Tales from the crypt: new insights into intestinal stem of

Nature Reviews Gastroenterology and Hepatology 16, 19-34 DOI: 10.1038/s41575-018-0081-y

Citation Report

#	Article	IF	CITATIONS
1	Modulation of Wnt/BMP pathways during corneal differentiation of hPSC maintains ABCG2-positive LSC population that demonstrates increased regenerative potential. Stem Cell Research and Therapy, 2019, 10, 236.	2.4	21
2	Slug and Snail have differential effects in directing colonic epithelial wound healing and partially mediate the restitutive effects of butyrate. American Journal of Physiology - Renal Physiology, 2019, 317, G531-G544.	1.6	8
3	EGFR Signaling Termination via Numb Trafficking in Ependymal Progenitors Controls Postnatal Neurogenic Niche Differentiation. Cell Reports, 2019, 28, 2012-2022.e4.	2.9	12
4	Gut Homeostasis: Active Migration of Intestinal Epithelial Cells in Tissue Renewal. Current Biology, 2019, 29, R1091-R1093.	1.8	10
5	Tristetraprolin targets Nos2 expression in the colonic epithelium. Scientific Reports, 2019, 9, 14413.	1.6	11
6	Diet, Microbiota, and Colorectal Cancer. IScience, 2019, 21, 168-187.	1.9	21
7	Methionine and Its Hydroxyl Analogues Improve Stem Cell Activity To Eliminate Deoxynivalenol-Induced Intestinal Injury by Reactivating Wnt/β-Catenin Signaling. Journal of Agricultural and Food Chemistry, 2019, 67, 11464-11473.	2.4	41
8	Moving Encounters: Actin Treadmilling in the Brush Border. Developmental Cell, 2019, 50, 529-530.	3.1	1
9	Roles of mTOR Signaling in Tissue Regeneration. Cells, 2019, 8, 1075.	1.8	81
10	(â^')-Epicatechin mitigates radiation-induced intestinal injury and promotes intestinal regeneration via suppressing oxidative stress. Free Radical Research, 2019, 53, 851-864.	1.5	17
11	Tissue-Engineering the Intestine: The Trials before the Trials. Cell Stem Cell, 2019, 24, 855-859.	5.2	39
12	The Healing Power of Neutrophils. Trends in Immunology, 2019, 40, 635-647.	2.9	193
13	Origins of intestinal stem cells — all in it together?. Nature Reviews Gastroenterology and Hepatology, 2019, 16, 389-389.	8.2	0
14	The C. elegans intestine: organogenesis, digestion, and physiology. Cell and Tissue Research, 2019, 377, 383-396.	1.5	41
15	DNA methylation of shelf, shore and open sea CpG positions distinguish high microsatellite instability from low or stable microsatellite status colon cancer stem cells. Epigenomics, 2019, 11, 587-604.	1.0	29
16	Contribution of Zinc and Zinc Transporters in the Pathogenesis of Inflammatory Bowel Diseases. Journal of Immunology Research, 2019, 2019, 1-11.	0.9	41
17	T cell stemness and dysfunction in tumors are triggered by a common mechanism. Science, 2019, 363, .	6.0	355
18	Gamma-Tocotrienol Protects the Intestine from Radiation Potentially by Accelerating Mesenchymal Immune Cell Recovery. Antioxidants, 2019, 8, 57.	2.2	13

#	Article	IF	CITATIONS
19	HDAC1 and HDAC2 independently regulate common and specific intrinsic responses in murine enteroids. Scientific Reports, 2019, 9, 5363.	1.6	19
20	RALying Regeneration through Wnt Internalization in Stem Cells. Cell Stem Cell, 2019, 24, 499-500.	5.2	1
21	Generating an Artificial Intestine for the Treatment of Short Bowel Syndrome. Gastroenterology Clinics of North America, 2019, 48, 585-605.	1.0	7
22	TH cells tune intestinal stem cell fate. Nature Reviews Gastroenterology and Hepatology, 2019, 16, 3-3.	8.2	Ο
23	Effect of glucose, soya oil and glutamine on protein expression and mammalian target of rapamycin complex 1 pathway of jejunal crypt enterocytes in weaned piglets. British Journal of Nutrition, 2020, 123, 481-488.	1.2	0
24	<i>Citrobacter rodentium</i> induces rapid and unique metabolic and inflammatory responses in mice suffering from severe disease. Cellular Microbiology, 2020, 22, e13126.	1.1	22
25	Polarity proteins in oncogenesis. Current Opinion in Cell Biology, 2020, 62, 26-30.	2.6	26
26	Proteome analysis of formalinâ€fixed paraffinâ€embedded colorectal adenomas reveals the heterogeneous nature of traditional serrated adenomas compared to other colorectal adenomas. Journal of Pathology, 2020, 250, 251-261.	2.1	6
27	Anti-foodborne enteritis effect of galantamine potentially via acetylcholine anti-inflammatory pathway in fish. Fish and Shellfish Immunology, 2020, 97, 204-215.	1.6	14
28	Single-cell transcriptome analysis reveals differential nutrient absorption functions in human intestine. Journal of Experimental Medicine, 2020, 217, .	4.2	227
29	Ageing, metabolism and the intestine. EMBO Reports, 2020, 21, e50047.	2.0	92
30	Altered G1 signaling order and commitment point in cells proliferating without CDK4/6 activity. Nature Communications, 2020, 11, 5305.	5.8	29
31	Under pressure: Stem cell–niche interactions coordinate tissue adaptation to inflammation. Current Opinion in Cell Biology, 2020, 67, 64-70.	2.6	8
32	The role of stem cell niche in intestinal aging. Mechanisms of Ageing and Development, 2020, 191, 111330.	2.2	20
33	Culture of rabbit caecum organoids by reconstituting the intestinal stem cell niche in vitro with pharmacological inhibitors or L-WRN conditioned medium. Stem Cell Research, 2020, 48, 101980.	0.3	11
34	Psychological Stress, Intestinal Barrier Dysfunctions, and Autoimmune Disorders: An Overview. Frontiers in Immunology, 2020, 11, 1823.	2.2	52
35	The bidirectional nature of microbiome-epithelial cell interactions. Current Opinion in Microbiology, 2020, 56, 45-51.	2.3	25
36	Regenerative Intestinal Stem Cells Induced by Acute and Chronic Injury: The Saving Grace of the Epithelium?. Frontiers in Cell and Developmental Biology, 2020, 8, 583919.	1.8	35

	Сітатіоі	n Report	
#	Article	IF	CITATIONS
37	The Hippo–YAP Signaling as Guardian in the Pool of Intestinal Stem Cells. Biomedicines, 2020, 8, 560.	1.4	10
38	Transport of artificial virus-like nanocarriers through intestinal monolayers <i>via</i> microfold cells. Nanoscale, 2020, 12, 16339-16347.	2.8	24
39	Intestinal Stem Cells. Methods in Molecular Biology, 2020, , .	0.4	1
40	Regenerative Reprogramming of the Intestinal Stem Cell State via Hippo Signaling Suppresses Metastatic Colorectal Cancer. Cell Stem Cell, 2020, 27, 590-604.e9.	5.2	112
41	Intestinal Organoid Culture in Polymer Filmâ€Based Microwell Arrays. Advanced Biology, 2020, 4, e2000126.	3.0	22
42	No relation between docetaxel administration route and highâ€grade diarrhea incidence. Pharmacology Research and Perspectives, 2020, 8, e00633.	1.1	9
43	β-Catenin signaling dynamics regulate cell fate in differentiating neural stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 28828-28837.	3.3	29
44	Chromatin Dynamics in Intestinal Epithelial Homeostasis: A Paradigm of Cell Fate Determination versus Cell Plasticity. Stem Cell Reviews and Reports, 2020, 16, 1062-1080.	1.7	7
45	Stratified layer analysis reveals intrinsic leptin stimulates cryptal mesenchymal cells for controlling mucosal inflammation. Scientific Reports, 2020, 10, 18351.	1.6	8
46	The role of IL-22 in intestinal health and disease. Journal of Experimental Medicine, 2020, 217, e20192195.	4.2	217
47	Host–microbiota maladaptation in colorectal cancer. Nature, 2020, 585, 509-517.	13.7	230
48	Targeted inhibition of KDM6 histone demethylases eradicates tumor-initiating cells via enhancer reprogramming in colorectal cancer. Theranostics, 2020, 10, 10016-10030.	4.6	21
49	Intracellular pH Regulates Cancer and Stem Cell Behaviors: A Protein Dynamics Perspective. Frontiers in Oncology, 2020, 10, 1401.	1.3	27
50	Intestinal Regeneration: Regulation by the Microenvironment. Developmental Cell, 2020, 54, 435-446.	3.1	91
51	Transcriptomic and proteomic signatures of stemness and differentiation in the colon crypt. Communications Biology, 2020, 3, 453.	2.0	37
52	Cytoskeletal Control and Wnt Signaling—APC's Dual Contributions in Stem Cell Division and Colorectal Cancer. Cancers, 2020, 12, 3811.	1.7	18
53	The 3D Pattern of the Rainbow Trout (Oncorhynchus mykiss) Enterocytes and Intestinal Stem Cells. International Journal of Molecular Sciences, 2020, 21, 9192.	1.8	8
54	Survival and cellular heterogeneity of epithelium in cultured mouse and rat precision-cut intestinal slices. Toxicology in Vitro, 2020, 69, 104974.	1.1	1

		EPORT	
#	Article	IF	CITATIONS
55	Emerging Role and Therapeutic Potential of IncRNAs in Colorectal Cancer. Cancers, 2020, 12, 3843.	1.7	29
56	A bioengineering perspective on modelling the intestinal epithelial physiology in vitro. Nature Communications, 2020, 11, 6244.	5.8	20
57	Abdominal FLASH irradiation reduces radiation-induced gastrointestinal toxicity for the treatment of ovarian cancer in mice. Scientific Reports, 2020, 10, 21600.	1.6	119
58	A Purpose in Liquidity: Perfusing 3D Open Scaffolds Improves "Mini-gut―Morphogenesis and Longevity. Cell Stem Cell, 2020, 27, 699-701.	5.2	2
59	Regional Proteomic Quantification of Clinically Relevant Non-Cytochrome P450 Enzymes along the Human Small Intestine. Drug Metabolism and Disposition, 2020, 48, 528-536.	1.7	27
60	The mRNA-binding protein IGF2BP1 maintains intestinal barrier function by up-regulating occludin expression. Journal of Biological Chemistry, 2020, 295, 8602-8612.	1.6	24
61	Harnessing stemness and PD-L1 expression by AT-rich interaction domain-containing protein 3B in colorectal cancer. Theranostics, 2020, 10, 6095-6112.	4.6	18
62	The limbus: Structure and function. Experimental Eye Research, 2020, 197, 108074.	1.2	21
63	Recommended Guidelines for Developing, Qualifying, and Implementing Complex In Vitro Models (CIVMs) for Drug Discovery. SLAS Discovery, 2020, 25, 1174-1190.	1.4	33
64	Skeletal Stem Cells for Bone Development and Repair: Diversity Matters. Current Osteoporosis Reports, 2020, 18, 189-198.	1.5	45
65	Rac1 Signaling: From Intestinal Homeostasis to Colorectal Cancer Metastasis. Cancers, 2020, 12, 665.	1.7	50
66	The <i>Drosophila</i> gut: A gatekeeper and coordinator of organism fitness and physiology. Wiley Interdisciplinary Reviews: Developmental Biology, 2020, 9, e378.	5.9	29
67	ISX-9 manipulates endocrine progenitor fate revealing conserved intestinal lineages in mouse and human organoids. Molecular Metabolism, 2020, 34, 157-173.	3.0	14
68	Using Diverse Model Systems to Define Intestinal Epithelial Defenses to Enteric Viral Infections. Cell Host and Microbe, 2020, 27, 329-344.	5.1	21
69	Mouse Spermatogenesis Reflects the Unity and Diversity of Tissue Stem Cell Niche Systems. Cold Spring Harbor Perspectives in Biology, 2020, 12, a036186.	2.3	6
70	Metabolic and immunologic control of intestinal cell function by mTOR. International Immunology, 2020, 32, 455-465.	1.8	10
71	Using Sox2 to alleviate the hallmarks of age-related hearing loss. Ageing Research Reviews, 2020, 59, 101042.	5.0	24
72	Innate Lymphoid Cell-Epithelial Cell Modules Sustain Intestinal Homeostasis. Immunity, 2020, 52, 452-463.	6.6	51

#	Article	IF	CITATIONS
73	Restraining colorectal cancer with \hat{I} ±KG. Nature Cancer, 2020, 1, 267-269.	5.7	0
74	Mechanisms of Regulation of Transporters of Amino Acid Absorption in Inflammatory Bowel Diseases. , 2020, 10, 673-686.		6
75	A dorsal-ventral gradient of Wnt3a/β-catenin signals control hindgut extension and colon formation. Development (Cambridge), 2020, 147, .	1.2	6
76	Cell-by-Cell Deconstruction of Stem Cell Niches. Cell Stem Cell, 2020, 27, 19-34.	5.2	19
77	Targeting Cardiac Stem Cell Senescence to Treat Cardiac Aging and Disease. Cells, 2020, 9, 1558.	1.8	75
78	Short Bowel Syndrome: A Paradigm for Intestinal Adaptation to Nutrition?. Annual Review of Nutrition, 2020, 40, 299-321.	4.3	20
79	Intestinal stem cells and intestinal organoids. Journal of Genetics and Genomics, 2020, 47, 289-299.	1.7	7
80	Blood and Lymphatic Vasculatures On-Chip Platforms and Their Applications for Organ-Specific In Vitro Modeling. Micromachines, 2020, 11, 147.	1.4	33
81	A Synthesis Concerning Conservation and Divergence of Cell Types across Epithelia. Cold Spring Harbor Perspectives in Biology, 2020, 12, a035733.	2.3	6
82	L-Cell Differentiation Is Induced by Bile Acids Through GPBAR1 and Paracrine GLP-1 and Serotonin Signaling. Diabetes, 2020, 69, 614-623.	0.3	54
83	Cell-type-specific signaling networks in heterocellular organoids. Nature Methods, 2020, 17, 335-342.	9.0	75
84	Zinc L-Aspartate enhances intestinal stem cell activity to protect the integrity of the intestinal mucosa against deoxynivalenol through activation of the Wnt/β-catenin signaling pathway. Environmental Pollution, 2020, 262, 114290.	3.7	30
85	From gut to glutes: The critical role of niche signals in the maintenance and renewal of adult stem cells. Current Opinion in Cell Biology, 2020, 63, 88-101.	2.6	11
86	Tracing the Dynamics of Stem Cell Fate. Cold Spring Harbor Perspectives in Biology, 2020, 12, a036202.	2.3	26
87	Troxerutin Prevents 5-Fluorouracil Induced Morphological Changes in the Intestinal Mucosa: Role of Cyclooxygenase-2 Pathway. Pharmaceuticals, 2020, 13, 10.	1.7	17
88	Transmissible gastroenteritis virus targets Paneth cells to inhibit the self-renewal and differentiation of Lgr5 intestinal stem cells via Notch signaling. Cell Death and Disease, 2020, 11, 40.	2.7	32
89	A new model of intestinal epithelial regeneration: could patients benefit?. Nature Reviews Gastroenterology and Hepatology, 2020, 17, 137-138.	8.2	0
90	Wnt∫î²â€cateninâ€mediated heat exposure inhibits intestinal epithelial cell proliferation and stem cell expansion through endoplasmic reticulum stress. Journal of Cellular Physiology, 2020, 235, 5613-5627.	2.0	35

#	Article	IF	CITATIONS
91	Erythroid differentiation regulator-1 induced by microbiota in early life drives intestinal stem cell proliferation and regeneration. Nature Communications, 2020, 11, 513.	5.8	38
92	Radiationâ€induced tissue damage and response. Journal of Pathology, 2020, 250, 647-655.	2.1	63
93	Microbial Metabolites and Intestinal Stem Cells Tune Intestinal Homeostasis. Proteomics, 2020, 20, e1800419.	1.3	34
94	The relationship between villous height and growth performance, small intestinal mucosal enzymes activities and nutrient transporters expression in weaned piglets. Journal of Animal Physiology and Animal Nutrition, 2020, 104, 606-615.	1.0	24
95	Repair and regeneration of small intestine: A review of current engineering approaches. Biomaterials, 2020, 240, 119832.	5.7	28
96	Region-Specific Proteome Changes of the Intestinal Epithelium during Aging and Dietary Restriction. Cell Reports, 2020, 31, 107565.	2.9	52
97	Gut microbiota derived metabolites contribute to intestinal barrier maturation at the suckling-to-weaning transition. Gut Microbes, 2020, 11, 1268-1286.	4.3	72
98	JNK Signaling in Stem Cell Self-Renewal and Differentiation. International Journal of Molecular Sciences, 2020, 21, 2613.	1.8	50
99	Executable cancer models: successes and challenges. Nature Reviews Cancer, 2020, 20, 343-354.	12.8	43
100	SETDB1 is required for intestinal epithelial differentiation and the prevention of intestinal inflammation. Gut, 2021, 70, 485-498.	6.1	39
101	Molecular physiology of bile acid signaling in health, disease, and aging. Physiological Reviews, 2021, 101, 683-731.	13.1	184
102	Transcriptional programmes underlying cellular identity and microbial responsiveness in the intestinal epithelium. Nature Reviews Gastroenterology and Hepatology, 2021, 18, 7-23.	8.2	28
103	The dermal sheath: An emerging component of the hair follicle stem cell niche. Experimental Dermatology, 2021, 30, 512-521.	1.4	42
104	The role of mechanics in the growth and homeostasis of the intestinal crypt. Biomechanics and Modeling in Mechanobiology, 2021, 20, 585-608	1.4	4
105	The atypical cadherin MUCDHL antagonizes colon cancer formation and inhibits oncogenic signaling through multiple mechanisms. Oncogene, 2021, 40, 522-535.	2.6	7
105 106	The atypical cadherin MUCDHL antagonizes colon cancer formation and inhibits oncogenic signaling through multiple mechanisms. Oncogene, 2021, 40, 522-535. Advancements of compounds targeting Wnt and Notch signalling pathways in the treatment of inflammatory bowel disease and colon cancer. Journal of Drug Targeting, 2021, 29, 507-519.	2.6	7
105 106 107	The atypical cadherin MUCDHL antagonizes colon cancer formation and inhibits oncogenic signaling through multiple mechanisms. Oncogene, 2021, 40, 522-535. Advancements of compounds targeting Wnt and Notch signalling pathways in the treatment of inflammatory bowel disease and colon cancer. Journal of Drug Targeting, 2021, 29, 507-519. Digesting the Importance of Cell Fusion in the Intestine. Cellular and Molecular Gastroenterology and Hepatology, 2021, 11, 299-302.	2.6 2.1 2.3	7 16 1

# 109	ARTICLE Reduced Neurog3 Gene Dosage Shifts Enteroendocrine Progenitor Towards Goblet Cell Lineage in the Mouse Intestine. Cellular and Molecular Gastroenterology and Hepatology, 2021, 11, 433-448.	IF 2.3	Citations
110	Targeted Profiling of Immunological Genes during Norovirus Replication in Human Intestinal Enteroids. Viruses, 2021, 13, 155.	1.5	6
111	Induced organoids derived from patients with ulcerative colitis recapitulate colitic reactivity. Nature Communications, 2021, 12, 262.	5.8	51
112	Non-canonical Wnt/PCP signalling regulates intestinal stem cell lineage priming towards enteroendocrine and Paneth cell fates. Nature Cell Biology, 2021, 23, 23-31.	4.6	46
113	A diet-microbial metabolism feedforward loop modulates intestinal stem cell renewal in the stressed gut. Nature Communications, 2021, 12, 271.	5.8	47
114	Acute systemic loss of Mad2 leads to intestinal atrophy in adult mice. Scientific Reports, 2021, 11, 68.	1.6	3
115	JAK-STAT Pathway Inhibition Partially Restores Intestinal Homeostasis in Hdac1- and Hdac2-Intestinal Epithelial Cell-Deficient Mice. Cells, 2021, 10, 224.	1.8	11
116	Intestinal Stem Cells and Immune Cell Relationships: Potential Therapeutic Targets for Inflammatory Bowel Diseases. Frontiers in Immunology, 2020, 11, 623691.	2.2	50
117	The role of the Hippo pathway in the pathogenesis of inflammatory bowel disease. Cell Death and Disease, 2021, 12, 79.	2.7	32
118	Heat-stable enterotoxin inhibits intestinal stem cell expansion to disrupt the intestinal integrity by downregulating the Wnt/l²-catenin pathway. Stem Cells, 2021, 39, 482-496.	1.4	17
119	<i>In situ</i> Structure of Intestinal Apical Surface Reveals Nanosticks on Microvilli. SSRN Electronic Journal, O, , .	0.4	0
120	In vitro models of intestinal epithelium: Toward bioengineered systems. Journal of Tissue Engineering, 2021, 12, 204173142098520.	2.3	33
121	WNT-FRIZZLED-LRP5/6 Signaling Mediates Posterior Fate and Proliferation during Planarian Regeneration. Genes, 2021, 12, 101.	1.0	6
122	On the origins and conceptual frameworks of natural plasticity—Lessons from single-cell models in C. elegans. Current Topics in Developmental Biology, 2021, 144, 111-159.	1.0	9
123	A Semi-automated Organoid Screening Method Demonstrates Epigenetic Control of Intestinal Epithelial Differentiation. Frontiers in Cell and Developmental Biology, 2020, 8, 618552.	1.8	13
124	A further study on a disturbance of intestinal epithelial cell population and kinetics in APC1638T mice. Medical Molecular Morphology, 2021, 54, 203-215.	0.4	1
125	Running Against the Wnt: How Wnt/ \hat{l}^2 -Catenin Suppresses Adipogenesis. Frontiers in Cell and Developmental Biology, 2021, 9, 627429.	1.8	68
126	Intestinal Stem Cell Development in the Neonatal Gut: Pathways Regulating Development and Relevance to Necrotizing Enterocolitis. Cells, 2021, 10, 312.	1.8	7

#	Article	IF	CITATIONS
127	Intestinal organoids in farm animals. Veterinary Research, 2021, 52, 33.	1.1	48
128	TCF7L2 silencing results in altered gene expression patterns accompanied by local genomic reorganization. Neoplasia, 2021, 23, 257-269.	2.3	4
130	Tissue Treg Secretomes and Transcription Factors Shared With Stem Cells Contribute to a Treg Niche to Maintain Treg-Ness With 80% Innate Immune Pathways, and Functions of Immunosuppression and Tissue Repair. Frontiers in Immunology, 2020, 11, 632239.	2.2	29
131	Therapeutic targeting of the oncogenic Wnt signaling pathway for treating colorectal cancer and other colonic disorders. Advanced Drug Delivery Reviews, 2021, 169, 118-136.	6.6	58
132	Remote ischemic conditioning avoids the development of intestinal damage after ischemia reperfusion by reducing intestinal inflammation and increasing intestinal regeneration. Pediatric Surgery International, 2021, 37, 333-337.	0.6	6
133	Engineering biomimetic intestinal topological features in 3D tissue models: retrospects and prospects. Bio-Design and Manufacturing, 2021, 4, 568-595.	3.9	9
134	MAP3K2-regulated intestinal stromal cells define a distinct stem cell niche. Nature, 2021, 592, 606-610.	13.7	53
135	Wnt∫β atenin signaling: Structure, assembly and endocytosis of the signalosome. Development Growth and Differentiation, 2021, 63, 199-218.	0.6	37
136	Human gastrointestinal epithelia of the esophagus, stomach, and duodenum resolved at single-cell resolution. Cell Reports, 2021, 34, 108819.	2.9	153
137	Regenerative Medicine of Epithelia: Lessons From the Past and Future Goals. Frontiers in Bioengineering and Biotechnology, 2021, 9, 652214.	2.0	13
138	Altered intestinal epithelial nutrient transport: an underappreciated factor in obesity modulated by diet and microbiota. Biochemical Journal, 2021, 478, 975-995.	1.7	8
139	$\hat{I}^{\hat{J}}$ T cells regulate the intestinal response to nutrient sensing. Science, 2021, 371, .	6.0	78
140	Culture and differentiation of rabbit intestinal organoids and organoid-derived cell monolayers. Scientific Reports, 2021, 11, 5401.	1.6	12
141	NOX1-dependent redox signaling potentiates colonic stem cell proliferation to adapt to the intestinal microbiota by linking ECFR and TLR activation. Cell Reports, 2021, 35, 108949.	2.9	24
142	Reactive Oxygen Species in intestinal stem cell metabolism, fate and function. Free Radical Biology and Medicine, 2021, 166, 140-146.	1.3	25
143	Does the epithelial barrier hypothesis explain the increase in allergy, autoimmunity and other chronic conditions?. Nature Reviews Immunology, 2021, 21, 739-751.	10.6	452
144	Prolactin synergizes with canonical Wnt signals to drive development of ER+ mammary tumors via activation of the Notch pathway. Cancer Letters, 2021, 503, 231-239.	3.2	8
145	How autophagy controls the intestinal epithelial barrier. Autophagy, 2022, 18, 86-103.	4.3	125

#	Article	IF	CITATIONS
146	Murine intestinal stem cells are highly sensitive to modulation of the T3/TRα1-dependent pathway. Development (Cambridge), 2021, 148, .	1.2	10
147	Defence and adaptation mechanisms of the intestinal epithelium upon infection. International Journal of Medical Microbiology, 2021, 311, 151486.	1.5	11
148	Long noncoding RNAs in intestinal homeostasis, regeneration, and cancer. Journal of Cellular Physiology, 2021, 236, 7801-7813.	2.0	8
149	Collagen IV differentially regulates planarian stem cell potency and lineage progression. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	14
150	Obesity and intestinal stem cell susceptibility to carcinogenesis. Nutrition and Metabolism, 2021, 18, 37.	1.3	8
151	GOLM1 restricts colitis and colon tumorigenesis by ensuring Notch signaling equilibrium in intestinal homeostasis. Signal Transduction and Targeted Therapy, 2021, 6, 148.	7.1	17
153	let-7e downregulation characterizes early phase colonic adenoma in APCMin/+ mice and human FAP subjects. PLoS ONE, 2021, 16, e0249238.	1.1	2
154	Modeling Gastrointestinal Diseases Using Organoids to Understand Healing and Regenerative Processes. Cells, 2021, 10, 1331.	1.8	3
155	Lipid metabolism in focus: how the build-up and breakdown of lipids affects stem cells. Development (Cambridge), 2021, 148, .	1.2	12
156	Porcine colonoids and enteroids keep the memory of their origin during regeneration. American Journal of Physiology - Cell Physiology, 2021, 320, C794-C805.	2.1	8
157	Classes of Drugs that Mitigate Radiation Syndromes. Frontiers in Pharmacology, 2021, 12, 666776.	1.6	4
158	NF-kappa-B activation unveils the presence of inflammatory hotspots in human gut xenografts. PLoS ONE, 2021, 16, e0243010.	1.1	5
159	Clump sequencing exposes the spatial expression programs of intestinal secretory cells. Nature Communications, 2021, 12, 3074.	5.8	43
160	Chemotherapeutics-Induced Intestinal Mucositis: Pathophysiology and Potential Treatment Strategies. Frontiers in Pharmacology, 2021, 12, 681417.	1.6	57
161	LINGO3 regulates mucosal tissue regeneration and promotes TFF2 dependent recovery from colitis. Scandinavian Journal of Gastroenterology, 2021, 56, 791-805.	0.6	8
162	Alveolar epithelial cell fate is maintained in a spatially restricted manner to promote lung regeneration after acute injury. Cell Reports, 2021, 35, 109092.	2.9	66
165	At the right time in the right place: How do luminal gradients position the microbiota along the gut?. Cells and Development, 2021, 168, 203712.	0.7	10
167	Tracing oncogene-driven remodelling of the intestinal stem cell niche. Nature, 2021, 594, 442-447.	13.7	56

#	Article	IF	CITATIONS
168	miR-802 regulates Paneth cell function and enterocyte differentiation in the mouse small intestine. Nature Communications, 2021, 12, 3339.	5.8	16
169	RAL GTPases mediate EGFR-driven intestinal stem cell proliferation and tumourigenesis. ELife, 2021, 10, .	2.8	13
171	Quantitative proteomic analysis of the effects of melatonin treatment for mice suffered from small intestinal damage induced by Î ³ -ray radiation. International Journal of Radiation Biology, 2021, 97, 1206-1216.	1.0	4
172	Sepsis induces variation of intestinal barrier function in different phase through nuclear factor kappa B signaling. Korean Journal of Physiology and Pharmacology, 2021, 25, 375-383.	0.6	1
173	Role of Goblet Cells in Intestinal Barrier and Mucosal Immunity. Journal of Inflammation Research, 2021, Volume 14, 3171-3183.	1.6	95
174	Apolipoprotein A4 Defines the Villus-Crypt Border in Duodenal Specimens for Celiac Disease Morphometry. Frontiers in Immunology, 2021, 12, 713854.	2.2	8
175	Arsenic exposure in drinking water reduces Lgr5 and secretory cell marker gene expression in mouse intestines. Toxicology and Applied Pharmacology, 2021, 422, 115561.	1.3	11
177	Microenvironmental innate immune signaling and cell mechanical responses promote tumor growth. Developmental Cell, 2021, 56, 1884-1899.e5.	3.1	20
179	Epigenetic Drifts during Long-Term Intestinal Organoid Culture. Cells, 2021, 10, 1718.	1.8	6
180	Building bridges between fields: bringing together development and homeostasis. Development (Cambridge), 2021, 148, .	1.2	7
181	Singleâ€cell transcriptomics reveals immune response of intestinal cell types to viral infection. Molecular Systems Biology, 2021, 17, e9833.	3.2	24
182	Nonâ€zeroâ€sum microbiome immune system interactions. European Journal of Immunology, 2021, 51, 2120-2136.	1.6	3
183	Tissue-dependent transcriptional and bacterial associations in primary sclerosing cholangitis-associated inflammatory bowel disease. Wellcome Open Research, 0, 6, 199.	0.9	0
184	Tracing colonic embryonic transcriptional profiles and their reactivation upon intestinal damage. Cell Reports, 2021, 36, 109484.	2.9	18
185	Dynamic spatiotemporal coordination of neural stem cell fate decisions occurs through local feedback in the adult vertebrate brain. Cell Stem Cell, 2021, 28, 1457-1472.e12.	5.2	29
186	Translation initiation factor elF2Bîµ promotes Wnt-mediated clonogenicity and global translation in intestinal epithelial cells. Stem Cell Research, 2021, 55, 102499.	0.3	2
187	Cdx2 regulates immune cell infiltration in the intestine. Scientific Reports, 2021, 11, 15841.	1.6	1
188	Utilizing Probiotics for the Prevention and Treatment of Gastrointestinal Diseases. Frontiers in Microbiology, 2021, 12, 689958.	1.5	38

#	Article	IF	CITATIONS
190	Organ-on-Chip Approaches for Intestinal 3D InÂVitro Modeling. Cellular and Molecular Gastroenterology and Hepatology, 2022, 13, 351-367.	2.3	28
191	Gut Microbiota Profiles in Early- and Late-Onset Colorectal Cancer: A Potential Diagnostic Biomarker in the Future. Digestion, 2021, 102, 823-832.	1.2	13
192	Cellular origins and lineage relationships of the intestinal epithelium. American Journal of Physiology - Renal Physiology, 2021, 321, G413-G425.	1.6	11
193	EGF and BMPs Govern Differentiation and Patterning in Human Gastric Glands. Gastroenterology, 2021, 161, 623-636.e16.	0.6	25
194	Glucomannan from <i>Aloe vera</i> Gel Promotes Intestinal Stem Cell-Mediated Epithelial Regeneration via the Wnt/β-Catenin Pathway. Journal of Agricultural and Food Chemistry, 2021, 69, 10581-10591.	2.4	10
195	Functional human genes typically exhibit epigenetic conservation. PLoS ONE, 2021, 16, e0253250.	1.1	1
196	Multiplexed single-cell analysis of organoid signaling networks. Nature Protocols, 2021, 16, 4897-4918.	5.5	23
197	The Effects of Melatonin Administration on Intestinal Injury Caused by Abdominal Irradiation from Mice. International Journal of Molecular Sciences, 2021, 22, 9715.	1.8	4
198	SATB2 preserves colon stem cell identity and mediates ileum-colon conversion via enhancer remodeling. Cell Stem Cell, 2022, 29, 101-115.e10.	5.2	31
199	Distinct Identity of GLP-1R, GLP-2R, and GIPR Expressing Cells and Signaling Circuits Within the Gastrointestinal Tract. Frontiers in Cell and Developmental Biology, 2021, 9, 703966.	1.8	7
200	WNT as a Driver and Dependency in Cancer. Cancer Discovery, 2021, 11, 2413-2429.	7.7	108
201	Functional characterization of the sodium/hydrogen exchanger 8 and its role in proliferation of colonic epithelial cells. American Journal of Physiology - Cell Physiology, 2021, 321, C471-C488.	2.1	6
202	Methionine deficiency and its hydroxy analogue influence chicken intestinal 3-dimensional organoid development. Animal Nutrition, 2022, 8, 38-51.	2.1	7
203	Assessing donor-to-donor variability in human intestinal organoid cultures. Stem Cell Reports, 2021, 16, 2364-2378.	2.3	21
204	Nanocarriers for oral delivery of biologics: small carriers for big payloads. Trends in Pharmacological Sciences, 2021, 42, 957-972.	4.0	35
205	Good Neighbors: The Niche that Fine Tunes Mammalian Intestinal Regeneration. Cold Spring Harbor Perspectives in Biology, 2022, 14, a040865.	2.3	12
206	Diet-induced alteration of intestinal stem cell function underlies obesity and prediabetes in mice. Nature Metabolism, 2021, 3, 1202-1216.	5.1	47
207	Adult stem cells and niche cells segregate gradually from common precursors that build the adult Drosophila ovary during pupal development. ELife, 2021, 10, .	2.8	11

		CITATION R	EPORT	
#	Article		IF	CITATIONS
208	The Potential of Pancreatic Organoids for Diabetes Research and Therapy. Islets, 2021	, 13, 85-105.	0.9	3
209	The Circadian Clock Gene, Bmal1, Regulates Intestinal Stem Cell Signaling and Repress Initiation. Cellular and Molecular Gastroenterology and Hepatology, 2021, 12, 1847-1	ses Tumor 872.e0.	2.3	43
210	Cancer cell states and emergent properties of the dynamic tumor system. Genome Res 1719-1727.	search, 2021, 31,	2.4	12
211	Intestinal multicellular organoids to study colorectal cancer. Biochimica Et Biophysica on Cancer, 2021, 1876, 188586.	Acta: Reviews	3.3	13
212	Epithelial Regeneration After Doxorubicin Arises Primarily From Early Progeny of Active Stem Cells. Cellular and Molecular Gastroenterology and Hepatology, 2021, 12, 119-1	Intestinal 40.	2.3	9
213	Establishment of intestinal organoid cultures modeling injury-associated epithelial reg Cell Research, 2021, 31, 259-271.	eneration.	5.7	54
214	LRIG1, a regulator of stem cell quiescence and a pleiotropic feedback tumor suppresso Cancer Biology, 2022, 82, 120-133.	r. Seminars in	4.3	14
215	Single-Cell Transcriptional Profiling of the Intestinal Epithelium. Methods in Molecular 2020, 2171, 129-153.	Biology,	0.4	7
216	Stem and Progenitor Cells in theÂPathogenesis and Treatment of Digestive Diseases. A Experimental Medicine and Biology, 2019, 1201, 125-157.	Advances in	0.8	3
217	Overview of Basic Mechanisms of Notch Signaling in Development and Disease. Advan Experimental Medicine and Biology, 2020, 1227, 9-27.	ces in	0.8	24
218	Developmental Relationships of Four Exhausted CD8+ T Cell Subsets Reveals Underlyin Transcriptional and Epigenetic Landscape Control Mechanisms. Immunity, 2020, 52, 8	ו <u>g</u> 25-841.e8.	6.6	497
219	A thermogenic fat-epithelium cell axis regulates intestinal disease tolerance. Proceedin National Academy of Sciences of the United States of America, 2020, 117, 32029-320	gs of the 37.	3.3	7
220	Does circadian rhythm influence gastrointestinal toxicity?. Current Opinion in Support Palliative Care, 2020, 14, 120-126.	ive and	0.5	2
231	An Organoid-derived Cell Layer as an in vitro Model for US-mediated Drug Delivery Stu	dies. , 2020, , .		3
232	Elevating EGFR-MAPK program by a nonconventional Cdc42 enhances intestinal epithe regeneration. JCI Insight, 2020, 5, .	lial survival and	2.3	18
233	Mutational inactivation of Apc in the intestinal epithelia compromises cellular organisa of Cell Science, 2021, 134, .	ition. Journal	1.2	2
234	Distinct populations of crypt-associated fibroblasts act as signaling hubs to control co homeostasis. PLoS Biology, 2020, 18, e3001032.	lon	2.6	53
235	OrganoidTracker: Efficient cell tracking using machine learning and manual error corre ONE, 2020, 15, e0240802.	ction. PLoS	1.1	46

#	Article	IF	CITATIONS
236	Lineage Tracing: Computational Reconstruction Goes Beyond the Limit of Imaging. Molecules and Cells, 2019, 42, 104-112.	1.0	33
237	It's All About Timing: Early Feeding Promotes Intestinal Maturation by Shifting the Ratios of Specialized Epithelial Cells in Chicks. Frontiers in Physiology, 2020, 11, 596457.	1.3	9
238	Silymarin, boswellic acid and curcumin enriched dietetic formulation reduces the growth of inherited intestinal polyps in an animal model. World Journal of Gastroenterology, 2020, 26, 1601-1612.	1.4	10
239	New role for ceramide in hypoxia and insulin resistance. World Journal of Gastroenterology, 2020, 26, 2177-2186.	1.4	21
240	Recent Insights into Cellular Crosstalk in Respiratory and Gastrointestinal Mucosal Immune Systems. Immune Network, 2020, 20, e44.	1.6	13
241	Cell-type diversity and regionalized gene expression in the planarian intestine. ELife, 2020, 9, .	2.8	35
242	Opposing JAK-STAT and Wnt signaling gradients define a stem cell domain by regulating differentiation at two borders. ELife, 2020, 9, .	2.8	15
243	Alignment of single-cell trajectories by tuMap enables high-resolution quantitative comparison of cancer samples. Cell Systems, 2021, , .	2.9	3
244	Interferon \hat{I}^2 drives intestinal regeneration after radiation. Science Advances, 2021, 7, eabi5253.	4.7	20
245	An Integrated View of Virus-Triggered Cellular Plasticity Using Boolean Networks. Cells, 2021, 10, 2863.	1.8	1
246	Investigating Adult Stem Cells Through Lineage analyses. Stem Cell Reviews and Reports, 2022, 18, 2-22.	1.7	6
250	Correlations of morphology and molecular alterations in traditional serrated adenoma. World Journal of Gastrointestinal Pathophysiology, 2020, 11, 78-83.	0.5	4
256	Capturing tumour heterogeneity in pre- and post-chemotherapy colorectal cancer ascites-derived cells using single-cell RNA-sequencing. Bioscience Reports, 2021, 41, .	1.1	7
257	Shortâ€Chain Fatty Acids Produced by Ruminococcaceae Mediate αâ€Linolenic Acid Promote Intestinal Stem Cells Proliferation. Molecular Nutrition and Food Research, 2022, 66, e2100408.	1.5	41
258	Enteric glial cell heterogeneity regulates intestinal stem cell niches. Cell Stem Cell, 2022, 29, 86-100.e6.	5.2	56
259	Single-Cell Studies of Intestinal Stem Cell Heterogeneity During Homeostasis and Regeneration. Methods in Molecular Biology, 2020, 2171, 155-167.	0.4	4
267	Nicotinamide phosphoribosyltransferase (Nampt) of hybrid crucian carp protects intestinal barrier and enhances host immune defense against bacterial infection. Developmental and Comparative Immunology, 2022, 128, 104314.	1.0	12
268	Host Factors in Dysregulation of the Gut Barrier Function during Alcohol-Associated Liver Disease. International Journal of Molecular Sciences, 2021, 22, 12687.	1.8	10

-		_	
C 1^{-}		Drnc	NDT.
	IAL	REPU	ואכ

#	Article	IF	CITATIONS
270	<i>TP53</i> Gain-of-Function and Non–Gain-of-Function Mutations Are Differentially Associated With Sidedness-Dependent Prognosis in Metastatic Colorectal Cancer. Journal of Clinical Oncology, 2022, 40, 171-179.	0.8	33
271	NF- $\hat{I}^{\varrho}B$ determines Paneth versus goblet cell fate decision in the small intestine. Development (Cambridge), 2021, 148, .	1.2	7
272	Changes in progenitors and differentiated epithelial cells of neonatal piglets. Animal Nutrition, 2022, 8, 265-276.	2.1	7
274	MLL1 is required for maintenance of intestinal stem cells. PLoS Genetics, 2021, 17, e1009250.	1.5	5
275	Mucins. , 2023, , 415-421.		1
276	Targeting the Gut in Obesity: Signals from the Inner Surface. Metabolites, 2022, 12, 39.	1.3	3
277	Colorectal cancer and adjacent normal mucosa differ in apoptotic and inflammatory protein expression. Engineered Regeneration, 2021, 2, 279-287.	3.0	11
278	Colon stroma mediates an inflammation-driven fibroblastic response controlling matrix remodeling and healing. PLoS Biology, 2022, 20, e3001532.	2.6	41
279	CDC42 controlled apical-basal polarity regulates intestinal stem cell to transit amplifying cell fate transition via YAP-EGF-mTOR signaling. Cell Reports, 2022, 38, 110009.	2.9	17
280	Synergy of single-cell sequencing analyses and in vivo lineage-tracing approaches: A new opportunity for stem cell biology. Biocell, 2022, 46, 1157-1162.	0.4	3
281	Prebiotic effects of goji berry in protection against inflammatory bowel disease. Critical Reviews in Food Science and Nutrition, 2023, 63, 5206-5230.	5.4	11
282	Differential toxicity to murine small and large intestinal epithelium induced by oncology drugs. Communications Biology, 2022, 5, 99.	2.0	2
283	The developmental changes in intestinal epithelial cell proliferation, differentiation, and shedding in weaning piglets. Animal Nutrition, 2022, 9, 214-222.	2.1	9
284	The Role of the Intestinal Epithelium in the "Weep and Sweep―Response during Gastro—Intestinal Helminth Infections. Animals, 2022, 12, 175.	1.0	15
285	Chewing the Fat with Microbes: Lipid Crosstalk in the Gut. Nutrients, 2022, 14, 573.	1.7	4
286	Sodium/hydrogenâ€exchangerâ€2 modulates colonocyte lineage differentiation. Acta Physiologica, 2022, , e13774.	1.8	7
287	Adaptive differentiation promotes intestinal villus recovery. Developmental Cell, 2022, 57, 166-179.e6.	3.1	25
288	Crosstalk Between the Gut Microbiota and Epithelial Cells Under Physiological and Infectious Conditions. Frontiers in Cellular and Infection Microbiology, 2022, 12, 832672.	1.8	23

		CITATION RE	PORT	
#	Article		IF	CITATIONS
291	Paneth cells and their multiple functions. Cell Biology International, 2022, 46, 701-710.		1.4	16
292	Effects of combined OncoTherad immunotherapy and probiotic supplementation on mo chronic inflammatory process in colorectal carcinogenesis. Tissue and Cell, 2022, 75, 10	dulating the 1747.	1.0	7
293	Modulation of designer biomimetic matrices for optimized differentiated intestinal epith cultures. Biomaterials, 2022, 282, 121380.	ielial	5.7	15
294	WR-GLP2, a glucagon-like peptide 2 from hybrid crucian carp that protects intestinal mu and inhibits bacterial infection. Fish and Shellfish Immunology, 2022, 122, 29-37.	cosal barrier	1.6	12
295	Porcine Intestinal Apical-Out Organoid Model for Gut Function Study. Animals, 2022, 12	¹ , 372.	1.0	7
296	Shifting the Focus of Signaling Abnormalities in Colon Cancer. Cancers, 2022, 14, 784.		1.7	3
298	Telocytes: Active Players in the Rainbow Trout (Oncorhynchus mykiss) Intestinal Stem-C Animals, 2022, 12, 74.	ell Niche.	1.0	3
299	Glucagon-Like Peptide-2 Stimulates S-Phase Entry of Intestinal Lgr5+ Stem Cells. Cellula Molecular Gastroenterology and Hepatology, 2022, 13, 1829-1842.	r and	2.3	11
300	Wnt signaling is boosted during intestinal regeneration by a CD44-positive feedback loc and Disease, 2022, 13, 168.	pp. Cell Death	2.7	6
301	Type-2 cGMP-dependent protein kinase suppresses proliferation and carcinogenesis in t epithelium. Carcinogenesis, 2022, 43, 584-593.	ne colon	1.3	6
303	Cordyceps militaris Modulates Intestinal Barrier Function and Gut Microbiota in a Pig Mo Frontiers in Microbiology, 2022, 13, 810230.	odel.	1.5	2
304	Compound K attenuates hyperglycemia by enhancing glucagon-like peptide-1 secretion activating TGR5 via the remodeling of gut microbiota and bile acid metabolism. Journal o Research, 2022, 46, 780-789.	through of Ginseng	3.0	13
306	Mechanical regulation of tissues that reproduces wrinkle patterns of gastrointestinal tra Physical Biology, 2022, 19, 036006.	icts.	0.8	1
307	Glycans that regulate Notch signaling in the intestine. Biochemical Society Transactions 689-701.	, 2022, 50,	1.6	4
308	Trade-off between reducing mutational accumulation and increasing commitment to dif determines tissue organization. Nature Communications, 2022, 13, 1666.	ferentiation	5.8	5
309	Building gut from scratch — progress and update of intestinal tissue engineering. Natu Gastroenterology and Hepatology, 2022, 19, 417-431.	ıre Reviews	8.2	12
311	Human breast milk-derived exosomes protect against intestinal ischemia and reperfusion neonatal rats. Journal of Pediatric Surgery, 2022, 57, 1264-1268.	ו injury in	0.8	5
315	Effects of Immune Cells on Intestinal Stem Cells: Prospects for Therapeutic Targets. Ster and Reports, 2022, 18, 2296-2314.	n Cell Reviews	1.7	4

#	Article	IF	CITATIONS
316	Human Intestinal Organoids: Promise and Challenge. Frontiers in Cell and Developmental Biology, 2022, 10, 854740.	1.8	25
317	Functional antagonism between ΔNp63α and GCM1 regulates human trophoblast stemness and differentiation. Nature Communications, 2022, 13, 1626.	5.8	17
318	Milkâ€Derived Small Extracellular Vesicles Promote Recovery of Intestinal Damage by Accelerating Intestinal Stem Cellâ€Mediated Epithelial Regeneration. Molecular Nutrition and Food Research, 2022, 66, e2100551.	1.5	5
319	Gut microbiota drives macrophage-dependent self-renewal of intestinal stem cells via niche enteric serotonergic neurons. Cell Research, 2022, 32, 555-569.	5.7	26
320	Defining the early stages of intestinal colonisation by whipworms. Nature Communications, 2022, 13, 1725.	5.8	18
321	Mathematical modelling identifies conditions for maintaining and escaping feedback control in the intestinal epithelium. Scientific Reports, 2022, 12, 5569.	1.6	6
322	Arsenic exposure impairs intestinal stromal cells. Toxicology Letters, 2022, 361, 54-63.	0.4	8
323	Col6a1+/CD201+ mesenchymal cells regulate intestinal morphogenesis and homeostasis. Cellular and Molecular Life Sciences, 2022, 79, 1.	2.4	12
324	Retinoic acid signaling drives differentiation toward the absorptive lineage in colorectal cancer. IScience, 2021, 24, 103444.	1.9	10
325	Thyroid Hormone Nuclear Receptor TRα1 and Canonical WNT Pathway Cross-Regulation in Normal Intestine and Cancer. Frontiers in Endocrinology, 2021, 12, 725708.	1.5	2
326	Role of Rho GTPases in stem cell regulation. Biochemical Society Transactions, 2021, 49, 2941-2955.	1.6	4
327	Excessive Apoptosis in Ulcerative Colitis: Crosstalk Between Apoptosis, ROS, ER Stress, and Intestinal Homeostasis. Inflammatory Bowel Diseases, 2022, 28, 639-648.	0.9	63
328	Disulfiram Protects Against Radiation-Induced Intestinal Injury in Mice. Frontiers in Pharmacology, 2022, 13, 852669.	1.6	3
329	Mechanisms of mucosal healing: treating inflammatory bowel disease without immunosuppression?. Nature Reviews Gastroenterology and Hepatology, 2022, 19, 493-507.	8.2	55
331	Epithelial–immune crosstalk in health and disease. Current Opinion in Genetics and Development, 2022, 74, 101910.	1.5	7
332	Reactive Oxygen Species in Modulating Intestinal Stem Cell Dynamics and Function. Stem Cell Reviews and Reports, 2022, 18, 2328-2350.	1.7	10
333	Plumping up a Cushion of Human Biowaste in Regenerative Medicine: Novel Insights into a State-of-the-Art Reserve Arsenal. Stem Cell Reviews and Reports, 2022, 18, 2709-2739.	1.7	2
334	The Tabula Sapiens: A multiple-organ, single-cell transcriptomic atlas of humans. Science, 2022, 376, eabl4896.	6.0	289

#	Article	IF	CITATIONS
335	An Emerging Frontier in Intercellular Communication: Extracellular Vesicles in Regeneration. Frontiers in Cell and Developmental Biology, 2022, 10, .	1.8	12
336	Intestinal Enteroendocrine Cell Signaling: Retinol-binding Protein 2 and Retinoid Actions. Endocrinology, 2022, 163, .	1.4	5
337	Reconstructing physical cell interaction networks from single-cell data using Neighbor-seq. Nucleic Acids Research, 2022, 50, e82-e82.	6.5	6
338	Size effect and mucus role on the intestinal toxicity of the E551 food additive and engineered silica nanoparticles. Nanotoxicology, 2022, 16, 165-182.	1.6	4
339	Apelin-driven endothelial cell migration sustains intestinal progenitor cells and tumor growth. , 2022, 1, 476-490.		13
340	Challenges and opportunities targeting mechanisms of epithelial injury and recovery in acute intestinal graft-versus-host disease. Mucosal Immunology, 2022, 15, 605-619.	2.7	8
341	Ginsenoside Compound K Through TGR5/YAP Signal To Increase Glucagon-Like Peptide-1 Release and L-Cell Number in db/db Mice. SSRN Electronic Journal, 0, , .	0.4	0
342	Lymphatics act as a signaling hub to regulate intestinal stem cell activity. Cell Stem Cell, 2022, 29, 1067-1082.e18.	5.2	53
343	The metabolic impact of bacterial infection in the gut. FEBS Journal, 2023, 290, 3928-3945.	2.2	2
344	Identification and characterization of stem cells in mammalian esophageal stratified squamous epithelia. Journal of Molecular Cell Biology, 2022, 14, .	1.5	5
345	In situ structure of intestinal apical surface reveals nanobristles on microvilli. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	10
346	Relief Effects of Icariin on Inflammation-Induced Decrease of Tight Junctions in Intestinal Epithelial Cells. Frontiers in Pharmacology, 0, 13, .	1.6	2
347	Single-Cell RNA Sequencing for Analyzing the Intestinal Tract in Healthy and Diseased Individuals. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	3
348	Acetyl-CoA-Carboxylase 1-mediated de novo fatty acid synthesis sustains Lgr5+ intestinal stem cell function. Nature Communications, 2022, 13, .	5.8	18
349	Circadian regulation of digestive and metabolic tissues. American Journal of Physiology - Cell Physiology, 2022, 323, C306-C321.	2.1	7
350	Mechanical forces directing intestinal form and function. Current Biology, 2022, 32, R791-R805.	1.8	9
351	Regulation of the <scp> <i>THRA</i> </scp> gene, encoding the thyroid hormone nuclear receptor TRα1, in intestinal lesions. Molecular Oncology, 0, , .	2.1	0
352	Thy1 marks a distinct population of slow-cycling stem cells in the mouse epidermis. Nature Communications, 2022, 13, .	5.8	7

#	Article	IF	CITATIONS
353	Stem cell-based therapy for human diseases. Signal Transduction and Targeted Therapy, 2022, 7, .	7.1	209
354	Thyroid hormone signaling in the intestinal stem cells and their niche. Cellular and Molecular Life Sciences, 2022, 79, .	2.4	2
355	Guanylyl cyclase C as a diagnostic and therapeutic target in colorectal cancer. Personalized Medicine, 2022, 19, 457-472.	0.8	4
356	Lymphangiocrine signals are required for proper intestinal repair after cytotoxic injury. Cell Stem Cell, 2022, 29, 1262-1272.e5.	5.2	24
357	Fibroblasts in intestinal homeostasis, damage, and repair. Frontiers in Immunology, 0, 13, .	2.2	10
358	CDK8 and CDK19 regulate intestinal differentiation and homeostasis via the chromatin remodeling complex SWI/SNF. Journal of Clinical Investigation, 2022, 132, .	3.9	4
359	Non-neutral clonal selection and its potential role in mammalian germline stem cell dysfunction with advancing age. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	1
360	Ribosome impairment regulates intestinal stem cell identity via ZAKÉ' activation. Nature Communications, 2022, 13, .	5.8	8
361	Lymphatics and fibroblasts support intestinal stem cells in homeostasis and injury. Cell Stem Cell, 2022, 29, 1246-1261.e6.	5.2	35
362	Jejunum-derived NF-κB reporter organoids as 3D models for the study of TNF-alpha-induced inflammation. Scientific Reports, 2022, 12, .	1.6	4
363	Stand by me: Fibroblasts regulation of the intestinal epithelium during development and homeostasis. Current Opinion in Cell Biology, 2022, 78, 102116.	2.6	8
364	Treatment of ulcerative colitis with Wu-Mei-Wan by inhibiting intestinal inflammatory response and repairing damaged intestinal mucosa. Phytomedicine, 2022, 105, 154362.	2.3	14
366	Modeling Human Organ Development and Diseases With Fetal Tissue–Derived Organoids. Cell Transplantation, 2022, 31, 096368972211244.	1.2	2
367	Commensal gut microbiota-based strategies for oral delivery of therapeutic proteins. Trends in Pharmacological Sciences, 2022, 43, 1004-1013.	4.0	4
368	Polyphenols–Gut–Heart: An Impactful Relationship to Improve Cardiovascular Diseases. Antioxidants, 2022, 11, 1700.	2.2	6
369	The phenotype of the gut region is more stably retained than developmental stage in piglet intestinal organoids. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	3
370	Plant Antioxidants Affect Human and Gut Health, and Their Biosynthesis Is Influenced by Environment and Reactive Oxygen Species. Oxygen, 2022, 2, 348-370.	1.6	0
371	Transit-amplifying cells control R-spondins in the mouse crypt to modulate intestinal stem cell proliferation. Journal of Experimental Medicine, 2022, 219, .	4.2	2

#	Article	IF	Citations
372	Modeling Biochemical Gradients In Vitro to Control Cell Compartmentalization in a Microengineered 3D Model of the Intestinal Epithelium. Advanced Healthcare Materials, 2022, 11, .	3.9	2
373	Bacillus subtilis programs the differentiation of intestinal secretory lineages to inhibit Salmonella infection. Cell Reports, 2022, 40, 111416.	2.9	9
375	Transcriptome Profile Analysis of Intestinal Upper Villus Epithelial Cells and Crypt Epithelial Cells of Suckling Piglets. Animals, 2022, 12, 2324.	1.0	0
376	Dietary Supplementation of 25-Hydroxyvitamin D3 Improves Growth Performance, Antioxidant Capacity and Immune Function in Weaned Piglets. Antioxidants, 2022, 11, 1750.	2.2	3
377	Gut microbiotaâ€stem cell niche crosstalk: A new territory for maintaining intestinal homeostasis. , 2022, 1, .		8
378	Clone wars: From molecules to cell competition in intestinal stem cell homeostasis and disease. Experimental and Molecular Medicine, 2022, 54, 1367-1378.	3.2	6
379	Proteomic changes associated with maternal dietary low ω6:ω3 ratio in piglets supplemented with seaweed part II: lleum proteomes. Journal of Proteomics, 2022, , 104739.	1.2	1
380	Theory of Disease. , 2022, , 17-38.		0
381	The progression of doxorubicin-induced intestinal mucositis in rats. Naunyn-Schmiedeberg's Archives of Pharmacology, 2023, 396, 247-260.	1.4	1
382	Single-cell Transcriptomics Reveals Early Molecular and Immune Alterations Underlying the Serrated Neoplasia Pathway Toward Colorectal Cancer. Cellular and Molecular Gastroenterology and Hepatology, 2022, , .	2.3	4
383	Differential Response to the Course of Cryptosporidium parvum Infection and Its Impact on Epithelial Integrity in Differentiated versus Undifferentiated Human Intestinal Enteroids. Infection and Immunity, 2022, 90, .	1.0	5
384	MCC is a centrosomal protein that relocalizes to non-centrosomal apical sites during intestinal cell differentiation. Journal of Cell Science, 2022, 135, .	1.2	0
385	Zymosan-A promotes the regeneration of intestinal stem cells by upregulating ASCL2. Cell Death and Disease, 2022, 13, .	2.7	1
386	Vinculin recruitment to $\hat{l}\pm$ -catenin halts the differentiation and maturation of enterocyte progenitors to maintain homeostasis of the Drosophila intestine. ELife, 0, 11, .	2.8	6
387	A stem cell aging framework, from mechanisms to interventions. Cell Reports, 2022, 41, 111451.	2.9	26
388	Metabolism and Colorectal Cancer. Annual Review of Pathology: Mechanisms of Disease, 2023, 18, 467-492.	9.6	30
389	Interaction and toxicity of ingested nanoparticles on the intestinal barrier. Toxicology, 2022, 481, 153353.	2.0	3
390	Tissue-dependent transcriptional and bacterial associations in primary sclerosing cholangitis-associated inflammatory bowel disease. Wellcome Open Research, 0, 6, 199.	0.9	0

#	Article	IF	CITATIONS
391	Intra-Amniotic Administration—An Emerging Method to Investigate Necrotizing Enterocolitis, In Vivo (Gallus gallus). Nutrients, 2022, 14, 4795.	1.7	2
392	Ectopic stem cell niches sustain rainbow trout (Oncorhynchus mykiss) intestine absorptive capacity when challenged with a plant protein-rich diet. Aquaculture, 2023, 564, 739031.	1.7	2
393	Human gut homeostasis and regeneration: the role of the gut microbiota and its metabolites. Critical Reviews in Microbiology, 2023, 49, 764-785.	2.7	4
395	An evolutionarily conserved coronin-dependent pathway defines cell population size. Science Signaling, 2022, 15, .	1.6	Ο
396	Ginsenoside compound K increases glucagon-like peptide-1 release and L-cell abundance in db/db mice through TGR5/YAP signaling. International Immunopharmacology, 2022, 113, 109405.	1.7	7
397	Efficient and simple genetic engineering of enteroids using mouse isolated crypts for investigating intestinal functions. Biochemical and Biophysical Research Communications, 2022, 637, 153-160.	1.0	2
399	Trans-anethole exerts protective effects on lipopolysaccharide-induced acute jejunal inflammation of broilers via repressing NF-κB signaling pathway. Poultry Science, 2023, 102, 102397.	1.5	5
400	The impact of aging on intestinal mucosal immune function and clinical applications. Frontiers in Immunology, 0, 13, .	2.2	5
401	Mother cells control daughter cell proliferation in intestinal organoids to minimize proliferation fluctuations. ELife, 0, 11, .	2.8	6
402	The genetics of monogenic intestinal epithelial disorders. Human Genetics, 2023, 142, 613-654.	1.8	11
403	Cellular mechanisms of reverse epithelial curvature in tissue morphogenesis. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	0
406	Modelling the dynamics of mammalian gut homeostasis. Seminars in Cell and Developmental Biology, 2022, , .	2.3	0
407	Embryogenic stem cell-derived intestinal crypt fission directs de novo crypt genesis. Cell Reports, 2022, 41, 111796.	2.9	2
408	HNF4α Acts as Upstream Functional Regulator of Intestinal Wnt3 and Paneth Cell Fate. Cellular and Molecular Gastroenterology and Hepatology, 2023, 15, 593-612.	2.3	5
409	Berberine increases stromal production of Wnt molecules and activates Lgr5+ stem cells to promote epithelial restitution in experimental colitis. BMC Biology, 2022, 20, .	1.7	2
410	Bacteroides fragilis strain ZY-312 promotes intestinal barrier integrity via upregulating the STAT3 pathway in a radiation-induced intestinal injury mouse model. Frontiers in Nutrition, 0, 9, .	1.6	8
412	Cellular interactions in the pituitary stem cell niche. Cellular and Molecular Life Sciences, 2022, 79, .	2.4	6
414	Periodic spatial patterning with a single morphogen. Cell Systems, 2022, 13, 1033-1047.e7.	2.9	6

#	Article	IF	CITATIONS
415	Key regulators of intestinal stem cells: diet, microbiota, and microbial metabolites. Journal of Genetics and Genomics, 2023, 50, 735-746.	1.7	3
416	Symbiont coordinates stem cell proliferation, apoptosis, and morphogenesis of gut symbiotic organ in the stinkbug-Caballeronia symbiosis. Frontiers in Physiology, 0, 13, .	1.3	3
417	General transcription factor TAF4 antagonizes epigenetic silencing by Polycomb to maintain intestine stem cell functions. Cell Death and Differentiation, 2023, 30, 839-853.	5.0	0
418	Changes of Colon in Rats with Different Ages in Response to Lipopolysaccharide. Current Medicinal Chemistry, 2023, 30, 4492-4503.	1.2	2
420	The multiple roles of enteric glial cells in intestinal homeostasis and regeneration. Seminars in Cell and Developmental Biology, 2023, 150-151, 43-49.	2.3	4
421	circFLNA promotes intestinal injury during abdominal sepsis through Fas-mediated apoptosis pathway by sponging miR-766-3p. Inflammation Research, 0, , .	1.6	Ο
422	Piperine as potential therapy of post-weaning porcine diarrheas: an in vitroÂstudy using a porcine duodenal enteroid model. BMC Veterinary Research, 2023, 19, .	0.7	1
423	A DLG1-ARHGAP31-CDC42 axis is essential for the intestinal stem cell response to fluctuating niche Wnt signaling. Cell Stem Cell, 2023, 30, 188-206.e6.	5.2	3
424	Heat stress disrupts intestinal stem cell migration and differentiation along the crypt–villus axis through FAK signaling. Biochimica Et Biophysica Acta - Molecular Cell Research, 2023, 1870, 119431.	1.9	0
425	Diet-mediated gut microbial community modulation and signature metabolites as potential biomarkers for early diagnosis, prognosis, prevention and stage-specific treatment of colorectal cancer. Journal of Advanced Research, 2023, 52, 45-57.	4.4	1
426	Protective effects of activated vitamin D receptor on <scp>radiationâ€induced</scp> intestinal injury. Journal of Cellular and Molecular Medicine, 2023, 27, 246-258.	1.6	8
429	Regulation and functions of cell division in the intestinal tissue. Seminars in Cell and Developmental Biology, 2023, 150-151, 3-14.	2.3	3
430	Progenitor-derived endothelin controls dermal sheath contraction for hair follicle regression. Nature Cell Biology, 0, , .	4.6	2
431	Immune-Epithelial Cross Talk in Regeneration and Repair. Annual Review of Immunology, 2023, 41, 207-228.	9.5	11
432	Apical-basal polarity in the gut. Seminars in Cell and Developmental Biology, 2023, , .	2.3	1
433	Physiological hypoxia improves growth and functional differentiation of human intestinal epithelial organoids. Frontiers in Immunology, 0, 14, .	2.2	5
434	Selenoprotein W Ameliorates Experimental Colitis and Promotes Intestinal Epithelial Repair. Antioxidants, 2023, 12, 850.	2.2	3
435	Review on the effect of chemotherapy on the intestinal barrier: Epithelial permeability, mucus and bacterial translocation. Biomedicine and Pharmacotherapy, 2023, 162, 114644.	2.5	10

#	Article	IF	CITATIONS
438	Dietary genistein increases microbiota-derived short chain fatty acid levels, modulates homeostasis of the aging gut, and extends healthspan and lifespan. Pharmacological Research, 2023, 188, 106676.	3.1	14
440	PTBP1 controls intestinal epithelial regeneration through post-transcriptional regulation of gene expression. Nucleic Acids Research, 2023, 51, 2397-2414.	6.5	5
441	TCF7L1 Regulates LGR5 Expression in Colorectal Cancer Cells. Genes, 2023, 14, 481.	1.0	1
443	DNA methylation entropy as a measure of stem cell replication and aging. Genome Biology, 2023, 24, .	3.8	7
444	Perturbation of intestinal stem cell homeostasis and radiation enteritis recovery via dietary titanium dioxide nanoparticles. Cell Proliferation, 2023, 56, .	2.4	2
445	A New Role for Endocrine Cells in the Intestinal Crypt. Cellular and Molecular Gastroenterology and Hepatology, 2023, 15, 1525-1526.	2.3	1
446	Intestinal Farnesoid X Receptor Modulates Duodenal Surface Area but Does Not Control Glucose Absorption in Mice. International Journal of Molecular Sciences, 2023, 24, 4132.	1.8	2
447	Paneth Cells and Lgr5+ Intestinal Stem Cells in Radiation Enteritis. Applied Sciences (Switzerland), 2023, 13, 2758.	1.3	2
448	Flagella-driven motility is a target of human Paneth cell defensin activity. PLoS Pathogens, 2023, 19, e1011200.	2.1	0
449	Epithelial Barrier Hypothesis and Its Comparison with the Hygiene Hypothesis. , 2023, 58, 122-128.		3
450	Fall of PARP3 restrains Lgr5+ intestinal stem cells proliferation and mucosal renovation in intestinal aging. Mechanisms of Ageing and Development, 2023, 211, 111796.	2.2	0
452	Function of stem cells in radiation-induced damage. International Journal of Radiation Biology, 2023, 99, 1483-1494.	1.0	0
453	Penthorum chinense Pursh compound flavonoids supplementation alleviates Aflatoxin B1-induced liver injury via modulation of intestinal barrier and gut microbiota in broiler. Ecotoxicology and Environmental Safety, 2023, 255, 114805.	2.9	9
454	Absence of gut microbiota impairs depletion of Paneth cells but not goblet cells in germ-free <i>Atoh1</i> ^{lox/lox} VilCreER ^{T2} mice. American Journal of Physiology - Renal Physiology, 0, , .	1.6	0
456	<scp>CDK4</scp> /6 inhibitor modulating active and quiescent intestinal stem cells for prevention of chemotherapyâ€induced diarrhea. Journal of Pathology, 0, , .	2.1	1
457	Pathogenesis and therapy of radiation enteritis with gut microbiota. Frontiers in Pharmacology, 0, 14,	1.6	5
458	Attaching and effacing pathogens modulate host mitochondrial structure and function. International Review of Cell and Molecular Biology, 2023, , .	1.6	0
460	Potential Effect of Glutamine in the Improvement of Intestinal Stem Cell Proliferation and the Alleviation of Burn-Induced Intestinal Injury via Activating YAP: A Preliminary Study. Nutrients, 2023, 15, 1766.	1.7	1

0

#	Article	IF	CITATIONS
462	PGE2 Produced by Exogenous MSCs Promotes Immunoregulation in ARDS Induced by Highly Pathogenic Influenza A through Activation of the Wnt-Î ² -Catenin Signaling Pathway. International Journal of Molecular Sciences, 2023, 24, 7299.	1.8	2
463	The diverse nature of intestinal fibroblasts in development, homeostasis, and disease. Trends in Cell Biology, 2023, 33, 834-849.	3.6	5
464	Emergence of division of labor in tissues through cell interactions and spatial cues. Cell Reports, 2023, 42, 112412.	2.9	9
471	Physiological and Metabolic Functions of the Intestinal Epithelium: From the Small to the Large Intestine. , 2023, , 1-26.		0
479	Differentiated Epithelial Cells of the Gut. Methods in Molecular Biology, 2023, , 3-16.	0.4	1
484	The Cancer Stem Cell and Tumour Progression. , 2023, , 179-203.		0
489	Histological assessment of intestinal injury by ionizing radiation. Methods in Cell Biology, 2023, , 147-175.	0.5	0
509	The gut microbiota and its biogeography. Nature Reviews Microbiology, 2024, 22, 105-118.	13.6	9
569	Gastrointestinal and brain barriers: unlocking gates of communication across the microbiota–gut–brain axis. Nature Reviews Gastroenterology and Hepatology, 2024, 21, 222-247.	8.2	1
578	How the Microbiome Affects the Risk for Colon Cancer. , 2023, , 97-115.		0
585	Introduction on Stem Cell Therapy and Regeneration. , 2024, , .		0
588	Cell-based inÂvitro models for intestinal permeability studies. , 2024, , 89-108.		0

591 Digestive Tract and Salivary Glands. , 2024, , 1-148.