Termites mitigate the effects of drought in tropical rain

Science 363, 174-177 DOI: 10.1126/science.aau9565

Citation Report

#	Article	IF	CITATIONS
1	Resilience of ecological functions to drought in an oil palm agroecosystem. Environmental Research Communications, 2019, 1, 101004.	0.9	10
2	Evolution of Termite Symbiosis Informed by Transcriptome-Based Phylogenies. Current Biology, 2019, 29, 3728-3734.e4.	1.8	110
3	Effects of termites growth on litter decomposition: a modeling approach. International Journal of Recycling of Organic Waste in Agriculture, 2019, 8, 415-421.	2.0	3
4	Thermoregulatory traits combine with range shifts to alter the future of montane ant assemblages. Global Change Biology, 2019, 25, 2162-2173.	4.2	16
5	Termite Ecology in the First Two Decades of the 21st Century: A Review of Reviews. Insects, 2019, 10, 60.	1.0	17
6	Hydrological characteristics and functions of termite mounds in areas with clear dry and rainy seasons. Agriculture, Ecosystems and Environment, 2019, 277, 25-35.	2.5	17
7	Symbiotic Plant Biomass Decomposition in Fungus-Growing Termites. Insects, 2019, 10, 87.	1.0	38
8	Termites can decompose more than half of deadwood in tropical rainforest. Current Biology, 2019, 29, R118-R119.	1.8	55
9	Antâ€ŧermite interactions: an important but underâ€explored ecological linkage. Biological Reviews, 2020, 95, 555-572.	4.7	66
10	Teatime in the Serengeti: macrodetritivores sustain recalcitrant plant litter decomposition across human-modified tropical savannahs. Plant and Soil, 2020, 456, 241-258.	1.8	3
11	Linking soil engineers, structural stability, and organic matter allocation to unravel soil carbon responses to land-use change. Soil Biology and Biochemistry, 2020, 150, 107998.	4.2	27
12	Observational evidence of wildfire-promoting soil moisture anomalies. Scientific Reports, 2020, 10, 11008.	1.6	40
13	Surprising chiral composition changes over the Amazon rainforest with height, time and season. Communications Earth & Environment, 2020, 1, .	2.6	18
14	The ecosystem services provided by social insects: traits, management tools and knowledge gaps. Biological Reviews, 2020, 95, 1418-1441.	4.7	60
15	Moving beyond the distinction between the bright and dark sides of termites to achieve sustainable development goals. Current Opinion in Insect Science, 2020, 40, 71-76.	2.2	12
16	The importance of insects on land and in water: a tropical view. Current Opinion in Insect Science, 2020, 40, 31-38.	2.2	27
17	Drought and presence of ants can influence hemiptera in tropicalÂleaf litter. Biotropica, 2020, 52, 221-229.	0.8	4
18	Tropical terrestrial invertebrates—Where to from here?. Biotropica, 2020, 52, 392-395.	0.8	1

#	Article	IF	CITATIONS
19	Phenotypic plasticity, not ecotype differentiation, explains the broad ecological niche of a tree species in African dry woodlands. Environmental and Experimental Botany, 2020, 178, 104186.	2.0	0
20	Resistance of mound-building termites to anthropogenic land-use change. Environmental Research Letters, 2020, 15, 094038.	2.2	17
21	El Niño impacts on humanâ€modified tropical forests: Consequences for dung beetle diversity and associated ecological processes. Biotropica, 2020, 52, 252-262.	0.8	21
22	Termite mounds house a diversity of taxa in oil palm plantations irrespective of understory management. Biotropica, 2020, 52, 345-350.	0.8	5
23	Climatic and local stressor interactions threaten tropical forests and coral reefs. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190116.	1.8	69
24	A Research Agenda for Microclimate Ecology in Human-Modified Tropical Forests. Frontiers in Forests and Global Change, 2020, 2, .	1.0	33
25	The second warning to humanity—Why ethology matters?. Ethology, 2020, 126, 1-9.	0.5	4
26	On the roles of AA15 lytic polysaccharide monooxygenases derived from the termite Coptotermes gestroi. Journal of Inorganic Biochemistry, 2021, 216, 111316.	1.5	16
27	Deterministic selection dominates microbial community assembly in termite mounds. Soil Biology and Biochemistry, 2021, 152, 108073.	4.2	60
28	Insect responses to global change offer signposts for biodiversity and conservation. Ecological Entomology, 2021, 46, 699-717.	1.1	63
29	Greenhouse gas emissions from termite mounds in a transition area between the Cerrado Savanna and the Atlantic Forest in Brazil. Acta Oecologica, 2021, 110, 103690.	0.5	2
30	Carbon flux and forest dynamics: Increased deadwood decomposition in tropical rainforest treeâ€fall canopy gaps. Global Change Biology, 2021, 27, 1601-1613.	4.2	22
31	The Plasticity and Developmental Potential of Termites. Frontiers in Ecology and Evolution, 2021, 9, .	1.1	6
32	Accumulation and spatial homogeneity of nutrients within termite (Odontotermes yunnanensis) mounds in the Xishuangbanna region, SW China. Catena, 2021, 198, 105057.	2.2	7
33	Canopy Closure Retards Fine Wood Decomposition in Subtropical Regenerating Forests. Ecosystems, 2021, 24, 1875-1890.	1.6	2
34	Decay classes of coarse woody debris in a lowland Dipterocarp forest: implications for volume, density, and carbon estimates. Biotropica, 2021, 53, 879-887.	0.8	3
35	Spatial structure of rainforest termites: Two matched pioneering cross ontinental case studies. Biotropica, 2021, 53, 1178-1190.	0.8	3
36	Termite mounds reduce soil microbial diversity by filtering rare microbial taxa. Environmental Microbiology, 2021, 23, 2659-2668.	1.8	8

#	Article	IF	CITATIONS
38	The role of termite CH ₄ emissions on the ecosystem scale: a case study in the Amazon rainforest. Biogeosciences, 2021, 18, 2609-2625.	1.3	5
39	Assessing the Australian Termite Diversity Anomaly: How Habitat and Rainfall Affect Termite Assemblages. Frontiers in Ecology and Evolution, 2021, 9, .	1.1	12
40	Mammalian herbivore movement into drought refugia has cascading effects on savanna insect communities. Journal of Animal Ecology, 2021, 90, 1753-1763.	1.3	2
41	Termite mound formation reduces the abundance and diversity of soil resistomes. Environmental Microbiology, 2021, 23, 7661-7670.	1.8	7
42	The diversification of termites: Inferences from a complete speciesâ€level phylogeny. Zoologica Scripta, 2021, 50, 769-779.	0.7	2
43	The effect of drought on wood-boring in trees and saplings in tropical rainforests. Forest Ecology and Management, 2021, 489, 119078.	1.4	2
44	Soil Arthropods in the Douro Demarcated Region Vineyards: General Characteristics and Ecosystem Services Provided. Sustainability, 2021, 13, 7837.	1.6	12
45	Soil fauna modulates the effect of experimental drought on litter decomposition in forests invaded by an exotic pathogen. Journal of Ecology, 2021, 109, 2963-2980.	1.9	14
46	The impact of invertebrate decomposers on plants and soil. New Phytologist, 2021, 231, 2142-2149.	3.5	41
47	Resource availability and heterogeneity shape the selfâ€organisation of regular spatial patterning. Ecology Letters, 2021, 24, 1880-1891.	3.0	5
48	Termite transects from Buton Island, Sulawesi, have a low diversity compared with Sundaland sites. Journal of Tropical Ecology, 2021, 37, 161-164.	0.5	1
49	How does climate change affect social insects?. Current Opinion in Insect Science, 2021, 46, 10-15.	2.2	23
50	A global review of termite sampling methods. Insectes Sociaux, 2021, 68, 3-14.	0.7	9
51	Estimating the multi-decadal carbon deficit of burned Amazonian forests. Environmental Research Letters, 2020, 15, 114023.	2.2	32
52	Spatiotemporal Distribution of Herbivorous Insects Along Always-Green Mountaintop Forest Islands. Frontiers in Forests and Global Change, 2021, 4, .	1.0	5
54	Impacts of fungus-growing termites on surficial geology parameters: A review. Earth-Science Reviews, 2021, 223, 103862.	4.0	9
55	Molecular studies of pest termites in India. , 2022, , 283-296.		0
56	The Significance of Hydrological and Geomorphological Processes for Lowland Tropical Rainforest Ecology. Ecological Studies, 2022, , 333-347.	0.4	0

#	Article	IF	CITATIONS
57	Feeding habits and multifunctional classification of soilâ€associated consumers from protists to vertebrates. Biological Reviews, 2022, 97, 1057-1117.	4.7	113
58	Termites have wider thermal limits to cope with environmental conditions in savannas. Journal of Animal Ecology, 2022, 91, 766-779.	1.3	5
59	Shade and microbes enhance drought stress tolerance in plants by inducing phytohormones at molecular levels: a review. Journal of Plant Ecology, 2022, 15, 1107-1117.	1.2	4
60	Continentalâ€scale shifts in termite diversity and nesting and feeding strategies. Ecography, 2022, 2022, .	2.1	7
61	Decrease in Carabid Beetles in Grasslands of Northwestern China: Further Evidence of Insect Biodiversity Loss. Insects, 2022, 13, 35.	1.0	6
62	Effect of farming on the vegetation structure, soil properties and termite assemblages in the Northern Congo basin. Land Degradation and Development, 0, , .	1.8	О
63	Temporal dynamics of range expander and congeneric native plant responses during and after extreme drought events. Ecological Monographs, 2022, 92, .	2.4	5
64	Conservation management and termites: a case study from central Côte d'Ivoire (West Africa). Journal of Tropical Ecology, 2022, 38, 304-311.	0.5	1
65	Remote Sensing and GIS-Based Suitability Mapping of Termite Habitat in the African Savanna: A Case Study of the Lowveld in Kruger National Park. Land, 2022, 11, 803.	1.2	6
66	Termite diversity is resilient to landâ€use change along a forestâ€cocoa intensification gradient in Ghana, West Africa. Biotropica, 0, , .	0.8	Ο
67	The impacts of tropical mound-building social insects on soil properties vary between taxa and with anthropogenic habitat change. Applied Soil Ecology, 2022, 179, 104576.	2.1	7
68	The Impact of Constrictotermes cyphergaster (Termitidae: Nasutitermitinae) Termites on Semiarid Ecosystems in Brazil: A Review of Current Research. Insects, 2022, 13, 704.	1.0	1
69	Analysis of termite diversity (Blattodea: Isoptera) in the Gourma Province in Eastern Burkina Faso. International Journal of Tropical Insect Science, 0, , .	0.4	0
70	Decomposition of diverse litter mixtures affected by drought depends on nitrogen and soil fauna in a bamboo forest. Soil Biology and Biochemistry, 2022, 173, 108783.	4.2	10
71	Termite sensitivity to temperature affects global wood decay rates. Science, 2022, 377, 1440-1444.	6.0	41
73	Termites are the main dung removals in a degraded landscape in Brazil. Frontiers in Ecology and Evolution, 0, 10, .	1.1	0
74	Properties of a neutral, thermally stable and surfactant-tolerant pullulanase from worker termite gut-dwelling Bacillus safensis as potential for industrial applications. Heliyon, 2022, 8, e10617.	1.4	4
75	Differential effects of vegetation and climate on termite diversity and damage. Journal of Applied Ecology, 2022, 59, 2922-2935.	1.9	3

#	Article	IF	CITATIONS
76	The metamicrobiome: key determinant of the homeostasis of nutrient recycling. Trends in Ecology and Evolution, 2023, 38, 183-195.	4.2	6
77	Indirect control of decomposition by an invertebrate predator. Functional Ecology, 0, , .	1.7	3
78	Bioturbation by dung beetles and termites. Do they similarly impact soil and hydraulic properties?. Pedobiologia, 2022, 95, 150845.	0.5	2
80	Understanding global and regional patterns of termite diversity and regional functional traits. IScience, 2022, 25, 105538.	1.9	3
81	Asymmetric responses of leaf litter decomposition to precipitation changes in global terrestrial ecosystem. Journal of Cleaner Production, 2023, 387, 135898.	4.6	9
82	Effect of termite mounds on soil microbial communities and microbial processes: Implications for soil carbon and nitrogen cycling. Geoderma, 2023, 431, 116368.	2.3	4
83	Wood traits explain microbial but not termiteâ€driven decay in Australian tropical rainforest and savanna. Journal of Ecology, 2023, 111, 982-993.	1.9	5
84	Forest microbiome and global change. Nature Reviews Microbiology, 2023, 21, 487-501.	13.6	33
85	Termites from the Northern Atlantic Forest, Brazil: Ecology and Conservation. , 2023, , 121-132.		2
91	Biodiversity and the importance of insect diversity. , 2024, , 19-46.		0
95	Soil fauna: occurrence, biodiversity, and roles in ecosystem function. , 2024, , 131-159.		0