Advancing Translational Science for Pulmonary Nontul Infections. A Road Map for Research

American Journal of Respiratory and Critical Care Medicine 199, 947-951

DOI: 10.1164/rccm.201807-1273pp

Citation Report

#	Article	IF	CITATIONS
1	Editorial: NTM—The New Uber-Bugs. Frontiers in Microbiology, 2019, 10, 1299.	1.5	7
2	Repositioning rifamycins for Mycobacterium abscessus lung disease. Expert Opinion on Drug Discovery, 2019, 14, 867-878.	2.5	49
3	Recent advances in nontuberculous mycobacterial lung infections. F1000Research, 2019, 8, 1710.	0.8	18
4	Mycobacterium abscessus, an Emerging and Worrisome Pathogen among Cystic Fibrosis Patients. International Journal of Molecular Sciences, 2019, 20, 5868.	1.8	84
5	Prevention of transmission of Mycobacterium abscessus among patients with cystic fibrosis. Current Opinion in Pulmonary Medicine, 2019, 25, 646-653.	1.2	18
6	Pulmonary non-tuberculous mycobacterial infections: current state and future management. European Journal of Clinical Microbiology and Infectious Diseases, 2020, 39, 799-826.	1.3	41
7	Current and future management of non-tuberculous mycobacterial pulmonary disease (NTM-PD) in the UK. BMJ Open Respiratory Research, 2020, 7, e000591.	1.2	14
8	Rifabutin Is Bactericidal against Intracellular and Extracellular Forms of Mycobacterium abscessus. Antimicrobial Agents and Chemotherapy, 2020, 64, .	1.4	33
9	Rifabutin: A Repurposing Candidate for Mycobacterium abscessus Lung Disease. Frontiers in Microbiology, 2020, 11, 371.	1.5	7
10	Extreme Drug Tolerance of Mycobacterium abscessus "Persistersâ€. Frontiers in Microbiology, 2020, 11, 359.	1.5	42
11	Treatment of nontuberculous mycobacterial pulmonary disease: an official ATS/ERS/ESCMID/IDSA clinical practice guideline. European Respiratory Journal, 2020, 56, 2000535.	3.1	336
12	miRNA Expression Profiles and Potential as Biomarkers in Nontuberculous Mycobacterial Pulmonary Disease. Scientific Reports, 2020, 10, 3178.	1.6	19
13	The Many Hosts of Mycobacteria 8 (MHM8): A conference report. Tuberculosis, 2020, 121, 101914.	0.8	6
14	Variability in the Management of Adults With Pulmonary Nontuberculous Mycobacterial Disease. Clinical Infectious Diseases, 2021, 72, 1127-1137.	2.9	23
15	Is It Time to Move the Goalposts?. Clinical Infectious Diseases, 2021, 72, 1138-1140.	2.9	1
16	One Step Closer: Nontuberculous Mycobacterial Pulmonary Disease and Predicted Mortality—The BACES Score. American Journal of Respiratory and Critical Care Medicine, 2021, 203, 163-164.	2.5	1
17	Non tuberculous mycobacteria pulmonary disease: patients and clinicians working together to improve the evidence base for care. International Journal of Infectious Diseases, 2021, 113, S73-S77.	1.5	9
18	Mycobacterium abscessus biofilms have viscoelastic properties which may contribute to their recalcitrance in chronic pulmonary infections. Scientific Reports, 2021, 11, 5020.	1.6	16

TATION REDO

CITATION REPORT

#	Article	IF	CITATIONS
19	A Leucyl-tRNA Synthetase Inhibitor with Broad-Spectrum Antimycobacterial Activity. Antimicrobial Agents and Chemotherapy, 2021, 65, .	1.4	23
20	Subunit vaccine protects against a clinical isolate of Mycobacterium avium in wild type and immunocompromised mouse models. Scientific Reports, 2021, 11, 9040.	1.6	15
22	Rifampicin–Liposomes for Mycobacterium abscessus Infection Treatment: Intracellular Uptake and Antibacterial Activity Evaluation. Pharmaceutics, 2021, 13, 1070.	2.0	13
23	Piperidine-4-Carboxamides Target DNA Gyrase in Mycobacterium abscessus. Antimicrobial Agents and Chemotherapy, 2021, 65, e0067621.	1.4	14
25	MicroRNA-155 Modulates Macrophages' Response to Non-Tuberculous Mycobacteria through COX-2/PGE2 Signaling. Pathogens, 2021, 10, 920.	1.2	6
26	A Mycobacterium tuberculosis NBTI DNA Gyrase Inhibitor Is Active against Mycobacterium abscessus. Antimicrobial Agents and Chemotherapy, 2021, 65, e0151421.	1.4	10
27	Whole Genome Sequencing in the Management of Non-Tuberculous Mycobacterial Infections. Microorganisms, 2021, 9, 2237.	1.6	15
28	The Role of Biofilms, Bacterial Phenotypes, and Innate Immune Response in Mycobacterium avium Colonization to Infection. Journal of Theoretical Biology, 2022, 534, 110949.	0.8	7
29	Cyclohexyl-griselimycin Is Active against Mycobacterium abscessus in Mice. Antimicrobial Agents and Chemotherapy, 2022, 66, AAC0140021.	1.4	8
31	Environment in the lung of cystic fibrosis patients stimulates the expression of biofilm phenotype in Mycobacterium abscessus. Journal of Medical Microbiology, 2022, 71, .	0.7	2
32	Sex, ancestry, senescence, and aging (SAnSA) are stark drivers of nontuberculous mycobacterial pulmonary disease. Journal of Clinical Tuberculosis and Other Mycobacterial Diseases, 2022, 26, 100297.	0.6	3
33	Antimicrobial Activity of Neutrophils Against Mycobacteria. Frontiers in Immunology, 2021, 12, 782495.	2.2	15
35	Novel Screening System of Virulent Strains for the Establishment of a <i>Mycobacterium avium</i> Complex Lung Disease Mouse Model Using Whole-Genome Sequencing. Microbiology Spectrum, 2022, 10, e0045122.	1.2	4
38	Strongly Bactericidal All-Oral β-Lactam Combinations for the Treatment of Mycobacterium abscessus Lung Disease. Antimicrobial Agents and Chemotherapy, 2022, 66, .	1.4	10
39	Why Matter Matters: Fast-Tracking Mycobacterium abscessus Drug Discovery. Molecules, 2022, 27, 6948.	1.7	7
40	Mycobacterium tuberculosis DprE1 Inhibitor OPC-167832 Is Active against Mycobacterium abscessus <i>In Vitro</i> . Antimicrobial Agents and Chemotherapy, 2022, 66, .	1.4	7
41	Microbiological profile, preclinical pharmacokinetics and efficacy of CRS0393, a novel antimycobacterial agent targeting MmpL3. Tuberculosis, 2023, 138, 102288.	0.8	4
42	Omadacycline for management of Mycobacterium abscessus infections: a review of its effectiveness, place in therapy, and considerations for use. BMC Infectious Diseases, 2022, 22, .	1.3	1

#	Article	IF	CITATIONS
43	Immunogenicity and protection against Mycobacterium avium with a heterologous RNA prime and protein boost vaccine regimen. Tuberculosis, 2023, 138, 102302.	0.8	4
44	Environmental risk of nontuberculous mycobacterial infection: Strategies for advancing methodology. Tuberculosis, 2023, 139, 102305.	0.8	6
45	Mycobacterium abscessus infection results in decrease of oxidative metabolism of lung airways cells and relaxation of the epithelial mucosal tight junctions. Tuberculosis, 2023, 138, 102303.	0.8	0
46	A novel chemogenomic discovery platform identifies bioactive hits with rapid bactericidal activity against Mycobacteroides Abscessus. Tuberculosis, 2023, 139, 102317.	0.8	0
47	Repurposing β-Lactams for the Treatment of Mycobacterium kansasii Infections: An In Vitro Study. Antibiotics, 2023, 12, 335.	1.5	0