, 904, 163861.	5.5	17

#	ARTICLE	IF	CITATIONS
326	Ultrasonically anchored MoO3-g-C3N4 photocatalyst for enhanced solar driven hydrogen generation and environmental remediation. Journal of Photochemistry and Photobiology A: Chemistry, 2022, 427, 113813.	3.9	16
327	Electron-induced enhanced interfacial interaction of the CuO/BiOCl heterostructure for boosted CO2 photoreduction performance under simulated sunlight. Applied Surface Science, 2022, 583, 152463.	6.1	10
328	Cyano-bridged Schottky junction of CN-TiC for enhanced photocatalytic H2 evolution and tetracycline degradation. Applied Surface Science, 2022, 583, 152515.	6.1	19
329	Chapter 4. 2D Inorganic Nanosheet-based Hybrid Photocatalysts for Water Splitting. Inorganic Materials Series, 2022, , 170-216.	0.7	0
330	Enhanced visibleÂlight photocatalytic CO2 reduction over direct Z-scheme heterojunction Cu/P co-doped g-C3N4@TiO2 photocatalyst. Chemical Papers, 2022, 76, 3459-3469.	2.2	7
331	Enhanced photocatalytic hydrogen production based on laminated MoS2/g-C3N4 photocatalysts. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 641, 128575.	4.7	21
332	Facile fabrication of novel Z-scheme g-C3N4 nanosheets/ Bi7O9I3 photocatalysts with highly rapid photodegradation of RhB under visible light irradiation. Journal of Colloid and Interface Science, 2022, 616, 453-464.	9.4	30
333	2D material based heterostructures for solar light driven photocatalytic H ₂ production. Materials Advances, 2022, 3, 3389-3417.	5.4	20
334	Development of MgIn ₂ S ₄ Microflower-Embedded Exfoliated B-Doped g-C ₃ N ₄ Nanosheets: p–n Heterojunction Photocatalysts toward Photocatalytic Water Reduction and H ₂ O ₂ Production under Visible-Light Irradiation. ACS Applied Energy Materials, 2022, 5, 2838-2852.	5.1	53
335	Environment Friendly g-C3N4-Based Catalysts and Their Recent Strategy in Organic Transformations. High Energy Chemistry, 2022, 56, 73-90.	0.9	8
336	The incorporation of cocatalyst cobalt sulfide into graphitic carbon nitride: Boosted photocatalytic hydrogen evolution performance and mechanism exploration. Nano Materials Science, 2023, 5, 202-209.	8.8	11
337	Dimensionality-dependent MoS2 toward efficient photocatalytic hydrogen evolution: from synthesis to modifications in doping, surface and heterojunction engineering. Materials Today Nano, 2022, 18, 100191.	4.6	15
338	Ultra-thin carbon nitride nanosheets for efficient photocatalytic hydrogen evolution. Chemical Engineering Journal, 2022, 442, 136115.	12.7	48
339	Tunable 2D Nanomaterials; Their Key Roles and Mechanisms in Water Purification and Monitoring. Frontiers in Environmental Science, 2022, 10, .	3.3	16
340	Transitionâ€Metalâ€Based Cocatalysts for Photocatalytic Water Splitting. Small Structures, 2022, 3, .	12.0	53
341	Boosted photocatalytic removal of Cr(VI) using MoS2 modified g-C3N4/ZnFe2O4 magnetic heterojunction composites. Chemical Engineering Research and Design, 2022, 162, 72-82.	5.6	8
342	Investigating the role of ultrasound in improving the photocatalytic ability of CQD decorated boron-doped g-C3N4 for tetracycline degradation and first-principles study of nitrogen-vacancy formation. Carbon, 2022, 192, 405-417.	10.3	68
343	Transient photovoltage study of the kinetics and synergy of electron/hole co-extraction in MoS2/Ag-In-Zn-S/carbon dot photocatalysts for promoted hydrogen production. Chemical Engineering Journal, 2022, 439, 135759.	12.7	20

#	Article	IF	Citations
344	Fabrication of a ternary NiS/ZnIn2S4/g-C3N4 photocatalyst with dual charge transfer channels towards efficient H2 evolution. Journal of Colloid and Interface Science, 2022, 618, 300-310.	9.4	28
345	Asymmetric surfaces endow Janus bismuth oxyhalides with enhanced electronic and catalytic properties for the hydrogen evolution reaction. Journal of Colloid and Interface Science, 2022, 617, 204-213.	9.4	12
346	EDTA-dominated hollow tube-like porous graphitic carbon nitride towards enhanced photocatalytic hydrogen evolution. Journal of Colloid and Interface Science, 2022, 619, 289-297.	9.4	14
347	Tailorâ€Engineered 2D Cocatalysts: Harnessing Electron–Hole Redox Center of 2D gâ€C ₃ N ₄ Photocatalysts toward Solarâ€toâ€Chemical Conversion and Environmental Purification. Advanced Functional Materials, 2022, 32, .	14.9	93
348	Structure engineering of $1T/2H$ multiphase MoS2 via oxygen incorporation over 2D layered porous g-C3N4 for remarkably enhanced photocatalytic hydrogen evolution. Materials Today Nano, 2022, 18, 100204.	4.6	19
349	A Review of Metal–Organic Frameworkâ€Based Compounds for Environmental Applications. Energy and Environmental Materials, 2023, 6, .	12.8	15
350	Z-scheme SnC/HfS ₂ van der Waals heterojunction increases photocatalytic overall water splitting. Journal Physics D: Applied Physics, 2022, 55, 315503.	2.8	13
351	Polymeric layered semiconductor-supported black nano-sandwiches with synergistic photo-thermal catalysis for efficient wastewater decontamination. Chemical Engineering Journal, 2022, , 136977.	12.7	2
352	Morphology and defects design in g-C3N4 for efficient and simultaneous visible-light photocatalytic hydrogen production and selective oxidation of benzyl alcohol. International Journal of Hydrogen Energy, 2022, 47, 18738-18747.	7.1	22
353	A universal glass-induced method for the synthesis of cyano group modified g-C3N4 with excellent photocatalytic performance. Journal of Physics and Chemistry of Solids, 2022, 167, 110771.	4.0	2
354	Scope and prospect of transition metal-based cocatalysts for visible light-driven photocatalytic hydrogen evolution with graphitic carbon nitride. Coordination Chemistry Reviews, 2022, 465, 214516.	18.8	34
355	Anchoring CuO nanospindles on g-C3N4 nanosheets for photocatalytic pollutant degradation and CO2 reduction. Journal of Alloys and Compounds, 2022, 914, 165339.	5.5	22
356	Constructing novel graphitic carbon nitride-based nanocomposites - From the perspective of material dimensions and interfacial characteristics. Chemosphere, 2022, 302, 134889.	8.2	8
357	Phenyl-incorporated carbon nitride photocatalyst with extended visible-light-absorption for enhanced hydrogen production from water splitting. Journal of Colloid and Interface Science, 2022, 622, 494-502.	9.4	10
358	Sodium alkoxide-mediated g-C ₃ N ₄ immobilized on a composite nanofibrous membrane for preferable photocatalytic activity. RSC Advances, 2022, 12, 15378-15384.	3.6	6
359	MoS2 as a Co-Catalyst for Photocatalytic Hydrogen Production: A Mini Review. Molecules, 2022, 27, 3289.	3.8	24
360	Formic acid assisted fabrication of Oxygen-doped Rod-like carbon nitride with improved photocatalytic hydrogen evolution. Journal of Colloid and Interface Science, 2022, 624, 338-347.	9.4	11
361	Construction of Mos2/Nife@Ni Foam P-N Heterojunction as Photoanode for Tetracycline Degradation and Simultaneous Cathodic Hydrogen Evolution. SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	Citations
362	A Flexible and Weavable Lignocellulose-Based Photocatalyst Supported by Natural Three-Dimensional Porous <i>Juncus effusus (i) for Highly Efficient Degradation of Environmental Contaminants. ACS Applied Materials & Diterfaces, 2022, 14, 27955-27967.</i>	8.0	8
363	gâ€C ₃ N ₄ /SnS ₂ van der Waals Heterostructures Enabling Highâ€Efficiency Photocatalytic Hydrogen Evolution. Advanced Materials Interfaces, 2022, 9, .	3.7	10
364	0D/3D direct Z-scheme heterojunctions hybridizing by MoS2 quantum dots and honeycomb conjugated triazine polymers (CTPs) for enhanced photocatalytic performance. Journal of Environmental Sciences, 2023, 124, 602-616.	6.1	7
365	Mixed Metal Sulfides for the Application of Photocatalytic Energy Conversion. Energy & Energy	5.1	29
366	Bio-inspired nanostructured g-C3N4-based photocatalysts: A comprehensive review. Chinese Journal of Catalysis, 2022, 43, 2141-2172.	14.0	23
367	Synthesis of MoS ₂ -based nanostructures and their applications in rechargeable ion batteries, catalysts and gas sensors: a review. RSC Advances, 2022, 12, 19512-19527.	3.6	7
368	Edge- and bridge-engineering-mediated exciton dissociation and charge separation in carbon nitride to boost photocatalytic H ₂ evolution integrated with selective amine oxidation. Journal of Materials Chemistry A, 2022, 10, 16448-16456.	10.3	22
369	2D/2D Interface Engineering Promotes Charge Separation of Mo ₂ C/g-C ₃ N ₄ Nanojunction Photocatalysts for Efficient Photocatalytic Hydrogen Evolution. ACS Applied Materials & Interfaces, 2022, 14, 31782-31791.	8.0	30
370	Visibleâ€Lightâ€Driven Photocatalytic Celluloseâ€toâ€H ₂ Conversion by MoS ₂ /ZnIn ₂ S ₄ Photocatalyst with Cellulase Assistance. ChemPhysChem, 2022, 23, .	2.1	3
371	Investigation of Photo(electro)catalytic water splitting to evolve H2 on Pt-g-C3N4 nanosheets. International Journal of Hydrogen Energy, 2022, 47, 28007-28018.	7.1	15
372	Insight into the adsorption and photocatalytic properties of in-situ synthesized g-C3N4/SnS2 nanocomposite. Ceramics International, 2022, 48, 30294-30306.	4.8	17
373	Simultaneous <i>in Situ</i> Exfoliation of Titanate and Zn–Cr Layered Double Hydroxides with a Copolymer for Photocatalytic Degradation of Organic Pollutants. ACS Applied Polymer Materials, 2022, 4, 6132-6147.	4.4	6
374	Design and construction of an immobilized Z-scheme Fe2O3/CuFe2O4 Cu photocatalyst film for organic pollutant degradation with simultaneous hydrogen production. Applied Surface Science, 2022, 602, 154276.	6.1	13
375	Facile in-situ construction of plate-on-plate structured Bi2MoO6/BiOI Z-scheme heterojunctions enriched with oxygen vacancies for highly efficient photocatalytic performances. Applied Surface Science, 2022, 602, 154319.	6.1	9
376	SiP Nanosheets: A Metal-Free Two-Dimensional Photocatalyst for Visible-Light Photocatalytic H ₂ Production and Nitrogen Fixation. ACS Nano, 2022, 16, 12174-12184.	14.6	22
377	Direct Z-scheme CoS/g-C3N4 heterojunction with NiS co-catalyst for efficient photocatalytic hydrogen generation. International Journal of Hydrogen Energy, 2022, 47, 34430-34443.	7.1	33
378	A review of hydrogen production processes by photocatalytic water splitting – From atomistic catalysis design to optimal reactor engineering. International Journal of Hydrogen Energy, 2022, 47, 33282-33307.	7.1	36
379	Construction of MoS2/NiFe-Ni foam p-n heterojunction as photoanode for tetracycline degradation and simultaneous cathodic hydrogen evolution. Journal of Environmental Chemical Engineering, 2022, 10, 108437.	6.7	8

#	Article	IF	CITATIONS
380	In2O3/g-C3N4/Au ternary heterojunction-integrated surface plasmonic and charge-separated effects for room-temperature ultrasensitive NO2 detection. Sensors and Actuators B: Chemical, 2022, 371, 132448.	7.8	15
381	Axially wrinkled tubular SnO2/TiO2 heterostructures for effective degradation of organic pollutants. Materials Science in Semiconductor Processing, 2022, 152, 107065.	4.0	6
382	Graphitic-C3N4/ZnCr-layered double hydroxide 2D/2D nanosheet heterojunction: Mesoporous photocatalyst for advanced oxidation of azo dyes with in situ produced H2O2. Advanced Powder Technology, 2022, 33, 103777.	4.1	11
383	Facile assembly and enhanced visible-light-driven photocatalytic activity of S-scheme BiOBr/g-C3N4 heterojunction for degrading xanthate in wastewater. Journal of Molecular Liquids, 2022, 366, 120279.	4.9	24
384	<i>In situ</i> construction of a 2D CoTiO ₃ /g-C ₃ N ₄ photocatalyst with an S-scheme heterojunction and its excellent performance for CO ₂ reduction. Sustainable Energy and Fuels, 2022, 6, 4903-4915.	4.9	4
385	Enhanced Visible Light Photocatalytic Performance of Microspheres Biobr/Bioi Heterojunctions. SSRN Electronic Journal, 0, , .	0.4	0
386	Construction of a Novel S-Scheme Heterojunction Piezoelectric Photocatalyst V-BiOIO3/FTCN and Immobilization with Floatability for Tetracycline Degradation. SSRN Electronic Journal, 0, , .	0.4	0
387	Minutely dispersed ruthenium in tremella-like N-doped carbon for enhanced visible-light-driven photocatalytic hydrogen production by CdS quantum dots. Inorganic Chemistry Frontiers, 2022, 9, 4999-5007.	6.0	3
388	Enhanced Charge Separation in Dual Z-Scheme AU Decorated Lafeo3-G-C3n4-Bifeo3 System for Efficient H2 Generation. SSRN Electronic Journal, 0, , .	0.4	1
389	A morphological decoration of g-C3N4/ZrO2 heterojunctions as a visible light activated photocatalyst for degradation of various organic pollutants. Journal of Environmental Chemical Engineering, 2022, 10, 108600.	6.7	8
390	Facile preparation and photocatalytic hydrogen production of WS2 and its composites. International Journal of Hydrogen Energy, 2022, 47, 38622-38634.	7.1	9
391	Photocatalytic Applications of g-C3N4 Based on Bibliometric Analysis. Catalysts, 2022, 12, 1017.	3 . 5	4
392	On the electronic properties and catalytic activity of MoS2–C3N4 materials prepared by one-pot reaction. International Journal of Hydrogen Energy, 2022, 47, 34012-34024.	7.1	5
393	Enhanced spatial charge separation at surface & Down interface via GO/MoS2/Ag3PO4 ternary Z-scheme heterostructure for nitrogen photo-fixation. Applied Catalysis A: General, 2022, 646, 118850.	4.3	7
394	Few-layered MoS2 anchored on 2D porous C3N4 nanosheets for Pt-free photocatalytic hydrogen evolution. Nano Research, 2023, 16, 3524-3535.	10.4	19
395	Atomically dispersed scandium Lewis acid sites on carbon nitride for efficient photocatalytic hydrogen peroxide production. Science China Materials, 2023, 66, 672-678.	6.3	7
396	Synergistic utilization of magnetic rGO/NiFe2O4-g-C3N4 S-Scheme heterostructure photocatalyst with enhanced charge carrier separation and transfer: A highly stable and robust photocatalyst for efficient solar fuel (hydrogen) generation. Ceramics International, 2023, 49, 5269-5278.	4.8	14
397	Synthesis of O-doped porous g-C3N4 nanosheets to enhance the photocatalytic degradation of rhodamine B. Diamond and Related Materials, 2022, 130, 109418.	3.9	1

#	Article	IF	CITATIONS
398	Defect and Interface Control on Graphitic Carbon Nitrides/Upconversion Nanocrystals for Enhanced Solar Hydrogen Production. , 2022, , .		1
399	Highly efficient photocatalytic H2O2 production by tubular g-C3N4/ZnIn2S4 nanosheet heterojunctions via improved charge separation. Science China Materials, 2023, 66, 1053-1061.	6.3	7
400	Laser-Shock-Driven <i>In Situ < i>Evolution of Atomic Defect and Piezoelectricity in Graphitic Carbon Nitride for the Ionization in Mass Spectrometry. ACS Nano, 2022, 16, 18284-18297.</i>	14.6	8
401	An overview of the current progress of graphitic carbon nitride and its multifunctional applications. Journal of Environmental Chemical Engineering, 2022, 10, 108745.	6.7	12
402	Promoting charge separation of OD/2D CsPbBr3/Bi2WO6 Z-scheme heterojunctions for boosting photocatalytic N2 reduction. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 656, 130469.	4.7	0
403	Construction of a novel S-scheme heterojunction piezoelectric photocatalyst V-BiOIO3/FTCN and immobilization with floatability for tetracycline degradation. Journal of Hazardous Materials, 2023, 443, 130251.	12.4	52
404	Covalently interconnected layers in g-C3N4: Toward high mechanical stability, catalytic efficiency and sustainability. Applied Catalysis B: Environmental, 2023, 322, 122069.	20.2	8
405	Liquid-phase exfoliation of graphitic carbon nitrides studied by molecular dynamics simulation. Journal of Colloid and Interface Science, 2023, 630, 900-910.	9.4	9
406	Two-step polymerization nanoarchitectonics for superior thin g-C3N4 nanosheets with modulated band gap and enhanced photo- and electro-chemical performance. International Journal of Hydrogen Energy, 2023, 48, 2677-2688.	7.1	9
408	Constructing MoS2-coupled carbon/g-C3N4 heterointerface to optimize charge delivery for enhanced photocatalytic capacity. Journal of Alloys and Compounds, 2023, 935, 168041.	5.5	10
409	Rationally construct of CoSx/MoS2/g-C3N4 double heterojunction with promoting the separation of carriers for enhanced photocatalysis. International Journal of Hydrogen Energy, 2023, 48, 3048-3064.	7.1	10
410	Versatile heterojunction of gold nanoparticles modified phosphorus doped carbon nitride for enhanced photo-electrocatalytic sensing and degradation of 4-chlorophenol. Journal of Colloid and Interface Science, 2023, 632, 117-128.	9.4	6
411	Drastically enhanced tetracycline degradation performance of a porous 2D g-C3N4 nanosheet photocatalyst in real water matrix: Influencing factors and mechanism insight. Journal of Water Process Engineering, 2022, 50, 103315.	5.6	5
412	Engineering of g-C ₃ N ₄ -Based Photocatalysts for Enhanced Hydrogen Evolution from Water Splitting., 2022, , .		0
413	Inter-plane 2D/2D ultrathin La2Ti2O7/Ti3C2 MXene Schottky heterojunctions toward high-efficiency photocatalytic CO2 reduction. Chinese Journal of Catalysis, 2023, 44, 146-159.	14.0	22
414	Intercalated heterojunction of HLPC-tubular C3N4 towards enhanced photocatalytic H2 evolution. Powder Technology, 2023, 415, 118138.	4.2	4
415	Constructing the multilayer O-g-C3N4@W18O49 heterostructure for deeply photocatalytic oxidation NO. Separation and Purification Technology, 2023, 307, 122841.	7.9	6
416	Recent advances in two-dimensional ultrathin Bi-based photocatalysts. Progress in Materials Science, 2023, 133, 101047.	32.8	14

#	Article	IF	CITATIONS
417	2D/2D Transitionâ€Metalâ€Sulfide Selfâ€Assembly Enables a Huge Tolerance to High Concentration Cr(VI) and Prominent Photocatalytic Reduction Performance. ChemCatChem, 0, , .	3.7	O
418	Interface Engineering in 2D/2D Heterogeneous Photocatalysts. Small, 2023, 19, .	10.0	23
419	Enhanced charge separation in dual Z-scheme Au decorated LaFeO3-g-C3N4-BiFeO3 system for efficient H2 production. Fuel, 2023, 336, 126832.	6.4	17
420	2D–2D heterostructure g-C3N4-based materials for photocatalytic H2 evolution: Progress and perspectives. Frontiers in Chemistry, 0, 10 , .	3.6	2
421	Fabrication of a novel pyramidal 3D MoS2/2D PbTiO3 nanocomposites and the efficient photocatalytic removal of organic pollutants: Effects of the PbTiO3 internal electric field and S-scheme heterojunction formation. Applied Surface Science, 2023, 616, 156431.	6.1	7
422	Interfacial engineering in two-dimensional heterojunction photocatalysts. International Journal of Hydrogen Energy, 2023, 48, 12257-12287.	7.1	16
423	Metal doped black phosphorus/molybdenum disulfide (BP/MoS2–Y (Y: Ni, Co)) heterojunctions for the photocatalytic hydrogen evolution and electrochemical nitrite sensing applications. International Journal of Hydrogen Energy, 2023, 48, 14238-14254.	7.1	10
424	Dual-strategy modification on g-C3N4 for highly efficient inactivation of Microcystis aeruginosa under visible light., 2022, 1, 316-324.		1
425	2D Transition Metal Dichalcogenides for Photocatalysis. Angewandte Chemie - International Edition, 2023, 62, .	13.8	65
426	Antiâ€Stoke effect induced enhanced photocatalytic hydrogen production. , 2023, 2, .		12
427	2D Transition Metal Dichalcogenides for Photocatalysis. Angewandte Chemie, 2023, 135, .	2.0	3
428	Microwave-assisted chemical modification of g-C3N4 for photoinduced processes: organic degradation, hydrogen production and selective oxidation of alcohols. Research on Chemical Intermediates, 0, , .	2.7	0
429	Enhancing Visible-Light Photodegradation of TC-HCl by Doping Phosphorus into Self-Sensitized Carbon Nitride Microspheres. Processes, 2023, 11, 298.	2.8	0
430	Carbon intercalated MoS2 cocatalyst on g-C3N4 photo-absorber for enhanced photocatalytic H2 evolution under the simulated solar light. International Journal of Hydrogen Energy, 2023, 48, 13827-13842.	7.1	7
431	Unveiling the interfacial and coordinatively unsaturated effect in iron diselenide-based hierarchical heterojunction for enhanced HgO removal. Fuel, 2023, 339, 127406.	6.4	4
432	Construction of Benzodithiophene-Based Donor–Acceptor-Type Covalent Triazine Frameworks with Tunable Structure for Photocatalytic Hydrogen Evolution. ACS Applied Energy Materials, 2023, 6, 930-938.	5.1	6
433	Highly Porous Thin-Layer g-C ₃ N ₄ Nanosheets with Enhanced Adsorption Capacity. ACS Applied Nano Materials, 2023, 6, 1732-1743.	5.0	19
434	Constructing direct Z-scheme heterojunctions of defective MoS2-v on carbon nitride nanotubes for high-performance hydrogen peroxide production and iron-free photo-Fenton-like reactions over a wide pH range. Applied Surface Science, 2023, 618, 156656.	6.1	6

#	Article	IF	CITATIONS
435	Novel ZnO@NPC core–shell polyhedral heterostructures derived from ZIF-8 with enhanced photocatalytic performance for aflatoxin B1 degradation. Arabian Journal of Chemistry, 2023, 16, 104789.	4.9	7
436	Al-SrTiO3 decorated with non-noble metal co-catalyst NC-W2N for boosting photocatalytic overall water splitting via enhancing interfacial redox activity and charge separation. Journal of Alloys and Compounds, 2023, 947, 169515.	5.5	5
437	Carbon nitride – PVDF photocatalytic membranes for visible-light degradation of venlafaxine as emerging water micropollutant. Catalysis Today, 2023, 418, 114042.	4.4	7
438	Novel V-BiOIO3/g-C3N4/WC Schottky heterojunction with optimizing optical absorption and charge transfer for abatement of tetracycline antibiotics. Journal of Photochemistry and Photobiology A: Chemistry, 2023, 440, 114645.	3.9	2
439	Exfoliated graphitic carbon nitride nanosheets for visible light photocatalytic degradation of Rhodamine B - Investigation on exfoliation method. Materials Chemistry and Physics, 2023, 301, 127623.	4.0	3
440	Novel noble-metal-free Co2P/CdIn2S4 heterojunction photocatalysts for elevated photocatalytic H2 production: Light absorption, charge separation and active site. Journal of Colloid and Interface Science, 2023, 639, 87-95.	9.4	30
441	Nitrogen-doped carbon dot impregnated g-C3N4/SnS2 nanocomposite as an efficient mediator and co-catalyst for enhanced photocatalytic degradation and water splitting. Journal of Alloys and Compounds, 2023, 947, 169594.	5 . 5	18
442	The enhanced visible light driven photocatalytic activity of zinc porphyrin/g-C3N4 nanosheet for efficient bacterial infected wound healing. Journal of Colloid and Interface Science, 2023, 643, 183-195.	9.4	2
443	Solar-light-driven photocatalytic hydrogen evolution activity of gCN/WS2 heterojunctions incorporated with the first-row transition metals. Journal of Alloys and Compounds, 2023, 950, 169753.	5. 5	4
444	Carbon nitride-type polymers compounded with FeOCl to enhance the catalytic removal of antibiotics over a wide pH range: Performance and mechanism. Journal of Water Process Engineering, 2023, 53, 103601.	5.6	3
445	Exploring nanoengineering strategies for the preparation of graphitic carbon nitride nanostructures. FlatChem, 2023, 38, 100473.	5.6	3
446	Construction of strongly coupled 2D–2D SnS ₂ /CdS S-scheme heterostructures for photocatalytic hydrogen evolution. Sustainable Energy and Fuels, 2023, 7, 1311-1321.	4.9	6
447	Visibleâ€lightâ€driven Ni ₃ FeN/gâ€C ₃ N ₄ Zâ€scheme heterostructure for remarkable photocatalytic water splitting. Journal of the American Ceramic Society, 2023, 106, 3537-3549.	3.8	4
448	Interfacial engineering to construct 2D-2D NiCo-LDH/g-C3N4 heterojunctions for enhanced photocatalytic hydrogen production performance. International Journal of Hydrogen Energy, 2023, 48, 16704-16714.	7.1	7
449	Photocatalytic selective conversion of furfural to \hat{l}^3 -butyrolactone through tetrahydrofurfuryl alcohol intermediates over Pd NP decorated g-C ₃ N ₄ . Sustainable Energy and Fuels, 2023, 7, 1707-1723.	4.9	4
450	Oneâ€Pot Synthesis of 2Dâ€2D WO ₃ /gâ€C ₃ N ₄ Photocatalyst in Reverse Microemulsion System via Supercritical CO ₂ for Enhanced Hydrogen Generation. ChemSusChem, 2023, 16, .	6.8	5
451	Preparation of Pumice Stone Morphology AgAlO ₂ @ZnO S-Type Heterojunction Photocatalyst with the Synergistic Effect of Photocatalytic Degradation and Hydrogen Production. Crystal Growth and Design, 2023, 23, 2331-2342.	3.0	4
452	Noble-Metal-Free Ultrathin CdS–NiFeS 2D–2D Heterojunction Nanosheets for Significantly Enhanced Photocatalytic Hydrogen Evolution. ACS Sustainable Chemistry and Engineering, 2023, 11, 4009-4019.	6.7	7

#	ARTICLE	IF	CITATIONS
453	Spatial separation of redox centers for boosting cooperative photocatalytic hydrogen evolution with oxidation coupling of benzylamine over Pt@UiO-66-NH ₂ @ZnIn ₂ \$ ₄ . Catalysis Science and Technology, 2023, 13, 2517-2528.	4.1	4
454	Two-dimensional g-C3N4 nanosheets-based photo-catalysts for typical sustainable processes. Chinese Chemical Letters, 2023, 34, 108306.	9.0	15
455	Boron nitride quantum dots modified carbon-defects ultra-thin porous carbon nitride: double channels and quantum size effects facilitate photogenerated carrier migration and exciton dissociation. Materials Research Express, 2023, 10, 045501.	1.6	0
456	Enhanced degradation of azo dyes wastewater by S-scheme heterojunctions photocatalyst g-C3N4/MoS2 intimately coupled Rhodopseudomonas palustris with chitosan modified polyurethane sponge carrier. International Journal of Hydrogen Energy, 2023, 48, 22319-22333.	7.1	4
457	Ternary-structured graphite carbon nitride quantum dots/TiO ₂ nanotubes/3D SiO ₂ photonic crystals for enhanced dye photodegradation. New Journal of Chemistry, 2023, 47, 9101-9112.	2.8	1
458	Tandem internal electric fields in intralayer/interlayer carbon nitride homojunction with a directed flow of photo-excited electrons for photocatalysis. Applied Catalysis B: Environmental, 2023, 333, 122781.	20.2	8
459	Boron doping g-C3N4 supported Cu2O for photocatalytic reforming of xylose into lactic acid. Journal of Environmental Chemical Engineering, 2023, 11, 109981.	6.7	3
460	Recent advances on energy and environmental application of graphitic carbon nitride (g-C3N4)-based photocatalysts: A review. Journal of Environmental Chemical Engineering, 2023, 11, 110164.	6.7	23
461	Dissimilar dimensional materials based tailored heterostructures for photocatalytic hydrogen production. Renewable and Sustainable Energy Reviews, 2023, 181, 113348.	16.4	9
462	Graphitic carbon nitride (g-C3N4) synthesis and heterostructures, principles, mechanisms, and recent advances: A critical review. International Journal of Hydrogen Energy, 2023, 48, 32708-32728.	7.1	12
463	Organic-inorganic heterojunction photocatalysts: From organic molecules to frameworks. Materials Science in Semiconductor Processing, 2023, 164, 107623.	4.0	1
464	OD/2D/1D Ag@Ni(OH)2/La(OH)3 heterojunction with semi-coherent interface derived from perovskite La1-xAgxNiO3 self-assembling with g-C3N4 for boosting photocatalytic hydrogen evolution. International Journal of Hydrogen Energy, 2023, 48, 33558-33570.	7.1	1
466	Graphitic carbon nitride (g-C3N4): Futuristic material for rechargeable batteries. Journal of Energy Storage, 2023, 68, 107673.	8.1	11
467	2D/2D NiTi-LDH/BiOBr photocatalyst with extraordinary NOx removal under visible light. Chemical Engineering Journal, 2023, 470, 144088.	12.7	7
469	Facile fabrication of 3D hollow porous aminopyridine rings decorated polymeric carbon nitride for enhanced photocatalytic hydrogen evolution and dye elimination. Journal of Colloid and Interface Science, 2023, 649, 334-343.	9.4	4
470	Developing self-floating N-defective graphitic carbon nitride photocatalyst for efficient photodegradation of Microcystin-LR under visible light. Science of the Total Environment, 2023, 895, 165171.	8.0	4
471	Ultrathin Carbon Nitride Nanosheets Exfoliated and In Situ Modified with a Nickel Bis(Chelate) Complex for Boosting Photocatalytic Performances. Inorganic Chemistry, 2023, 62, 10973-10983.	4.0	2
472	Development of Two-Dimensional Functional Nanomaterials for Biosensor Applications: Opportunities, Challenges, and Future Prospects. Nanomaterials, 2023, 13, 1520.	4.1	4

#	Article	IF	CITATIONS
473	Highly sensitive and selective gas sensors based on 2D/3D Bi2MoO6 micro-nano composites for trimethylamine biomarker detection. Applied Surface Science, 2023, 629, 157443.	6.1	6
474	Enhanced CO ₂ Reduction with Cs ₂ AgBiBr ₆ -gC ₃ N ₄ Heterojunction Photocatalysts Prepared by Green Synthesis. ACS Applied Energy Materials, 2023, 6, 5580-5587.	5.1	4
475	A novel visible-light-driven g-C3N4/BiOF0.4Br0.5I0.1 nanocomposite for photodegradation of organic pollutants. Journal of Materials Science: Materials in Electronics, 2023, 34, .	2.2	1
476	Transition-Metal Single Atom Anchored on MoS ₂ for Enhancing Photocatalytic Hydrogen Production of g-C ₃ N ₄ Photocatalysts. ACS Applied Materials & Distriction of g-C ₃ N ₄ Photocatalysts. ACS Applied Materials & Distriction of g-C ₃ N ₄ Photocatalysts. ACS Applied Materials & Distriction of g-C ₃ N ₄	8.0	6
477	A Direct Zâ€Scheme Quasiâ€2D/2D Heterojunction Constructed by Loading Photosensitive Metal–Organic Nanorings with Pd Single Atoms on Graphitic–C ₃ N ₄ for Superior Visible Lightâ€Driven H ₂ Production. Solar Rrl, 2023, 7, .	5.8	4
478	Photocatalytic Hydrogen Evolution Under Visible Light Using MoS2/g-C3N4ÂNano-Photocatalysts. Catalysis Letters, 2024, 154, 1255-1269.	2.6	2
480	Bi-functional biochar-g-C3N4-MgO composites for simultaneously minimizing pollution:Photocatalytic degradation of pesticide and phosphorus recovery as slow-release fertilizer. Journal of Environmental Management, 2023, 344, 118489.	7.8	5
482	Key factors in improving the synthesis and properties of visible-light activated g-C ₃ N ₄ for photocatalytic hydrogen production and organic pollutant decomposition. Catalysis Reviews - Science and Engineering, 0, , 1-72.	12.9	6
483	Synthesis and modification strategies of g-C3N4 nanosheets for photocatalytic applications. , 2024, 3, 100150.		16
484	Intimate coupling of gC3N4/CdS semiconductor on eco-friendly biocarrier loofah sponge for enhanced detoxification of ciprofloxacin. Environmental Research, 2023, 235, 116558.	7.5	3
485	2D transition metal-based phospho-chalcogenides and their applications in photocatalytic and electrocatalytic hydrogen evolution reactions. Journal of Materials Chemistry A, 2023, 11, 16933-16962.	10.3	9
486	Uracil derivative-assisted universal synthesis of defective 2-dimensional porous flaky carbon nitride for efficient photocatalytic CO2 reduction. Applied Surface Science, 2023, 638, 158009.	6.1	0
487	MoS ₂ -Based Nanocomposites for Photocatalytic Hydrogen Evolution and Carbon Dioxide Reduction. ACS Omega, 2023, 8, 25649-25673.	3.5	11
488	Preparation of phosphorus-doped mesoporous g-C3N4 and its photocatalytic degradation of tetracycline hydrochloride. Microporous and Mesoporous Materials, 2023, 360, 112733.	4.4	4
489	Binary regulation of photoelectron-heterojunction Sg-CN/BMO using sulfur-doping and oxygen vacancy construction for boosting chloroquine degradation. Separation and Purification Technology, 2023, 325, 124602.	7.9	1
491	Synthesis of Nitrogen vacancy-riched ultrathin polymeric carbon nitride nanosheets via ethanol-ethylene glycol ultrasonic exfoliation and photocatalytic hydrogen evolution activity. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, , 132113.	4.7	1
492	Comprehensive Insights into the Family of Atomically Thin 2Dâ€Materials for Diverse Photocatalytic Applications. Small, 2023, 19, .	10.0	2
493	Preparation and Characterization of ZnTiO ₃ /gâ€C ₃ N ₄ Heterojunction Composite Catalyst with Highly Enhanced Photocatalytic CO ₂ Reduction Performance. Advanced Energy and Sustainability Research, 2023, 4, .	5.8	2

#	Article	IF	CITATIONS
494	Characterization of Type I/II g-C ₃ N ₄ /MoS ₂ van der Waals Heterostructures: A New Theoretical Insight. Journal of Chemical Information and Modeling, 2023, 63, 4708-4715.	5.4	2
495	Single-atom Pt anchored thiophene ring doped carbon nitride nanosheets for enhanced visible-light photocatalytic H2 evolution and ciprofloxacin degradation. International Journal of Hydrogen Energy, 2024, 51, 1138-1150.	7.1	3
496	Design of a New ZnCo2O4 Nanoparticles/Nitrogen-Rich g-C3N4 Sheet with Improved Photocatalytic Activity Under Visible Light. Journal of Cluster Science, 0 , , .	3.3	1
497	Investigation of kinetics, isotherms, thermodynamics and photocatalytic regeneration of exfoliated graphitic carbon nitride/zeolite as dye adsorbent. Scientific Reports, 2023, 13, .	3.3	3
498	Constructing a B4C3/MoS2 heterojunction through interfacial coupling for enhancing optical absorption and photocatalytic H2 evolution activity: A hybrid theoretical study. Molecular Catalysis, 2023, 549, 113495.	2.0	2
499	Low-coordination single Ni atoms on graphitic C ₃ N ₄ for nitrite electroreduction to ammonia. Inorganic Chemistry Frontiers, 2023, 10, 5950-5957.	6.0	4
500	Unconventional strategies to break through the efficiency of light â $\!$		3
501	Configuration modulation of vermiculite by exfoliation coupled Cu(II) anchoring for boosting removal of tetracycline via synergy of adsorption and photocatalysis. Chemical Engineering Journal, 2023, 473, 145143.	12.7	1
502	Gramâ€Scale Mechanochemical Synthesis of Atomâ€Layer MoS ₂ Semiconductor Electrocatalyst via Functionalized Graphene Quantum Dots for Efficient Hydrogen Evolution. Small, 2024, 20, .	10.0	7
503	Insight into the role of Ni atoms at the interface of g-C3N4/CdS in photocatalytic H2 evolution. Separation and Purification Technology, 2023, 327, 124996.	7.9	4
504	Promotion of the catalytic polymerization of hydroquinone towards humic-like substances by graphitic carbon nitride. Journal of Environmental Chemical Engineering, 2023, 11, 111026.	6.7	1
505	Enhanced photocatalytic hydrogen production of S-scheme TiO2/g-C3N4 heterojunction loaded with single-atom Ni. Journal of Materials Science and Technology, 2024, 175, 104-114.	10.7	8
506	Construction of an S-scheme Bi ₂ S ₃ /Cdln ₂ S ₄ heterojunction for the photocatalytic generation of methyl formate. New Journal of Chemistry, 2023, 47, 19235-19242.	2.8	0
507	Facile fabrication of CdS/Cu-doped g-C3N4 heterojunction for enhanced photocatalytic degradation of methylene blue. Journal of Materials Science: Materials in Electronics, 2023, 34, .	2.2	1
509	Porous cyclopentadiene unit-incorporated graphitic carbon nitride nanosheets for efficient photocatalytic oxidation of recalcitrant organic micropollutants in wastewater. Journal of Hazardous Materials, 2023, 460, 132365.	12.4	5
510	Synthesis and characterization of enhanced visible light-driven C-doped ZnO-2D GO/g-C3N4 heterojunction photocatalyst. Diamond and Related Materials, 2023, 139, 110364.	3.9	1
511	Defects-enriched two-dimensional ultrathin g-C3N4/In2O3 nanoparticles for effective NO2 detection at room temperature. Sensors and Actuators B: Chemical, 2023, 396, 134558.	7.8	0
512	Enhanced photocatalytic hydrogen production utilizing few-layered 1T-WS2/g-C3N4 heterostructures prepared with one-step calcination route. Fuel, 2024, 357, 129808.	6.4	5

#	Article	IF	CITATIONS
513	Construction of interfacial electric field via Bimetallic Mo2Ti2C3 QDs/g-C3N4 heterojunction achieves efficient photocatalytic hydrogen evolution. Journal of Colloid and Interface Science, 2024, 653, 1671-1682.	9.4	3
514	Fabrication of sodium-doped graphitic carbon nitride for photoelectrochemical water splitting into hydrogen. Japanese Journal of Applied Physics, 0, , .	1.5	1
515	Ni(OH)2 decorated g-C3N4 tubes for precious metal free photocatalytic H2 evolution and the investigation of charge storage mechanism of Ni(OH)2. Diamond and Related Materials, 2023, 140, 110524.	3.9	2
516	The progress of g-C3N4 in photocatalytic H2 evolution: From fabrication to modification. Coordination Chemistry Reviews, 2024, 500, 215489.	18.8	13
517	Rational Construction ZnO@C ₃ N ₄ Composite with Enhanced Photocorrosionâ€Resistance for Simultaneous Removal of RhBâ€MO Mixed Pollutants. ChemistrySelect, 2023, 8, .	1.5	O
518	Enhanced photocatalytic hydrogen evolution over protonated g-C3N4 using NiCoP as a cocatalyst. International Journal of Hydrogen Energy, 2024, 51, 1145-1152.	7.1	3
519	Rhombohedral boron monosulfide as a metal-free photocatalyst. Scientific Reports, 2023, 13, .	3.3	1
521	Recent advances on graphitic carbon nitride-based S-scheme photocatalysts: Synthesis, environmental applications, and challenges. Journal of Organometallic Chemistry, 2024, 1004, 122951.	1.8	0
522	Returnable MoS2@carbon nitride nanotube composite hollow spheres drive photo-self-Fenton-PMS system for synergistic catalytic and photocatalytic tetracycline degradation. Chemical Engineering Journal, 2023, 478, 147344.	12.7	3
523	Predicting Free Energies of Exfoliation and Solvation for Graphitic Carbon Nitrides Using Machine Learning. ACS Applied Materials & Samp; Interfaces, 2023, 15, 53786-53801.	8.0	0
524	Contemporary advances in photocatalytic CO2 reduction using single-atom catalysts supported on carbon-based materials. Advances in Colloid and Interface Science, 2024, 323, 103068.	14.7	1
525	2D semiconductor nanosheets for solar photocatalysis. , 2023, 1, 248-295.		5
526	Photocatalytic degradation of methyl orange via supramolecular self-assembly of cucurbit[6]uril and phosphotungstic acid. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 0, , .	1.6	0
527	Multifunctional modified polyurethane sponge for recovery of oil spills and photocatalytic degradation. Composites Part B: Engineering, 2023, , 111176.	12.0	0
528	Achieving Highly Efficient Photocatalytic Hydrogen Evolution through the Construction of g-C3N4@PdS@Pt Nanocomposites. Molecules, 2024, 29, 493.	3.8	0
529	Evolution of the Electronic Properties and Photocatalytic Activity of z-Type g-C ₃ N ₄ @MoS ₂ Heterostructures Prepared by a One-Step Calcination Method. Journal of Physical Chemistry C, 2024, 128, 1790-1799.	3.1	0
530	Bifunctional activation of peroxymonosulfate over CuS/g-C3N4 composite for efficient degradation of tetracycline antibiotics. Chemical Engineering Journal, 2024, 483, 149082.	12.7	0
531	Spatially thermal confinement nanoreactors for efficient photocatalytic microinterface reactions and application prospect evaluation under real weather and actual water matrices. Chemical Engineering Journal, 2024, 483, 149147.	12.7	О

#	Article	IF	CITATIONS
532	Potential for H2 Generation Using 2D-g-C3N4 Nano-Photocatalysts. Green Energy and Technology, 2024, , 139-160.	0.6	0
533	Application of g-C3N4-based photocatalysts for N2 photofixation. Journal of Environmental Chemical Engineering, 2024, 12, 112142.	6.7	1
534	A critical review on black phosphorus mediated Z-scheme heterojunctions: properties, synthesis, and mechanistic insights towards solar H ₂ evolution. Catalysis Science and Technology, 2024, 14, 1428-1461.	4.1	0
535	Interfacial Electronic States of GeC/g ₃ N ₄ van der Waal Heterostructure with Promising Photocatalytic Activity via Hydrogenation. ChemPhysChem, 2024, 25, .	2.1	0
536	Detailed studies on characterization and photocatalytic hydrogen production of ammonium tetrathiomolybdate and tetrathiotungstate pyrolysis products. Journal of Solid State Chemistry, 2024, 334, 124609.	2.9	0
537	ZnCo2S4/Bi2WO6 S-scheme heterojunction for efficient photocatalytic hydrogen evolution: Process and mechanism. International Journal of Hydrogen Energy, 2024, 60, 441-450.	7.1	0
538	One-step synthesis of 2D/2D gC3N4/MoS2 composites for effective photocatalytic hydrogen evolution. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2024, 303, 117265.	3.5	0
539	Co-optimization of g-C3N4 with prolonging exciton lifetime strategy and co-catalyst strategy for enhanced photocatalytic H2 evolution activity. Journal of Alloys and Compounds, 2024, 985, 173994.	5.5	0
540	Machine-Learning-Driven High-Throughput Screening of Transition-Metal Atom Intercalated g-C ₃ N ₄ /MX ₂ (M = Mo, W; X = S, Se, Te) Heterostructures for the Hydrogen Evolution Reaction. ACS Applied Materials & Samp; Interfaces, 2024, 16, 12437-12445.	8.0	0
542	2D/2D Molybdenum Sulfo Selenides/Black Phosphorus Heterostructures for Supercapacitors and Lightâ€Driven Hydrogen Generation Applications. Advanced Sustainable Systems, 0, , .	5.3	0
543	Transition metal chalcogenides and phosphides for photocatalytic H2 generation via water splitting: a critical review. International Journal of Hydrogen Energy, 2024, 62, 1113-1138.	7.1	0
544	Enhanced visible light photocatalytic performance of carbon and oxygen co-doped carbon nitride with a three-dimensional structure: Performance and mechanism study. Journal of Colloid and Interface Science, 2024, 665, 452-464.	9.4	0
545	Broad-spectrum hybrid-driven triple-interface Z-Scheme 1T/2H phase sailboat-like molybdenum disulfide (MoS2)/protonated N-defect nanoporous graphitic carbon nitride (g-C3N4) nanosheets piezo-photocatalyst: Superior degradation and hydrogen evolution. Journal of Colloid and Interface Science, 2024, 665, 655-680.	9.4	0