RNA Structure Duplication in the Dengue Virus 3â€² UT

MBio 10, DOI: 10.1128/mbio.02506-18

Citation Report

#	Article	lF	CITATIONS
1	Endless Forms: Within-Host Variation in the Structure of the West Nile Virus RNA Genome during Serial Passage in Bird Hosts. MSphere, 2019, 4, .	1.3	5
2	Flavors of Flaviviral RNA Structure: towards an Integrated View of RNA Function from Translation through Encapsidation. BioEssays, 2019, 41, 1900003.	1.2	5
3	Evolution of Subgenomic RNA Shapes Dengue Virus Adaptation and Epidemiological Fitness. IScience, 2019, 16, 94-105.	1.9	20
4	Functional RNA Structures in the 3′UTR of Tick-Borne, Insect-Specific and No-Known-Vector Flaviviruses. Viruses, 2019, 11, 298.	1.5	43
5	Short Direct Repeats in the 3′ Untranslated Region Are Involved in Subgenomic Flaviviral RNA Production. Journal of Virology, 2020, 94, .	1.5	11
6	Viral genetics and structure. , 2020, , 85-113.		2
7	The RNA secondary structural variation in the cyclization elements of the dengue genome and the possible implications in pathogenicity. VirusDisease, 2020, 31, 299-307.	1.0	3
8	Understanding the Mechanisms Underlying Host Restriction of Insect-Specific Viruses. Viruses, 2020, 12, 964.	1.5	15
9	A Non-Replicative Role of the 3′ Terminal Sequence of the Dengue Virus Genome in Membranous Replication Organelle Formation. Cell Reports, 2020, 32, 107859.	2.9	23
10	Zika Virus Subgenomic Flavivirus RNA Generation Requires Cooperativity between Duplicated RNA Structures That Are Essential for Productive Infection in Human Cells. Journal of Virology, 2020, 94, .	1.5	27
11	Crosstalk between RNA Metabolism and Cellular Stress Responses during Zika Virus Replication. Pathogens, 2020, 9, 158.	1.2	6
12	An RNA Thermometer Activity of the West Nile Virus Genomic 3′-Terminal Stem-Loop Element Modulates Viral Replication Efficiency during Host Switching. Viruses, 2020, 12, 104.	1.5	15
13	Different Degrees of 5'-to-3' DAR Interactions Modulate Zika Virus Genome Cyclization and Host-Specific Replication. Journal of Virology, 2020, 94, .	1.5	11
14	A Polyuridine Insertion in the 3′ Untranslated Region of Classical Swine Fever Virus Activates Immunity and Reduces Viral Virulence in Piglets. Journal of Virology, 2020, 94, .	1.5	13
15	Universal RNA Secondary Structure Insight Into Mosquito-Borne Flavivirus (MBFV) cis-Acting RNA Biology. Frontiers in Microbiology, 2020, 11, 473.	1.5	7
16	Impact of alphavirus 3'UTR plasticity on mosquito transmission. Seminars in Cell and Developmental Biology, 2021, 111, 148-155.	2.3	8
17	Different tertiary interactions create the same important 3D features in a distinct flavivirus xrRNA. Rna, 2021, 27, 54-65.	1.6	27
18	A database of flavivirus RNA structures with a search algorithm for pseudoknots and triple base interactions. Bioinformatics, 2021, 37, 956-962.	1.8	3

CITATION REPORT

#	Article	IF	CITATIONS
19	Targeting structural features of viral genomes with a nano-sized supramolecular drug. Chemical Science, 2021, 12, 7174-7184.	3.7	5
20	Role of PDZ-binding motif from West Nile virus NS5 protein on viral replication. Scientific Reports, 2021, 11, 3266.	1.6	7
21	Genetic Variation in the Domain II, 3′ Untranslated Region of Human and Mosquito Derived Dengue Virus Strains in Sri Lanka. Viruses, 2021, 13, 421.	1.5	2
22	The Pseudo-Circular Genomes of Flaviviruses: Structures, Mechanisms, and Functions of Circularization. Cells, 2021, 10, 642.	1.8	6
23	Information Encoded by the Flavivirus Genomes beyond the Nucleotide Sequence. International Journal of Molecular Sciences, 2021, 22, 3738.	1.8	10
24	Dengue virus 2 capsid protein chaperones the strand displacement of 5′-3′ cyclization sequences. Nucleic Acids Research, 2021, 49, 5832-5844.	6.5	2
25	Structural landscape of the complete genomes of dengue virus serotypes and other viral hemorrhagic fevers. BMC Genomics, 2021, 22, 352.	1.2	6
26	Three-dimensional structure of a flavivirus dumbbell RNA reveals molecular details of an RNA regulator of replication. Nucleic Acids Research, 2021, 49, 7122-7138.	6.5	14
27	Molecular signatures of silencing suppression degeneracy from a complex RNA virus. PLoS Computational Biology, 2021, 17, e1009166.	1.5	3
28	3′UTR SL-IV and DB1 Regions Contribute to Japanese Encephalitis Virus Replication and Pathogenicity. Frontiers in Veterinary Science, 2021, 8, 703147.	0.9	5
29	In Silico Analysis of Dengue Virus Serotype 2 Mutations Detected at the Intrahost Level in Patients with Different Clinical Outcomes. Microbiology Spectrum, 2021, 9, e0025621.	1.2	3
32	Reemergence of dengue virus in Bangladesh: Current fatality and the required knowledge. Tzu Chi Medical Journal, 2020, 32, 227.	0.4	3
34	In Vitro Inhibition of Replication of Dengue Virus Serotypes 1–4 by siRNAs Bound to Non-Toxic Liposomes. Viruses, 2022, 14, 339.	1.5	2
35	Sequence duplication in 3′ UTR modulates virus replication and virulence of Japanese encephalitis virus. Emerging Microbes and Infections, 2022, 11, 123-135.	3.0	5
36	PREDICTIVE CORRELATION OF ADVERSE CLINICAL OUTCOMES WITH THROMBOCYTOPENIA IN DENGUE FEVER: A SINGLE CENTER EXPERIENCE. , 2022, , 16-18.		0
37	Increased Ifng and II10 Expression Correlate with Disease in Rodent Models Experimentally Infected with Modoc Virus. Viruses, 2022, 14, 1026.	1.5	0
38	N6-methyladenosine modification of the Aedes aegypti transcriptome and its alteration upon dengue virus infection in Aag2 cell line. Communications Biology, 2022, 5, .	2.0	5
39	RNAvigator: A Pipeline to Identify Candidates for Functional RNA Structure Elements. Frontiers in Virology, 0, 2, .	0.7	1

IF ARTICLE CITATIONS # Interactions of host miRNAs in the flavivirus 3ÂUTR genome: From bioinformatics predictions to 41 1.8 3 practical approaches. Frontiers in Cellular and Infection Microbiology, 0, 12, . Stem-Loop I of the Tembusu Virus $3\hat{a}\in^2$ -Untranslated Region Is Responsible for Viral Host-Specific Adaptation and the Pathogenicity of the Virus in Mice. Microbiology Spectrum, 2022, 10, . 1.2 Zika virus noncoding RNA cooperates with the viral protein NS5 to inhibit STAT1 phosphorylation and 4.7 43 15 facilitate viral pathogenesis. Science Advances, 2022, 8, . Specialized <i>cis</i> -Acting RNA Elements Balance Genome Cyclization to Ensure Efficient Replication of Yellow Fever Virus. Journal of Virology, 2023, 97, . Inter- and Intramolecular RNA–RNA Interactions Modulate the Regulation of Translation Mediated by 45 1.8 1 the 3â€² UTR in West Nile Virus. International Journal of Molecular Šciences, 2023, 24, 5337. Viral intra-host evolutionary dynamics revealed via serial passage of Japanese encephalitis virus <i>in vitro</i>. Virus Evolution, 0, , . 2.2

CITATION REPORT