Highly Stretchable, Elastic, and Ionic Conductive Hydro

Advanced Functional Materials 29, 1806220 DOI: 10.1002/adfm.201806220

Citation Report

#	Article	IF	CITATIONS
1	One-Step Preparation of a Highly Stretchable, Conductive, and Transparent Poly(vinyl alcohol)–Phytic Acid Hydrogel for Casual Writing Circuits. ACS Applied Materials & Interfaces, 2019, 11, 32441-32448.	4.0	106
2	A facile synthesis of self-healing hydrogels toward flexible quantum dot-based luminescent solar concentrators and white LEDs. Journal of Materials Chemistry C, 2019, 7, 10988-10995.	2.7	18
3	Skin-Inspired Gels with Toughness, Antifreezing, Conductivity, and Remoldability. ACS Applied Materials & Interfaces, 2019, 11, 28336-28344.	4.0	111
4	Conductive, Tough, Transparent, and Self-Healing Hydrogels Based on Catechol–Metal Ion Dual Self-Catalysis. Chemistry of Materials, 2019, 31, 5625-5632.	3.2	214
5	Facile fabrication and characterization of highly stretchable lignin-based hydroxyethyl cellulose self-healing hydrogel. Carbohydrate Polymers, 2019, 223, 115080.	5.1	109
6	A highly transparent and ultra-stretchable conductor with stable conductivity during large deformation. Nature Communications, 2019, 10, 3429.	5.8	297
7	Transparent, Antifreezing, Ionic Conductive Cellulose Hydrogel with Stable Sensitivity at Subzero Temperature. ACS Applied Materials & Interfaces, 2019, 11, 41710-41716.	4.0	141
8	Strainâ€Sensitive Performance of a Tough and Inkâ€Writable Polyacrylic Acid Ionic Gel Crosslinked by Carboxymethyl Cellulose. Macromolecular Rapid Communications, 2019, 40, e1900329.	2.0	6
9	Equip the hydrogel with armor: strong and super tough biomass reinforced hydrogels with excellent conductivity and anti-bacterial performance. Journal of Materials Chemistry A, 2019, 7, 26917-26926.	5.2	93
10	Strong, Water-Stable Ionic Cable from Bio-Hydrogel. Chemistry of Materials, 2019, 31, 9288-9294.	3.2	24
11	High-Strength, Self-Adhesive, and Strain-Sensitive Chitosan/Poly(acrylic acid) Double-Network Nanocomposite Hydrogels Fabricated by Salt-Soaking Strategy for Flexible Sensors. ACS Applied Materials & Interfaces, 2019, 11, 39228-39237.	4.0	228
12	Flexible and Pressure-Responsive Sensors from Cellulose Fibers Coated with Multiwalled Carbon Nanotubes. ACS Applied Electronic Materials, 2019, 1, 1179-1188.	2.0	46
13	Skinâ€Inspired Antibacterial Conductive Hydrogels for Epidermal Sensors and Diabetic Foot Wound Dressings. Advanced Functional Materials, 2019, 29, 1901474.	7.8	371
14	Direct Current-Powered High-Performance Ionic Hydrogel Strain Sensor Based on Electrochemical Redox Reaction. ACS Applied Materials & amp; Interfaces, 2019, 11, 24289-24297.	4.0	21
15	Nanocomposite interpenetrating hydrogels with high toughness and good self-recovery. Colloid and Polymer Science, 2019, 297, 821-830.	1.0	7
16	Development of Adhesive and Conductive Resilin-Based Hydrogels for Wearable Sensors. Biomacromolecules, 2019, 20, 3283-3293.	2.6	64
17	Highly Conductive, Stretchable, and Cellâ€Adhesive Hydrogel by Nanoclay Doping. Small, 2019, 15, e1901406.	5.2	62
18	Biopolymer-based carboxylated chitosan hydrogel film crosslinked by HCl as gel polymer electrolyte for all-solid-sate supercapacitors. Journal of Power Sources, 2019, 426, 47-54.	4.0	122

ARTICLE IF CITATIONS # Intrinsically stretchable conductors and interconnects for electronic applications. Materials 19 3.2 21 Chemistry Frontiers, 2019, 3, 1032-1051. Highly Stretchable and Transparent Double-Network Hydrogel Ionic Conductors as Flexible Thermal–Mechanical Dual Sensors and Electroluminescent Devices. ACS Applied Materials & 246 A transparent, tough self-healing hydrogel based on a dual physically and chemically triple 21 2.7 20 crosslinked network. Journal of Materials Chemistry C, 2019, 7, 14581-14587. Cartilage-inspired hydrogel strain sensors with ultrahigh toughness, good self-recovery and stable anti-swelling properties. Journal of Materials Chemistry A, 2019, 7, 25441-25448. Flexible, stretchable and conductive PVA/PEDOT:PSS composite hydrogels prepared by SIPN strategy. 23 2.3 86 Polymer Testing, 2020, 81, 106213. Breathable and Flexible Polymer Membranes with Mechanoresponsive Electric Resistance. Advanced Functional Materials, 2020, 30, 1907555. 7.8 44 Self-healing conductive hydrogels: preparation, properties and applications. Nanoscale, 2020, 12, 25 2.8 286 1224-1246. Thermo-responsive shape memory sensors based on tough, remolding and anti-freezing hydrogels. Journal of Materials Chemistry C, 2020, 8, 2326-2335. 2.7 26 54 A stretchable and compressible ion gel based on a deep eutectic solvent applied as a strain sensor and 27 2.7 109 electrolyte for supercapacitors. Journal of Materials Chemistry C, 2020, 8, 550-560. Three-Dimensional Self-Healable Touch Sensing Artificial Skin Device. ACS Applied Materials & amp; Interfaces, 2020, 12, 3953-3960. Merkel's Disks Bioinspired Selfâ€Powered Flexible Magnetoelectric Sensors Toward the Robotic Arm's 29 3.3 24 Tactile Perceptual Functioning and Smart Learning. Advanced Intelligent Systems, 2020, 2, 1900140. Label-Free Analysis of Multivalent Protein Binding Using Bioresponsive Nanogels and Surface Plasmon Resonance (SPR). ACS Applied Materials & amp; Interfaces, 2020, 12, 5413-5419. Hydrogels as Potential Nano-, Micro- and Macro-Scale Systems for Controlled Drug Delivery. $\mathbf{31}$ 1.3 76 Materials, 2020, 13, 188. Multifunctional hydrogel based on ionic liquid with antibacterial performance. Journal of Molecular Liquids, 2020, 299, 112185. 2.3 36 Zwitterionic Osmolyteâ€Based Hydrogels with Antifreezing Property, High Conductivity, and Stable 33 7.8 201 Flexibility at Subzero Temperature. Advanced Functional Materials, 2020, 30, 1907986. Self-Healing and Highly Stretchable Gelatin Hydrogel for Self-Powered Strain Sensor. ACS Applied 174 Materials & amp; Interfaces, 2020, 12, 1558-1566. Tough and Stretchable Dual Ionically Cross-Linked Hydrogel with High Conductivity and Fast 35 Recovery Property for High-Performance Flexible Sensors. ACS Applied Materials & amp; Interfaces, 4.0 105 2020, 12, 1577-1587. Sacrificial 3D printing of shrinkable silicone elastomers for enhanced feature resolution in flexible 4.1 tissue scaffolds. Acta Biomaterialia, 2020, 117, 261-272.

		CITATION REPORT		
#	Article		IF	CITATIONS
37	A Regenerable Hydrogel Electrolyte for Flexible Supercapacitors. IScience, 2020, 23, 10	1502.	1.9	31
38	Hydrogen Bonding-Reinforced Hydrogel Electrolyte for Flexible, Robust, and All-in-One Supercapacitor with Excellent Low-Temperature Tolerance. ACS Applied Materials &am 2020, 12, 37977-37985.	o; Interfaces,	4.0	95
39	Progress in wearable electronics/photonics—Moving toward the era of artificial intelli internet of things. InformaÄnÃ-Materiály, 2020, 2, 1131-1162.	gence and	8.5	343
40	Cellulose Nanofibrils Enhanced, Strong, Stretchable, Freezingâ€Tolerant Ionic Conduct Organohydrogel for Multiâ€Functional Sensors. Advanced Functional Materials, 2020,	ve 30, 2003430.	7.8	477
41	A self-adhesive wearable strain sensor based on a highly stretchable, tough, self-healing ultra-sensitive ionic hydrogel. Journal of Materials Chemistry C, 2020, 8, 17349-17364.	and	2.7	94
42	Advances in Soft Bioelectronics for Brain Research and Clinical Neuroengineering. Matt 1923-1947.	er, 2020, 3,	5.0	48
43	Self-healing carrageenan-driven Polyacrylamide hydrogels for strain sensing. Science Ch Technological Sciences, 2020, 63, 2677-2686.	ina	2.0	19
44	Role of a high calcium ion content in extending the properties of alginate dual-crosslink Journal of Materials Chemistry A, 2020, 8, 25390-25401.	ed hydrogels.	5.2	114
45	Ultrastretchable, Tough, Antifreezing, and Conductive Cellulose Hydrogel for Wearable Sensor. ACS Applied Materials & Interfaces, 2020, 12, 53247-53256.	Strain	4.0	105
46	Tannic Acid–Silver Dual Catalysis Induced Rapid Polymerization of Conductive Hydro Excellent Stretchability, Self-Adhesion, and Strain-Sensitivity Properties. ACS Applied M Interfaces, 2020, 12, 56509-56521.	gel Sensors with aterials &	4.0	161
47	Design Strategies of Conductive Hydrogel for Biomedical Applications. Molecules, 2020), 25, 5296.	1.7	69
48	A semi-interpenetrating network ionic composite hydrogel with low modulus, fast self- and high conductivity as flexible sensor. Carbohydrate Polymers, 2020, 248, 116797.	ecoverability	5.1	85
49	A facile preparation method for anti-freezing, tough, transparent, conductive and thern poly(vinyl alcohol)/sodium alginate/glycerol organohydrogel electrolyte. International Jo Biological Macromolecules, 2020, 164, 2512-2523.		3.6	36
50	Multifunctional Poly(vinyl alcohol) Nanocomposite Organohydrogel for Flexible Strain a Temperature Sensor. ACS Applied Materials & Interfaces, 2020, 12, 40815-40827.		4.0	141
51	Highly Conductive, Stretchable, Adhesive, and Selfâ€Healing Polymer Hydrogels for Str Sensor. Macromolecular Materials and Engineering, 2020, 305, 2000479.	ain and Pressure	1.7	21
52	A highly stretchable and intrinsically self-healing strain sensor produced by 3D printing. Physical Prototyping, 2020, 15, 520-531.	Virtual and	5.3	41
53	Solid-state and liquid-free elastomeric ionic conductors with autonomous self-healing a Materials Horizons, 2020, 7, 2994-3004.	bility.	6.4	103
54	Engineering hydrogels by soaking: from mechanical strengthening to environmental ad Chemical Communications, 2020, 56, 13731-13747.	aptation.	2.2	30

#	Article	IF	CITATIONS
55	Liquid Thermo-Responsive Smart Window Derived from Hydrogel. Joule, 2020, 4, 2458-2474.	11.7	218
56	Functional Conductive Hydrogels for Bioelectronics. , 2020, 2, 1287-1301.		193
57	Highly Stretchable, Compressible, Adhesive, Conductive Self-healing Composite Hydrogels with Sensor Capacity. Chinese Journal of Polymer Science (English Edition), 2020, 38, 1221-1229.	2.0	24
58	Skin-Contactable and Antifreezing Strain Sensors Based on Bilayer Hydrogels. Chemistry of Materials, 2020, 32, 8938-8946.	3.2	77
59	Robust Conductive Hydrogel with Antibacterial Activity and UV-Shielding Performance. Industrial & Engineering Chemistry Research, 2020, 59, 17867-17875.	1.8	21
60	Stretchable Self-Powered Generator for Multiple Functional Detection. ACS Applied Electronic Materials, 2020, 2, 3577-3584.	2.0	4
61	An Electroactive Oligoâ€EDOT Platform for Neural Tissue Engineering. Advanced Functional Materials, 2020, 30, 2003710.	7.8	32
62	Mussel-Inspired Redox-Active and Hydrophilic Conductive Polymer Nanoparticles for Adhesive Hydrogel Bioelectronics. Nano-Micro Letters, 2020, 12, 169.	14.4	98
63	A facile approach to obtain highly tough and stretchable LAPONITE®-based nanocomposite hydrogels. Soft Matter, 2020, 16, 8394-8399.	1.2	21
64	Facile Preparation of Eco-Friendly, Flexible Starch-Based Materials with Ionic Conductivity and Strain-Responsiveness. ACS Sustainable Chemistry and Engineering, 2020, 8, 19117-19128.	3.2	27
65	<p>Potential Applications of Nanomaterials and Technology for Diabetic Wound Healing</p> . International Journal of Nanomedicine, 2020, Volume 15, 9717-9743.	3.3	106
66	A multi-model, large range and anti-freezing sensor based on a multi-crosslinked poly(vinyl alcohol) hydrogel for human-motion monitoring. Journal of Materials Chemistry B, 2020, 8, 11010-11020.	2.9	66
67	Ultra elastic, stretchable, self-healing conductive hydrogels with tunable optical properties for highly sensitive soft electronic sensors. Journal of Materials Chemistry A, 2020, 8, 24718-24733.	5.2	128
68	Highly Sensitive Pressure and Strain Sensors Based on Stretchable and Recoverable Ion-Conductive Physically Cross-Linked Double-Network Hydrogels. ACS Applied Materials & Interfaces, 2020, 12, 51969-51977.	4.0	79
69	A skin-matchable, recyclable and biofriendly strain sensor based on a hydrolyzed keratin-containing hydrogel. Journal of Materials Chemistry A, 2020, 8, 24175-24183.	5.2	106
70	Protein Gel Phase Transition: Toward Superiorly Transparent and Hysteresisâ€Free Wearable Electronics. Advanced Functional Materials, 2020, 30, 1910080.	7.8	30
71	Freezing-Tolerant, Highly Sensitive Strain and Pressure Sensors Assembled from Ionic Conductive Hydrogels with Dynamic Cross-Links. ACS Applied Materials & Interfaces, 2020, 12, 25334-25344.	4.0	189
72	Printed Highâ€Density and Flexible Photodetector Arrays via Sizeâ€matched Heterogeneous Microâ€∕Nanostructure. Advanced Optical Materials, 2020, 8, 2000370.	3.6	9

ARTICLE IF CITATIONS One-step preparation of a highly transparent, stretchable and conductive ionic nanocomposite 1.2 8 73 hydrogel. Chemical Physics Letters, 2020, 754, 137667. Self-powered integrated system of a strain sensor and flexible all-solid-state supercapacitor by using 74 6.4 a high performance ionic órganohydrogel. Materials Horizons, 2020, 7, 2085-2096. A transparent and adhesive carboxymethyl cellulose/polypyrrole hydrogel electrode for flexible 75 2.7 67 supercapacitors. Journal of Materials Chemistry C, 2020, 8, 8234-8242. Fabrication of injectable hydrogels<i>via</i>bio-orthogonal chemistry for tissue engineering. New Journal of Chemistry, 2020, 44, 11420-11432. Superfast Selfâ€Healing and Photothermal Active Hydrogel with Nondefective Graphene as Effective 77 1.7 10 Additive. Macromolecular Materials and Engineering, 2020, 305, 2000172. Multiple Stimuli Responsive and Identifiable Zwitterionic Ionic Conductive Hydrogel for Bionic 2.6 Electronic Skin. Advanced Electronic Materials, 2020, 6, 2000239. Highly stretchable polymer/silver nanowires composite sensor for human health monitoring. Nano 79 5.8 74 Research, 2020, 13, 919-926. Low-Cost, Robust Pressure-Responsive Smart Windows with Dynamic Switchable Transmittance. ACS 19 Applied Materials & amp; Interfaces, 2020, 12, 15695-15702. 81 Electrically Conductive Tough Gelatin Hydrogel. Advanced Electronic Materials, 2020, 6, 2000040. 2.6 55 Self-powered ionic sensors overcoming the limitation of ionic conductors as wearable sensing devices. Materials Today Physics, 2020, 15, 100246. Mechanical, adhesive and self-healing ionic liquid hydrogels for electrolytes and flexible strain 83 2.7 57 sensors. Journal of Materials Chemistry C, 2020, 8, 11119-11127. Sandwich-like Polypyrrole/Reduced Graphene Oxide Nanosheets Integrated Gelatin Hydrogel as Mechanically and Thermally Sensitive Skinlike Bioelectronics. ACS Sustainable Chemistry and 3.2 Engineering, 0, , . NIR-responsive multi-healing HMPAM/dextran/AgNWs hydrogel sensor with recoverable mechanics and 85 5.1 34 conductivity for human-machine interaction. Carbohydrate Polymers, 2020, 247, 116686. Single network double cross-linker (SNDCL) hydrogels with excellent stretchability, self-recovery, adhesion strength, and conductivity for human motion monitoring. Soft Matter, 2020, 16, 7323-7331. 1.2 Lignin–Bimetallic Nanoconjugate Doped pH-Responsive Hydrogels for Laser-Assisted Antimicrobial 87 2.6 61 Photodynamic Therapy. Biomacromolecules, 2020, 21, 3216-3230. Advances in Materials for Soft Stretchable Conductors and Their Behavior under Mechanical Deformation. Polymers, 2020, 12, 1454. Hydrogels and Hydrogel-Derived Materials for Energy and Water Sustainability. Chemical Reviews, 89 23.0 646 2020, 120, 7642-7707. Natural Biopolymers for Flexible Sensing and Energy Devices. Chinese Journal of Polymer Science 90 69 (English Edition), 2020, 38, 459-490.

#	Article	IF	CITATIONS
91	Novel electrically-conductive electro-responsive hydrogels for smart actuators with a carbon-nanotube-enriched three-dimensional conductive network and a physical-phase-type three-dimensional interpenetrating network. Journal of Materials Chemistry C, 2020, 8, 4192-4205.	2.7	27
92	Enhanced Stretchable and Sensitive Strain Sensor via Controlled Strain Distribution. Nanomaterials, 2020, 10, 218.	1.9	18
93	Alginate fiber toughened gels similar to skin intelligence as ionic sensors. Carbohydrate Polymers, 2020, 235, 116018.	5.1	45
94	Highly Stretchable and Compressible Carbon Nanofiber–Polymer Hydrogel Strain Sensor for Human Motion Detection. Macromolecular Materials and Engineering, 2020, 305, 1900813.	1.7	28
95	Nucleotide-driven skin-attachable hydrogels toward visual human–machine interfaces. Journal of Materials Chemistry A, 2020, 8, 4515-4523.	5.2	68
96	Transparent, high-strength, stretchable, sensitive and anti-freezing poly(vinyl alcohol) ionic hydrogel strain sensors for human motion monitoring. Journal of Materials Chemistry C, 2020, 8, 2827-2837.	2.7	118
97	Stretchable, Biocompatible, and Multifunctional Silk Fibroin-Based Hydrogels toward Wearable Strain/Pressure Sensors and Triboelectric Nanogenerators. ACS Applied Materials & Interfaces, 2020, 12, 6442-6450.	4.0	302
98	Multifunctional Conductive Hydrogel/Thermochromic Elastomer Hybrid Fibers with a Core–Shell Segmental Configuration for Wearable Strain and Temperature Sensors. ACS Applied Materials & Interfaces, 2020, 12, 7565-7574.	4.0	114
99	Extremely stretchable, sticky and conductive double-network ionic hydrogel for ultra-stretchable and compressible supercapacitors. Chemical Engineering Journal, 2020, 387, 124105.	6.6	92
100	Multi-triggered and enzyme-mimicking graphene oxide/polyvinyl alcohol/G-quartet supramolecular hydrogels. Nanoscale, 2020, 12, 5186-5195.	2.8	22
101	Stretchable and tough conductive hydrogels for flexible pressure and strain sensors. Journal of Materials Chemistry B, 2020, 8, 3437-3459.	2.9	372
102	Polyelectrolyte complex-based self-healing, fatigue-resistant and anti-freezing hydrogels as highly sensitive ionic skins. Journal of Materials Chemistry A, 2020, 8, 3667-3675.	5.2	170
103	Stretchable, self-healing and tissue-adhesive zwitterionic hydrogels as strain sensors for wireless monitoring of organ motions. Materials Horizons, 2020, 7, 1872-1882.	6.4	273
104	4D Printed Hydrogels: Fabrication, Materials, and Applications. Advanced Materials Technologies, 2020, 5, 2000034.	3.0	75
105	Polydiacetylene hydrogel self-healing capacitive strain sensor. Journal of Materials Chemistry C, 2020, 8, 6034-6041.	2.7	53
106	High strength, antifreeze, and moisturizing conductive hydrogel for humanâ€motion detection. Polymer, 2020, 196, 122469.	1.8	50
107	Stretchable Polymerized High Internal Phase Emulsion Separators for High Performance Soft Batteries. Advanced Energy Materials, 2020, 10, 2000467.	10.2	15
108	Stretchable, conductive PAni-PAAm-GOCS hydrogels with excellent mechanical strength, strain sensitivity and skin affinity. Chemical Engineering Journal, 2020, 394, 124901.	6.6	57

#	Article	IF	CITATIONS
109	Magnetic and Conductive Liquid Metal Gels. ACS Applied Materials & Interfaces, 2020, 12, 20119-20128.	4.0	73
110	Recent Progress in Natural Biopolymers Conductive Hydrogels for Flexible Wearable Sensors and Energy Devices: Materials, Structures, and Performance. ACS Applied Bio Materials, 2021, 4, 85-121.	2.3	169
111	High-performance ionic conductive poly(vinyl alcohol) hydrogels for flexible strain sensors based on a universal soaking strategy. Materials Chemistry Frontiers, 2021, 5, 315-323.	3.2	51
112	Transparent, highly-stretchable, adhesive, and ionic conductive composite hydrogel for biomimetic skin. Journal of Materials Science, 2021, 56, 2725-2737.	1.7	35
113	Nanocellulose/LiCl systems enable conductive and stretchable electrolyte hydrogels with tolerance to dehydration and extreme cold conditions. Chemical Engineering Journal, 2021, 408, 127306.	6.6	174
114	Multifunctional conductive hydrogel-based flexible wearable sensors. TrAC - Trends in Analytical Chemistry, 2021, 134, 116130.	5.8	207
115	Movable-crosslinking tough hydrogels with lithium ion as sensitive and durable compressive sensor. Polymer, 2021, 214, 123257.	1.8	6
116	Cellulose nanocrystalline hydrogel based on a choline chloride deep eutectic solvent as wearable strain sensor for human motion. Carbohydrate Polymers, 2021, 255, 117443.	5.1	52
117	Extremely stretchable and healable ionic conductive hydrogels fabricated by surface competitive coordination for human-motion detection. Chemical Engineering Journal, 2021, 420, 127637.	6.6	47
118	Soft Electronics Based on Liquid Conductors. Advanced Electronic Materials, 2021, 7, .	2.6	24
119	Hydrogel-Based Sensor Networks: Compositions, Properties, and Applications—A Review. ACS Applied Bio Materials, 2021, 4, 140-162.	2.3	139
120	Dual Physically Crossâ€Linked Hydrogels Incorporating Hydrophobic Interactions with Promising Repairability and Ultrahigh Elongation. Advanced Functional Materials, 2021, 31, 2008187.	7.8	64
121	Ionic conductive hydrogels toughened by latex particles for strain sensors. Science China Technological Sciences, 2021, 64, 827-835.	2.0	11
122	Materials, Actuators, and Sensors for Soft Bioinspired Robots. Advanced Materials, 2021, 33, e2003139.	11.1	209
123	Highly stretchable composites based on cellulose. International Journal of Biological Macromolecules, 2021, 170, 71-87.	3.6	11
124	Emerging cellulose-derived materials: a promising platform for the design of flexible wearable sensors toward health and environment monitoring. Materials Chemistry Frontiers, 2021, 5, 2051-2091.	3.2	54
125	Antibacterial Hybrid Hydrogels. Macromolecular Bioscience, 2021, 21, e2000252.	2.1	105
126	<i>In situ</i> gelation of aqueous sulfuric acid solution for fuel cells. RSC Advances, 2021, 11, 22461-22466.	1.7	7

#	Article	IF	CITATIONS
127	Adjustable dual temperature-sensitive hydrogel based on a self-assembly cross-linking strategy with highly stretchable and healable properties. Materials Horizons, 2021, 8, 1189-1198.	6.4	56
128	Pectin-based self-healing hydrogel with NaHCO3 degradability for drug loading and release. Journal of Polymer Research, 2021, 28, 1.	1.2	11
129	Ultra-stretchable, self-adhesive, transparent, and ionic conductive organohydrogel for flexible sensor. APL Materials, 2021, 9, .	2.2	23
130	Adhesive, Stretchable, and Transparent Organohydrogels for Antifreezing, Antidrying, and Sensitive Ionic Skins. ACS Applied Materials & Interfaces, 2021, 13, 1474-1485.	4.0	165
131	Highly stretchable, transparent and conductive double-network ionic hydrogels for strain and pressure sensors with ultrahigh sensitivity. Journal of Materials Chemistry C, 2021, 9, 3635-3641.	2.7	59
132	Tissue adhesive hydrogel bioelectronics. Journal of Materials Chemistry B, 2021, 9, 4423-4443.	2.9	129
133	Recent advances in the synthesis of smart hydrogels. Materials Advances, 2021, 2, 4532-4573.	2.6	85
134	An amylopectin-enabled skin-mounted hydrogel wearable sensor. Journal of Materials Chemistry B, 2021, 9, 1082-1088.	2.9	43
135	A highly sensitive strain sensor based on a silica@polyaniline core–shell particle reinforced hydrogel with excellent flexibility, stretchability, toughness and conductivity. Soft Matter, 2021, 17, 2142-2150.	1.2	32
136	A DNA-inspired hydrogel mechanoreceptor with skin-like mechanical behavior. Journal of Materials Chemistry A, 2021, 9, 1835-1844.	5.2	48
137	A safe and robust dual-network hydrogel electrolyte coupled with multi-heteroatom doped carbon nanosheets for flexible quasi-solid-state zinc ion hybrid supercapacitors. Nanoscale, 2021, 13, 15869-15881.	2.8	34
138	Scaling laws to predict humidity-induced swelling and stiffness in hydrogels. Soft Matter, 2021, 17, 9893-9900.	1.2	6
139	An extremely tough and ionic conductive natural-polymer-based double network hydrogel. Journal of Materials Chemistry B, 2021, 9, 7751-7759.	2.9	25
140	Mussel-inspired hydrogels as tough, self-adhesive and conductive bioelectronics: a review. Soft Matter, 2021, 17, 8786-8804.	1.2	17
141	Dynamic bonds enable high toughness and multifunctionality in gelatin/tannic acid-based hydrogels with tunable mechanical properties. Soft Matter, 2021, 17, 9399-9409.	1.2	15
142	Oneâ€step preparation of poly(<scp>NIPAMâ€pyrrole</scp>) electroconductive composite hydrogel and its dielectric properties. Journal of Applied Polymer Science, 2021, 138, 50527.	1.3	3
143	Highly Stretchable, Tough, Resilient, and Antifatigue Hydrogels Based on Multiple Hydrogen Bonding Interactions Formed by Phenylalanine Derivatives. Biomacromolecules, 2021, 22, 1297-1304.	2.6	26
144	Visualizing thermal distribution through hydrogel confined ionic system. IScience, 2021, 24, 102085.	1.9	3

#	Article	IF	CITATIONS
145	A Dual-Responsive, Freezing-Tolerant Hydrogel Sensor and Related Thermal- and Strain-Sensitive Mechanisms. ACS Applied Polymer Materials, 2021, 3, 1479-1487.	2.0	29
146	Hydrogen Bond Interpenetrated Agarose/PVA Network: A Highly Ionic Conductive and Flame-Retardant Gel Polymer Electrolyte. ACS Applied Materials & Interfaces, 2021, 13, 9856-9864.	4.0	53
147	Printable and Recyclable Conductive Ink Based on a Liquid Metal with Excellent Surface Wettability for Flexible Electronics. ACS Applied Materials & amp; Interfaces, 2021, 13, 7443-7452.	4.0	67
148	3D Antidrying Antifreezing Artificial Skin Device with Selfâ€Healing and Touch Sensing Capability. Macromolecular Rapid Communications, 2021, 42, e2100011.	2.0	9
149	Material Design for 3D Multifunctional Hydrogel Structure Preparation. Macromolecular Materials and Engineering, 2021, 306, 2100007.	1.7	5
150	Healable, Degradable, and Conductive MXene Nanocomposite Hydrogel for Multifunctional Epidermal Sensors. ACS Nano, 2021, 15, 7765-7773.	7.3	259
151	Recent advances of hydrogel network models for studies on mechanical behaviors. Acta Mechanica Sinica/Lixue Xuebao, 2021, 37, 367-386.	1.5	56
152	Simple preparation of carboxymethyl cellulose-based ionic conductive hydrogels for highly sensitive, stable and durable sensors. Cellulose, 2021, 28, 4253-4265.	2.4	15
153	Supplementary Networking of Interpenetrating Polymer System (SNIPSy) Strategy to Develop Strong & High Water Content Ionic Hydrogels for Solid Electrolyte Applications. Advanced Functional Materials, 2021, 31, 2100251.	7.8	22
154	Direct Construction of Catechol Lignin for Engineering Longâ€Acting Conductive, Adhesive, and UVâ€Blocking Hydrogel Bioelectronics. Small Methods, 2021, 5, e2001311.	4.6	59
155	Multifunctional Ionic Skin with Sensing, UVâ€Filtering, Waterâ€Retaining, and Antiâ€Freezing Capabilities. Advanced Functional Materials, 2021, 31, 2011176.	7.8	198
156	Fabrication of PVA/PAAm IPN hydrogel with high adhesion and enhanced mechanical properties for body sensors and antibacterial activity. European Polymer Journal, 2021, 146, 110253.	2.6	81
157	Stretchable and self-healing polyvinyl alcohol/cellulose nanofiber nanocomposite hydrogels for strain sensors with high sensitivity and linearity. Composites Communications, 2021, 24, 100677.	3.3	46
158	Breathing-effect assisted transferring large-area PEDOT:PSS to PDMS substrate with robust adhesion for stable flexible pressure sensor. Composites Part A: Applied Science and Manufacturing, 2021, 143, 106299.	3.8	34
159	Highly Stretchable and Reconfigurable Ionogels with Unprecedented Thermoplasticity and Ultrafast Self-Healability Enabled by Gradient-Responsive Networks. Macromolecules, 2021, 54, 3832-3844.	2.2	45
160	Cu(<scp>II</scp>) and Cd(<scp>II</scp>) capture using novel thermosensitive hydrogel microspheres: adsorption behavior study and mechanism investigation. Journal of Chemical Technology and Biotechnology, 2021, 96, 2382-2389.	1.6	10
161	Skinâ€Inspired Doubleâ€Hydrophobicâ€Coating Encapsulated Hydrogels with Enhanced Water Retention Capacity. Advanced Functional Materials, 2021, 31, 2102433.	7.8	96
162	Transient modeling of magneto-chemo-electro-mechanical behavior of magnetic polyelectrolyte hydrogel. Mechanics of Materials, 2021, 155, 103783.	1.7	3

#	Article	IF	CITATIONS
163	Self-Healing, Stretchable, Biocompatible, and Conductive Alginate Hydrogels through Dynamic Covalent Bonds for Implantable Electronics. Polymers, 2021, 13, 1133.	2.0	30
164	Sensitive Monitoring Particles Conveying in Water Hydraulic System via a Facile Molding Conductive Hydrogel. IEEE Sensors Journal, 2021, 21, 10506-10513.	2.4	2
165	Stretchable and Selfâ€Healable Organohydrogel as Electronic Skin with Lowâ€Temperature Tolerance and Multiple Stimuli Responsiveness. Advanced Materials Technologies, 2021, 6, 2001234.	3.0	10
166	Hydrolyzed Hydrogels with Super Stretchability, High Strength, and Fast Self-Recovery for Flexible Sensors. ACS Applied Materials & Interfaces, 2021, 13, 22774-22784.	4.0	40
167	Anisotropic, Wrinkled, and Crack-Bridging Structure for Ultrasensitive, Highly Selective Multidirectional Strain Sensors. Nano-Micro Letters, 2021, 13, 122.	14.4	74
168	Transparent Bamboo with High Radiative Cooling Targeting Energy Savings. , 2021, 3, 883-888.		30
169	Bioinspired Conductive Hydrogel with Ultrahigh Toughness and Stable Antiswelling Properties for Articular Cartilage Replacement. , 2021, 3, 807-814.		52
170	Anti-freezing and antibacterial conductive organohydrogel co-reinforced by 1D silk nanofibers and 2D graphitic carbon nitride nanosheets as flexible sensor. Chemical Engineering Journal, 2021, 411, 128470.	6.6	81
171	Stretchable and Soft Organic–Ionic Devices for Bodyâ€integrated Electronic Systems. Advanced Materials Technologies, 2022, 7, 2001273.	3.0	16
172	Metal cation-ligand interaction modulated mono-network ionic conductive hydrogel for wearable strain sensor. Journal of Materials Science, 2021, 56, 14531-14541.	1.7	11
173	Lignin and cellulose derivatives-induced hydrogel with asymmetrical adhesion, strength, and electriferous properties for wearable bioelectrodes and self-powered sensors. Chemical Engineering Journal, 2021, 414, 128903.	6.6	80
174	A bio-adhesive ion-conducting organohydrogel as a high-performance non-invasive interface for bioelectronics. Chemical Engineering Journal, 2022, 427, 130886.	6.6	29
175	Chiral Nematic Cellulose Nanocrystal/Germania and Carbon/Germania Composite Aerogels as Supercapacitor Materials. Chemistry of Materials, 2021, 33, 5197-5209.	3.2	31
176	Hydroxypropyl cellulose enhanced ionic conductive double-network hydrogels. International Journal of Biological Macromolecules, 2021, 181, 418-425.	3.6	29
177	A tunable self-healing ionic hydrogel with microscopic homogeneous conductivity as a cardiac patch for myocardial infarction repair. Biomaterials, 2021, 273, 120811.	5.7	79
178	Stretchable calix[4] areneâ€based gels by induction of water. Journal of Applied Polymer Science, 2021, 138, 51235.	1.3	0
179	Bio-inspired flexible electronics for smart E-skin. Acta Biomaterialia, 2022, 139, 280-295.	4.1	48
180	Frame-structured and self-healing ENR-based nanocomposites for strain sensors. European Polymer Journal, 2021, 154, 110569.	2.6	9

#	Article	IF	CITATIONS
181	Large-Scale, Ultrastrong Cu ²⁺ Cross-Linked Sodium Alginate Membrane for Effective Salinity Gradient Power Conversion. ACS Applied Polymer Materials, 2021, 3, 3902-3910.	2.0	14
182	Bioinspired flexible, high-strength, and versatile hydrogel with the fiberboard-and-mortar hierarchically ordered structure. Nano Research, 2021, 14, 3643-3652.	5.8	21
183	Recent advances and challenges of electrode materials for flexible supercapacitors. Coordination Chemistry Reviews, 2021, 438, 213910.	9.5	204
184	Digital Light Processing 4D Printing of Transparent, Strong, Highly Conductive Hydrogels. ACS Applied Materials & Interfaces, 2021, 13, 36286-36294.	4.0	52
185	Polyacrylamide/Chitosan-Based Conductive Double Network Hydrogels with Outstanding Electrical and Mechanical Performance at Low Temperatures. ACS Applied Materials & Interfaces, 2021, 13, 34942-34953.	4.0	63
187	Hydrogen-bonded network enables polyelectrolyte complex hydrogels with high stretchability, excellent fatigue resistance and self-healability for human motion detection. Composites Part B: Engineering, 2021, 217, 108901.	5.9	44
188	Protein and Polysaccharide-Based Electroactive and Conductive Materials for Biomedical Applications. Molecules, 2021, 26, 4499.	1.7	7
189	An Ultra-Stretchable Sensitive Hydrogel Sensor for Human Motion and Pulse Monitoring. Micromachines, 2021, 12, 789.	1.4	10
190	The Manufacture of Unbreakable Bionics via Multifunctional and Selfâ€Healing Silk–Graphene Hydrogels. Advanced Materials, 2021, 33, e2100047.	11.1	87
191	Advances in transparent and stretchable strain sensors. Advanced Composites and Hybrid Materials, 2021, 4, 435-450.	9.9	109
192	Mechanically Strong and Multifunctional Hybrid Hydrogels with Ultrahigh Electrical Conductivity. Advanced Functional Materials, 2021, 31, 2104536.	7.8	113
193	Ultraâ€Sensitive and Ultraâ€Stretchable Strain Sensors Based on Emulsion Gels with Broad Operating Temperature. Chemistry - A European Journal, 2021, 27, 13161-13171.	1.7	5
194	Transparent, conductive cellulose hydrogel for flexible sensor and triboelectric nanogenerator at subzero temperature. Carbohydrate Polymers, 2021, 265, 118078.	5.1	86
195	Stretchable and Conductive Composite Structural Color Hydrogel Films as Bionic Electronic Skins. Advanced Science, 2021, 8, e2102156.	5.6	111
196	Current and future coating technologies for architectural glazing applications. Energy and Buildings, 2021, 244, 111022.	3.1	55
197	Self-Healing, Self-Adhesive Silk Fibroin Conductive Hydrogel as a Flexible Strain Sensor. ACS Applied Materials & Interfaces, 2021, 13, 40013-40031.	4.0	146
198	Ultra-strong hydroxypropyl cellulose/polyvinyl alcohol composite hydrogel by combination of triple-network and mechanical training. International Journal of Biological Macromolecules, 2021, 184, 200-208.	3.6	23
199	Wearable Biofuel Cells: Advances from Fabrication to Application. Advanced Functional Materials, 2021, 31, 2103976.	7.8	38

#	Article	IF	CITATIONS
200	Antibacterial Dual Network Hydrogels for Sensing and Human Health Monitoring. Advanced Healthcare Materials, 2021, 10, e2101089.	3.9	69
201	Ultrastretchable, Highly Transparent, Self-Adhesive, and 3D-Printable Ionic Hydrogels for Multimode Tactical Sensing. Chemistry of Materials, 2021, 33, 6731-6742.	3.2	48
202	Lowâ€Molecularâ€Weight Supramolecularâ€Polymer Doubleâ€Network Eutectogels for Selfâ€Adhesive and Bidirectional Sensors. Advanced Functional Materials, 2021, 31, 2104963.	7.8	91
203	Self-healing strain-responsive electrochromic display based on a multiple crosslinked network hydrogel. Chemical Engineering Journal, 2022, 430, 132685.	6.6	37
204	A hierarchically designed nanocomposite hydrogel with multisensory capabilities towards wearable devices for human-body motion and glucose concentration detection. Composites Science and Technology, 2021, 213, 108894.	3.8	35
205	Ionic conductive hydrogels with long-lasting antifreezing, water retention and self-regeneration abilities. Chemical Engineering Journal, 2021, 419, 129478.	6.6	172
206	A multifunctional nanocellulose-based hydrogel for strain sensing and self-powering applications. Carbohydrate Polymers, 2021, 268, 118210.	5.1	40
207	An adhesive and self-healable hydrogel with high stretchability and compressibility for human motion detection. Composites Science and Technology, 2021, 213, 108948.	3.8	31
208	Self-Powered Smart Arm Training Band Sensor Based on Extremely Stretchable Hydrogel Conductors. ACS Applied Materials & Interfaces, 2021, 13, 44868-44877.	4.0	49
209	Strategy of Fabricating Flexible Strain Sensor via Layer-by-Layer Assembly of Conductive Hydrogels. ACS Applied Electronic Materials, 2021, 3, 3889-3897.	2.0	10
210	Chitosan-driven skin-attachable hydrogel sensors toward human motion and physiological signal monitoring. Carbohydrate Polymers, 2021, 268, 118240.	5.1	57
211	Direct-ink-writing (DIW) 3D printing functional composite materials based on supra-molecular interaction. Composites Science and Technology, 2021, 215, 109013.	3.8	28
212	Alkaline sodium polyacrylate-starch hydrogels with tolerance to cold conditions for stretchable zinc-air batteries. Composites Part B: Engineering, 2021, 224, 109228.	5.9	32
213	Double cross-linked poly(vinyl alcohol) microcomposite hydrogels with high strength and cell compatibility. European Polymer Journal, 2021, 160, 110786.	2.6	12
214	Biomaterials- and biostructures Inspired high-performance flexible stretchable strain sensors: A review. Chemical Engineering Journal, 2021, 425, 129949.	6.6	65
215	A multiscale tensile failure model for double network elastomer composites. Mechanics of Materials, 2021, 163, 104074.	1.7	10
216	Nanocellulose-mediated transparent high strength conductive hydrogel based on in-situ formed polypyrrole nanofibrils as a multimodal sensor. Carbohydrate Polymers, 2021, 273, 118600.	5.1	35
217	Fully self-healable, highly stretchable, and anti-freezing supramolecular gels for energy-harvesting triboelectric nanogenerator and self-powered wearable electronics. Nano Energy, 2021, 90, 106525.	8.2	36

#	Article	IF	CITATIONS
218	High-strength, highly conductive and woven organic hydrogel fibers for flexible electronics. Chemical Engineering Journal, 2022, 428, 131172.	6.6	40
219	Protein-assisted freeze-tolerant hydrogel with switchable performance toward customizable flexible sensor. Chemical Engineering Journal, 2022, 428, 131171.	6.6	34
220	One-pot freezing-thawing preparation of cellulose nanofibrils reinforced polyvinyl alcohol based ionic hydrogel strain sensor for human motion monitoring. Carbohydrate Polymers, 2022, 275, 118697.	5.1	54
221	Hydrogen-Bond-Triggered Hybrid Nanofibrous Membrane-Based Wearable Pressure Sensor with Ultrahigh Sensitivity over a Broad Pressure Range. ACS Nano, 2021, 15, 4380-4393.	7.3	155
222	Nature-inspired semi-IPN hydrogels with tunable mechanical properties and multi-responsiveness. New Journal of Chemistry, 2021, 45, 861-871.	1.4	5
223	Highly synergistic, electromechanical and mechanochromic dual-sensing ionic skin with multiple monitoring, antibacterial, self-healing, and anti-freezing functions. Journal of Materials Chemistry A, 2021, 9, 23916-23928.	5.2	32
224	Conductive Hydrogels for Bioelectronic Interfaces. , 2020, , 237-265.		3
225	Biocompatible and self-healing ionic gel skin as shape-adaptable and skin-adhering sensor of human motions. Chemical Engineering Journal, 2020, 398, 125540.	6.6	46
226	Highly tough supramolecular double network hydrogel electrolytes for an artificial flexible and low-temperature tolerant sensor. Journal of Materials Chemistry A, 2020, 8, 6776-6784.	5.2	220
227	Design and fabrication of conductive polymer hydrogels and their applications in flexible supercapacitors. Journal of Materials Chemistry A, 2020, 8, 23059-23095.	5.2	151
228	Environment adaptive hydrogels for extreme conditions: a review. Biosurface and Biotribology, 2019, 5, 104-109.	0.6	6
229	3D Printed Ultrastretchable, Hyper-Antifreezing Conductive Hydrogel for Sensitive Motion and Electrophysiological Signal Monitoring. Research, 2020, 2020, 1426078.	2.8	34
230	Highly Stretchable and Transparent Ionic Conductor with Novel Hydrophobicity and Extreme-Temperature Tolerance. Research, 2020, 2020, 2505619.	2.8	44
231	Design for dynamic hydrogen bonding in a double network structure to improve the mechanical properties of sodium alginate fibers. New Journal of Chemistry, 2021, 45, 20329-20341.	1.4	3
232	Hydrogel-based flexible materials for diabetes diagnosis, treatment, and management. Npj Flexible Electronics, 2021, 5, .	5.1	30
233	Multifunctional flexible polyvinyl alcohol nanocomposite hydrogel for stress and strain sensor. Journal of Nanoparticle Research, 2021, 23, 1.	0.8	12
234	Mussel-Inspired Conductive Hydrogel with Self-Healing, Adhesive, and Antibacterial Properties for Wearable Monitoring. ACS Applied Polymer Materials, 2021, 3, 5798-5807.	2.0	40
235	A Stiff yet Rapidly Selfâ€Healable Elastomer in Harsh Aqueous Environments. Advanced Functional Materials, 2022, 32, .	7.8	41

#	Article	IF	Citations
236	Development of Conductive Hydrogels for Fabricating Flexible Strain Sensors. Small, 2022, 18, e2101518.	5.2	188
237	A review on the features, performance and potential applications of hydrogel-based wearable strain/pressure sensors. Advances in Colloid and Interface Science, 2021, 298, 102553.	7.0	82
238	Temperature‣tress Bimodal Sensing Conductive Hydrogelâ€Liquid Metal by Facile Synthesis for Smart Wearable Sensor. Macromolecular Rapid Communications, 2022, 43, e2100543.	2.0	26
240	Pteridine derivatives: novel low-molecular-weight organogelators and their piezofluorochromism. New Journal of Chemistry, 2020, 44, 3382-3391.	1.4	2
241	High Performance Double Conductive Network Hydrogel Based on Soaking Strategy for Supercapacitors. Macromolecular Materials and Engineering, 0, , 2100652.	1.7	4
242	Preparation and characterization of anti-freezing conductive organohydrogel based on carboxyl modified polyvinyl alcohol and polypyrrole. Reactive and Functional Polymers, 2022, 170, 105089.	2.0	4
243	A Hydrogel Ionic Circuit Based Highâ€Intensity Iontophoresis Device for Intraocular Macromolecule and Nanoparticle Delivery. Advanced Materials, 2022, 34, e2107315.	11.1	18
244	Recent progress on stretchable conductors. Wuli Xuebao/Acta Physica Sinica, 2020, 69, 177401.	0.2	5
245	Biomineral calcium-ion-mediated conductive hydrogels with high stretchability and self-adhesiveness for sensitive iontronic sensors. Cell Reports Physical Science, 2021, 2, 100623.	2.8	49
246	Nanocellulose-enhanced organohydrogel with high-strength, conductivity, and anti-freezing properties for wearable strain sensors. Carbohydrate Polymers, 2022, 277, 118872.	5.1	45
247	The Effect of Glycerin Content in Sodium Alginate/Poly(vinyl alcohol)-Based Hydrogels for Wound Dressing Application. International Journal of Molecular Sciences, 2021, 22, 12022.	1.8	14
248	Multifunctional Organohydrogel-Based Ionic Skin for Capacitance and Temperature Sensing toward Intelligent Skin-like Devices. Chemistry of Materials, 2021, 33, 8623-8634.	3.2	49
249	Gel-Based Luminescent Conductive Materials and Their Applications in Biosensors and Bioelectronics. Materials, 2021, 14, 6759.	1.3	4
250	Slide-Ring Structure-Based Double-Network Hydrogel with Enhanced Stretchability and Toughness for 3D-Bio-Printing and Its Potential Application as Artificial Small-Diameter Blood Vessels. ACS Applied Bio Materials, 2021, 4, 8597-8606.	2.3	20
251	Silicate-Based Electro-Conductive Inks for Printing Soft Electronics and Tissue Engineering. Gels, 2021, 7, 240.	2.1	6
252	Healable, Adhesive, and Conductive Nanocomposite Hydrogels with Ultrastretchability for Flexible Sensors. ACS Applied Materials & Interfaces, 2021, 13, 58048-58058.	4.0	40
253	Multifunctional Ternary Hybrid Hydrogel Sensor Prepared <i>via</i> the Synergistic Stabilization Effect. ACS Applied Materials & Interfaces, 2021, 13, 57725-57734.	4.0	19
254	A Review on Tough Soft Composites at Different Length Scales. Textiles, 2021, 1, 513-533.	1.8	2

#	Article	IF	CITATIONS
255	A Novel Conductive Antibacterial Nanocomposite Hydrogel Dressing for Healing of Severely Infected Wounds. Frontiers in Chemistry, 2021, 9, 787886.	1.8	11
256	Preparation of chitosan/sodium alginate conductive hydrogels with high salt contents and their application in flexible supercapacitors. Carbohydrate Polymers, 2022, 278, 118927.	5.1	30
257	3D Printable, ultra-stretchable, Self-healable, and self-adhesive dual cross-linked nanocomposite ionogels as ultra-durable strain sensors for motion detection and wearable human-machine interface. Chemical Engineering Journal, 2022, 431, 133949.	6.6	55
258	Design and performance of an ultra-sensitive and super-stretchable hydrogel for artificial skin. Journal of Materials Chemistry C, 2021, 9, 17042-17049.	2.7	16
259	Stretchable, adhesive, antifreezing and 3D printable double-network hydrogel for flexible strain sensors. European Polymer Journal, 2022, 164, 110977.	2.6	19
260	Polysaccharide-based electroconductive hydrogels: Structure, properties and biomedical applications. Carbohydrate Polymers, 2022, 278, 118998.	5.1	22
261	Freeze/thawed polyvinyl alcohol hydrogels: Present, past and future. European Polymer Journal, 2022, 164, 110974.	2.6	134
262	Conductive ionogel with underwater adhesion and stability as multimodal sensor for contactless signal propagation and wearable devices. Composites Part B: Engineering, 2022, 232, 109612.	5.9	28
263	Enhanced, hydrophobic, initial-shape programmable shape-memory composites with a bio-based nano-framework via gradient metal-ligand cross-linking. Composites Science and Technology, 2022, 220, 109255.	3.8	8
264	Highly adhesive, self-healing, anti-freezing and anti-drying organohydrogel with self-power and mechanoluminescence for multifunctional flexible sensor. Composites Part A: Applied Science and Manufacturing, 2022, 154, 106806.	3.8	23
265	Freezing-Tolerant Hydrogel Composed of Sulfonated Chitosan and Poly(vinyl alcohol) Featuring Excellent Stretchability and High Proton Conduction. ACS Applied Polymer Materials, 2022, 4, 1466-1474.	2.0	7
266	Environment Adaptable Nanocomposite Organohydrogels for Multifunctional Epidermal Sensors. Advanced Materials Interfaces, 2022, 9, .	1.9	6
267	Strategies for interface issues and challenges of neural electrodes. Nanoscale, 2022, 14, 3346-3366.	2.8	18
268	Correlating Ionic Conductivity and Microstructure in Polyelectrolyte Hydrogels for Bioelectronic Devices. Macromolecular Rapid Communications, 2022, 43, e2100687.	2.0	13
269	A Li ⁺ -integrated metallohydrogel-based mixed conductive electrochemical semiconductor. Chemical Communications, 2022, 58, 549-552.	2.2	9
270	Bioadhesive and conductive hydrogel-integrated brain-machine interfaces for conformal and immune-evasive contact with brain tissue. Matter, 2022, 5, 1204-1223.	5.0	72
271	Recent Advances in Intelligent Wearable Medical Devices Integrating Biosensing and Drug Delivery. Advanced Materials, 2022, 34, e2108491.	11.1	64
272	Energy Saving and Energy Generation Smart Window with Active Control and Antifreezing Functions. Advanced Science, 2022, 9, e2105184.	5.6	32

ARTICLE IF CITATIONS # Adhesive Ionohydrogels Based on Ionic Liquid/Water Binary Solvents with Freezing Tolerance for 273 3.2 66 Flexible Ionotronic Devices. Chemistry of Materials, 2022, 34, 1065-1077. Coâ€MnO₂ Nanorods for Highâ€Performance Sodium/Potassiumâ€Ion Batteries and Highly 274 5.6 Conductive Gelâ€Type Supercapacitors. Advanced Science, 2022, 9, e2105510. Conductive Materials with Elaborate Micro/Nanostructures for Bioelectronics. Advanced Materials, 275 11.1 12 2022, 34, e2110024. Stretchable, self-adhesive, conductive, anti-freezing sodium polyacrylate-based composite hydrogels 2.0 for wearable flexible strain sensors. Reactive and Functional Polymers, 2022, 172, 105197. Polysaccharide-based high-strength, self-healing and ultra-sensitive wearable sensors. Industrial 277 2.5 9 Crops and Products, 2022, 178, 114618. Flexible sensitive hydrogel sensor with self-powered capability. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 639, 128381. 278 2.3 Highly Stretchable and Sensitive Strain Sensor based on lonogel/Ag Synergistic Conductive Network. 279 1.9 9 Advanced Materials Interfaces, 2022, 9, . Biodegradable and Injectable Hydrogels in Biomedical Applications. Biomacromolecules, 2022, 23, 280 2.6 609-618. Highly Transparent, Self-Healing, and Self-Adhesive Double Network Hydrogel for Wearable Sensors. 281 2.0 5 Frontiers in Bioengineering and Biotechnology, 2022, 10, 846401. Stretchable, Adhesive, Self-Healable, and Conductive Hydrogel-Based Deformable Triboelectric Nanogenerator for Energy Harvesting and Human Motion Sensing. ACS Applied Materials & amp; Interfaces, 2022, 14, 9126-9137. Rational design of high-performance wearable tactile sensors utilizing bioinspired structures/functions, natural biopolymers, and biomimetic strategies. Materials Science and 283 14.8 30 Engineering Reports, 2022, 148, 100672. Motion Detecting, Temperature Alarming, and Wireless Wearable Bioelectronics Based on Intrinsically Antibacterial Conductive Hydrogels. ACS Applied Materials & amp; Interfaces, 2022, 14, 4.0 24 14596-14606. A Self-Supporting, Conductor-Exposing, Stretchable, Ultrathin, and Recyclable Kirigami-Structured Liquid Metal Paper for Multifunctional E-Skin. ACS Nano, 2022, 16, 5909-5919. 285 7.3 102 3D Printable Silicone Rubber for Long-Lasting and Weather-Resistant Wearable Devices. ACS Applied Polymer Materials, 2022, 4, 2384-2392. Waterâ€Saturated Ion Gel for Humidityâ€Independent High Precision Epidermal Ionic Temperature Sensor. 287 5.6 16 Advanced Science, 2022, 9, e2200687. Kneadingâ€Inspired Versatile Design for Biomimetic Skins with a Wide Scope of Customizable Features. Advanced Science, 2022, 9, e2200108. A Wearable Strain Sensor Based on Electroconductive Hydrogel Composites for Human Motion 289 1.7 12 Detection. Macromolecular Materials and Engineering, 2022, 307, . Mechanically tough <scp>dryâ€free</scp> ionic hydrogel microfibers swollen in aqueous electrolyte 290 prepared by microfluidic devices. Journal of Polymer Science, 2022, 60, 1758-1766.

#	Article	IF	CITATIONS
291	Conductive membrane sensor-based temperature and pressure responsive f-polymer dot hydrogels. Composites Part B: Engineering, 2022, 234, 109755.	5.9	6
292	Continuous fiber extruder for desktop 3D printers toward long fiber embedded hydrogel 3D printing. HardwareX, 2022, 11, e00297.	1.1	5
293	Development and Applications of Hydrogel-Based Triboelectric Nanogenerators: A Mini-Review. Polymers, 2022, 14, 1452.	2.0	6
294	A solvent-exchange strategy to develop stiff and tough hydrogel electrolytes for flexible and stable supercapacitor. Journal of Power Sources, 2022, 532, 231326.	4.0	22
295	Bioinspired multifunctional self-powered ionic receptors derived by gradient polyelectrolyte hydrogels. Chemical Engineering Journal, 2022, 438, 135610.	6.6	12
296	Flexible bioelectrode via in-situ growth of MOF/enzyme on electrospun nanofibers for stretchable enzymatic biofuel cell. Chemical Engineering Journal, 2022, 440, 135719.	6.6	13
297	Hydrophobic association and ionic coordination dual crossedâ€linked conductive hydrogels with selfâ€adhesive and selfâ€healing virtues for conformal strain sensors. Journal of Polymer Science, 2022, 60, 812-824.	2.0	7
298	Nonâ€Swelling and Antiâ€Fouling MXene Nanocomposite Hydrogels for Underwater Strain Sensing. Advanced Materials Technologies, 2022, 7, .	3.0	54
299	A Packaged and Reusable Hydrogel Strain Sensor with Conformal Adhesion to Skin for Human Motions Monitoring. Advanced Materials Interfaces, 2022, 9, .	1.9	7
300	Super Tough and Intelligent Multibond Network Physical Hydrogels Facilitated by Ti ₃ C ₂ T _{<i>x</i>} MXene Nanosheets. ACS Nano, 2022, 16, 1567-1577.	7.3	74
300 301		7.3 2.7	74 49
	Ti ₃ C ₂ T _{<i>x</i>} MXene Nanosheets. ACS Nano, 2022, 16, 1567-1577. MXene-based composite double-network multifunctional hydrogels as highly sensitive strain sensors.		
301	Ti ₃ C ₂ T _{<i>x</i>} MXene Nanosheets. ACS Nano, 2022, 16, 1567-1577. MXene-based composite double-network multifunctional hydrogels as highly sensitive strain sensors. Journal of Materials Chemistry C, 2022, 10, 7604-7613. Polyvinyl Alcohol/Graphene Oxide Conductive Hydrogels via the Synergy of Freezing and Salting Out	2.7	49
301 302	 Ti₃C₂T_{<i>x</i>} MXene Nanosheets. ACS Nano, 2022, 16, 1567-1577. MXene-based composite double-network multifunctional hydrogels as highly sensitive strain sensors. Journal of Materials Chemistry C, 2022, 10, 7604-7613. Polyvinyl Alcohol/Graphene Oxide Conductive Hydrogels via the Synergy of Freezing and Salting Out for Strain Sensors. Sensors, 2022, 22, 3015. Poly(vinyl alcohol)/Gelatin-Based Eutectogels for the Sensitive Strain Sensor with Recyclability and 	2.7 2.1	49 27
301 302 303	 Ti₃C₂T_{<i>xx</i>} MXene Nanosheets. ACS Nano, 2022, 16, 1567-1577. MXene-based composite double-network multifunctional hydrogels as highly sensitive strain sensors. Journal of Materials Chemistry C, 2022, 10, 7604-7613. Polyvinyl Alcohol/Graphene Oxide Conductive Hydrogels via the Synergy of Freezing and Salting Out for Strain Sensors. Sensors, 2022, 22, 3015. Poly(vinyl alcohol)/Gelatin-Based Eutectogels for the Sensitive Strain Sensor with Recyclability and Multienvironmental Suitability. ACS Applied Polymer Materials, 2022, 4, 3982-3993. MXene-based film electrode and all-round hydrogel electrolyte for flexible all-solid supercapacitor 	2.7 2.1 2.0	49 27 16
301 302 303 304	 Ticsub>3C₂T_{<i>x</i>}MXene Nanosheets. ACS Nano, 2022, 16, 1567-1577. MXene-based composite double-network multifunctional hydrogels as highly sensitive strain sensors. Journal of Materials Chemistry C, 2022, 10, 7604-7613. Polyvinyl Alcohol/Graphene Oxide Conductive Hydrogels via the Synergy of Freezing and Salting Out for Strain Sensors. Sensors, 2022, 22, 3015. Poly(vinyl alcohol)/Gelatin-Based Eutectogels for the Sensitive Strain Sensor with Recyclability and Multienvironmental Suitability. ACS Applied Polymer Materials, 2022, 4, 3982-3993. MXene-based film electrode and all-round hydrogel electrolyte for flexible all-solid supercapacitor with extremely low working temperature. Cell Reports Physical Science, 2022, 3, 100893. Healable, Recyclable, and Multifunctional Soft Electronics Based on Biopolymer Hydrogel and 	2.7 2.1 2.0 2.8	49 27 16 32
301 302 303 304 305	 Tixsub>3C₂T_{<i>x</i>>/i>}MXene Nanosheets. ACS Nano, 2022, 16, 1567-1577. MXene-based composite double-network multifunctional hydrogels as highly sensitive strain sensors. Journal of Materials Chemistry C, 2022, 10, 7604-7613. Polyvinyl Alcohol/Graphene Oxide Conductive Hydrogels via the Synergy of Freezing and Salting Out for Strain Sensors. Sensors, 2022, 22, 3015. Poly(vinyl alcohol)/Gelatin-Based Eutectogels for the Sensitive Strain Sensor with Recyclability and Multienvironmental Suitability. ACS Applied Polymer Materials, 2022, 4, 3982-3993. MXene-based film electrode and all-round hydrogel electrolyte for flexible all-solid supercapacitor with extremely low working temperature. Cell Reports Physical Science, 2022, 3, 100893. Healable, Recyclable, and Multifunctional Soft Electronics Based on Biopolymer Hydrogel and Patterned Liquid Metal. Small, 2022, 18, e2201643. An anti-freezing and strong wood-derived hydrogel for high-performance electronic skin and 	2.7 2.1 2.0 2.8 5.2	 49 27 16 32 40

#	Article	IF	CITATIONS
309	Poly(N-Isopropylacrylamide) Based Electrically Conductive Hydrogels and Their Applications. Gels, 2022, 8, 280.	2.1	9
310	A Highly Sensitive, Ultra-Durable, Eco-Friendly Ionic Skin for Human Motion Monitoring. Polymers, 2022, 14, 1902.	2.0	3
311	Tough and Ultrastretchable Liquidâ€Free Ion Conductor Strengthened by Deep Eutectic Solvent Hydrolyzed Cellulose Microfibers. Advanced Functional Materials, 2022, 32, .	7.8	48
312	Cadmium(II) Capture Using Amino Functionalized Hydrogel with Double Network Interpenetrating Structure: Adsorption Behavior Study. Environmental Engineering Science, 2022, 39, 639-649.	0.8	2
313	Ultrastretchable and adhesive agarose/Ti3C2T -crosslinked-polyacrylamide double-network hydrogel for strain sensor. Carbohydrate Polymers, 2022, 290, 119506.	5.1	23
314	Highly stretchable, elastic, antimicrobial conductive hydrogels with environment-adaptive adhesive property for health monitoring. Journal of Colloid and Interface Science, 2022, 622, 612-624.	5.0	13
315	Strong and Tough Conductive Organoâ€Hydrogels via Freeze asting Assisted Solution Substitution. Advanced Functional Materials, 2022, 32, .	7.8	57
316	Flexible and Stretchable Electrically Conductive Polymer Materials for Physical Sensing Applications. Polymer Reviews, 2023, 63, 67-126.	5.3	31
317	Highly Elastic, Sensitive, Stretchable, and Skin-Inspired Conductive Sodium Alginate/Polyacrylamide/Gallium Composite Hydrogel with Toughness as a Flexible Strain Sensor. Biomacromolecules, 2022, 23, 2603-2613.	2.6	25
318	Tough Engineering Hydrogels Based on Swelling–Freeze–Thaw Method for Artificial Cartilage. ACS Applied Materials & Interfaces, 2022, 14, 25093-25103.	4.0	18
319	Hydroxyethyl cellulose-based electrically conductive, mechanically resistant, strain-sensitive self-healing hydrogels. Cellulose, 2022, 29, 5725-5743.	2.4	8
320	Electronic skin based on cellulose/KCl/sorbitol organohydrogel. Carbohydrate Polymers, 2022, 292, 119645.	5.1	23
321	Electroâ€Thermo Controlled Water Valve Based on 2D Graphene–Cellulose Hydrogels. Advanced Functional Materials, 2022, 32, .	7.8	10
322	Conductive photo-thermal responsive bifunctional hydrogel system with self-actuating and self-monitoring abilities. Nano Research, 2022, 15, 7703-7712.	5.8	17
323	Microfluidic Janus fibers with dual thermoresponsive behavior for thermoactuation. European Polymer Journal, 2022, 174, 111321.	2.6	1
324	A Scalable Bacterial Cellulose Ionogel for Multisensory Electronic Skin. Research, 2022, 2022, .	2.8	51
325	Bio-inspired, super-stretchable and self-adhesive hybrid hydrogel with SC-PDA/GO-Ca2+/PAM framework for high precision wearable sensors. Chemical Engineering Journal, 2022, 447, 137259.	6.6	35
326	Highly sensitive, weatherability strain and temperature sensors based on AgNPs@CNT composite polyvinyl hydrogel. Journal of Materials Chemistry A, 2022, 10, 15000-15011.	5.2	34

# 327	ARTICLE Super Stretchable, Selfâ€Healing, Adhesive Ionic Conductive Hydrogels Based on Tailorâ€Made Ionic Liquid for Highâ€Performance Strain Sensors. Advanced Functional Materials, 2022, 32, .	IF 7.8	CITATIONS 148
328	Deep Learning Assisted Body Area Triboelectric Hydrogel Sensor Network for Infant Care. Advanced Functional Materials, 2022, 32, .	7.8	51
329	Strong, tough, ionic conductive, and freezing-tolerant all-natural hydrogel enabled by cellulose-bentonite coordination interactions. Nature Communications, 2022, 13, .	5.8	108
330	Nanocomposite conductive tough hydrogel based on metal coordination reinforced covalent Pluronic F-127 micelle network for human motion sensing. Journal of Colloid and Interface Science, 2022, 625, 817-830.	5.0	21
331	Tough, Anti-Swelling Supramolecular Hydrogels Mediated by Surfactant–Polymer Interactions for Underwater Sensors. ACS Applied Materials & Interfaces, 2022, 14, 30385-30397.	4.0	37
332	Polymer-Magnetic Semiconductor Nanocomposites for Industrial Electronic Applications. Polymers, 2022, 14, 2467.	2.0	15
333	A ternary heterogeneous hydrogel with strength elements for resilient, self-healing, and recyclable epidermal electronics. Npj Flexible Electronics, 2022, 6, .	5.1	11
334	Crack-Based Core-Sheath Fiber Strain Sensors with an Ultralow Detection Limit and an Ultrawide Working Range. ACS Applied Materials & Interfaces, 2022, 14, 29167-29175.	4.0	22
335	Stretchable and conductive cellulose hydrogel electrolytes for flexible and foldable solid-state supercapacitors. Carbohydrate Polymers, 2022, 293, 119673.	5.1	31
336	Recyclable, Adhesive and Fast Self-Healable Ionic Conducting Elastomer Based on Poly-Zwitterionic Liquid for Soft Iontronics. SSRN Electronic Journal, 0, , .	0.4	Ο
337	A hydrogel sensor driven by sodium carboxymethyl starch with synergistic enhancement of toughness and conductivity. Journal of Materials Chemistry B, 2022, 10, 5743-5752.	2.9	11
338	High voltage and self-healing zwitterionic double-network hydrogels as electrolyte for zinc-ion hybrid supercapacitor/battery. International Journal of Hydrogen Energy, 2022, 47, 23909-23918.	3.8	15
339	Hysteresis-Free Double-Network Hydrogel-Based Strain Sensor for Wearable Smart Bioelectronics. ACS Applied Materials & Interfaces, 2022, 14, 31363-31372.	4.0	29
340	Highly Stretchable, Tough, and Self-Recoverable Cationic Guar Gum-Based Hydrogels for Flexible Sensors. ACS Applied Polymer Materials, 2022, 4, 5717-5727.	2.0	8
341	Highly Stretchable and Adhesive Poly (N, Nâ€dimethylacrylamide)/Laponite Nanocomposite Hydrogels for Wearable Sensor Devices. ChemistrySelect, 2022, 7, .	0.7	4
342	Comparison of Bulk- vs Layer-by-Layer-Cured Stimuli-Responsive PNIPAM–Alginate Hydrogel Dynamic Viscoelastic Property Response via Embedded Sensors. ACS Applied Polymer Materials, 0, , .	2.0	1
343	Exploiting CMC@Fe ₃ O ₄ nanoparticles as a multi-functional component for hydrogel fabrication. Journal Physics D: Applied Physics, 2022, 55, 404002.	1.3	2
344	Stretchable Ionic Conductors for Soft Electronics. Macromolecular Rapid Communications, 2022, 43,	2.0	16

	Сітаті	on Report	
#	Article	IF	CITATIONS
345	Preparation of novel composite aerogel with conductive and antibacterial via constructing three-dimensional crosslinked structure. Reactive and Functional Polymers, 2022, 178, 105361.	2.0	2
346	Adsorption application of Rb ⁺ on hydrogels of hydroxypropyl cellulose/polyvinyl alcohol/reduced graphene oxide encapsulating potassium cobalt hexacyanoferrate. Applied Organometallic Chemistry, 2022, 36, .	1.7	4
347	Ultra stretchable, tough, elastic and transparent hydrogel skins integrated with intelligent sensing functions enabled by machine learning algorithms. Chemical Engineering Journal, 2022, 450, 138212.	6.6	46
348	Poly(N-isopropylacrylamide)-Based Hydrogels for Biomedical Applications: A Review of the State-of-the-Art. Gels, 2022, 8, 454.	2.1	54
349	Strong Tough Conductive Hydrogels via the Synergy of Ionâ€Induced Crossâ€Linking and Saltingâ€Out. Advanced Functional Materials, 2022, 32, .	7.8	89
350	Breathable Kirigami-Shaped Ionotronic e-Textile with Touch/Strain Sensing for Friendly Epidermal Electronics. Advanced Fiber Materials, 2022, 4, 1525-1534.	7.9	27
351	Two-Dimensional Nanosheet-Enhanced Waterborne Polyurethane Eutectogels with Ultrastrength and Superelasticity for Sensitive Strain Sensors. ACS Applied Materials & Interfaces, 2022, 14, 40276-40285.	4.0	13
352	Triâ€state recyclable multifunctional hydrogel for flexible sensors. Journal of Applied Polymer Science, 2022, 139, .	1.3	6
353	Advances and challenges in conductive hydrogels: From properties to applications. European Polymer Journal, 2022, 177, 111454.	2.6	34
354	Strong Tough Poly Acrylicâ€∢i>coâ€acrylamide Hydrogels via a Synergistic Effect of Fiber and Metalâ€Ligand Bonds as Flexible Strain Sensors. Macromolecular Materials and Engineering, 2022, 307, .	1.7	5
355	Polyacrylamideâ€Conductive Hydrogel Modified with Regenerated Silk Fibroin Resulting in Lowâ€Temperature Resistance and Selfâ€Healing Properties for Flexible Electronic Skin. ChemistrySelect, 2022, 7, .	0.7	5
356	Reversible Shape-Shifting of an Ionic Strength Responsive Hydrogel Enabled by Programmable Network Anisotropy. ACS Applied Materials & Interfaces, 2022, 14, 40344-40350.	4.0	10
357	Preparation and properties of cellulose nanofibers/αâ€zirconium phosphate nanosheets composite polyvinyl alcohol ionâ€conductive organohydrogel and its application in strain sensors. Journal of Applied Polymer Science, 2022, 139, .	1.3	3
358	Lignin-silver triggered multifunctional conductive hydrogels for skinlike sensor applications. International Journal of Biological Macromolecules, 2022, 221, 1282-1293.	3.6	16
359	Contemporary nanocellulose-composites: A new paradigm for sensing applications. Carbohydrate Polymers, 2022, 298, 120052.	5.1	15
360	Stretchable and tough PAANa/PEDOT:PSS/PVA conductive hydrogels for flexible strain sensors. Materials Today Communications, 2022, 33, 104324.	0.9	11
361	Self-healing hydrogel with multiple adhesion as sensors for winter sports. Journal of Colloid and Interface Science, 2023, 629, 1021-1031.	5.0	31
362	A bio-inspired, ultra-tough, high-sensitivity, and anti-swelling conductive hydrogel strain sensor for motion detection and information transmission. Materials Horizons, 2022, 9, 3057-3069.	6.4	40

#	Article	IF	CITATIONS
363	3D printable conductive ionic hydrogels with self-adhesion performance for strain sensing. Journal of Materials Chemistry C, 2022, 10, 14288-14295.	2.7	7
364	Multifunctional gradient hydrogel with ultrafast thermo-responsive actuation and ultrahigh conductivity. Journal of Materials Chemistry A, 2022, 10, 21874-21883.	5.2	26
365	Quantifying the trade-off between stiffness and permeability in hydrogels. Soft Matter, 2022, 18, 7735-7740.	1.2	4
366	Lamellar agarose/graphene oxide gel polymer electrolyte network for all-solid-state supercapacitor. Chemical Engineering Journal, 2023, 452, 139443.	6.6	15
367	Ultrahigh ionic conductivity and alkaline tolerance of poly(amidoxime)-based hydrogel for high performance piezoresistive sensor. Chemical Engineering Journal, 2023, 452, 139208.	6.6	14
368	Transient Polymer Hydrogels Based on Dynamic Covalent Borate Ester Bonds. Chinese Journal of Chemistry, 2022, 40, 2794-2800.	2.6	13
369	Preparation of tough and ionic conductive PVA/carboxymethyl chitosan bio-based organohydrogels with long-term stability for strain sensor. Cellulose, 2022, 29, 9323-9339.	2.4	13
370	Mussel Byssus Inspired Ionic Skin with Damageâ€Resistant Signal for Human–Machine Interaction. Advanced Materials Interfaces, 2022, 9, .	1.9	2
371	Recent progress in fabrications and applications of functional hydrogel films. Journal of Polymer Science, 2023, 61, 1026-1039.	2.0	6
372	Soft Conductive Hydrogel-Based Electronic Skin for Robot Finger Grasping Manipulation. Polymers, 2022, 14, 3930.	2.0	8
373	Highly Sensitive Zwitterionic Hydrogel Sensor for Motion and Pulse Detection with Water Retention, Adhesive, Antifreezing, and Self-Healing Properties. ACS Applied Materials & Interfaces, 2022, 14, 47100-47112.	4.0	24
374	Self-snapping hydrogel-based electroactive microchannels as nerve guidance conduits. Materials Today Bio, 2022, 16, 100437.	2.6	9
375	A recyclable, adhesive and fast self-healable ionic conducting elastomer based on a poly-zwitterionic liquid for soft iontronics. Journal of Materials Chemistry A, 2022, 10, 24581-24589.	5.2	6
376	Bio-macromolecular design roadmap towards tough bioadhesives. Chemical Society Reviews, 2022, 51, 9127-9173.	18.7	31
377	Carbon nanotube-enhanced nanocomposite organohydrogel based on a physically cross-linked double network for sensitive wearable sensors. Journal of Materials Chemistry C, 2022, 10, 16546-16555.	2.7	2
378	A facile strategy for fabricating self-healable, adhesive and highly sensitive flexible ionogel-based sensors. Journal of Materials Chemistry C, 2022, 10, 17309-17320.	2.7	4
379	An energy-saving, bending sensitive, and self-healing PVA-borax-IL ternary hydrogel electrolyte for visual flexible electrochromic strain sensors. Journal of Materials Chemistry A, 2022, 10, 25118-25128.	5.2	14
380	3D Printed Ultrasensitive Graphene Hydrogel Self-Adhesive Wearable Devices. ACS Applied Electronic Materials, 2022, 4, 5199-5207.	2.0	16

#	Article	IF	CITATIONS
381	Tough, Self-Healing, and Conductive Elastomer ─Ionic PEGgel. ACS Applied Materials & Interfaces, 2022, 14, 50152-50162.	4.0	5
382	Recent developments of polysaccharideâ€based doubleâ€network hydrogels. Journal of Polymer Science, 2023, 61, 7-43.	2.0	20
383	Preparation and characterisation of tough and porous polyvinyl alcohol/POC membrane for biomedical applications. Biosurface and Biotribology, 0, , .	0.6	0
384	Molecular Design and Preparation of Protein-Based Soft Ionic Conductors with Tunable Properties. ACS Applied Materials & Interfaces, 2022, 14, 48061-48071.	4.0	0
385	High Performance Conductive Hydrogel for Strain Sensing Applications and Digital Image Mapping. ACS Applied Materials & Interfaces, 2022, 14, 51341-51350.	4.0	15
386	Blue and white light modulation of a flexible electroluminescent device based on phosphors. Optics Letters, 2022, 47, 5770.	1.7	3
387	Field effect transistorâ€based tactile sensors: From sensor configurations to advanced applications. InformaÄnÃ-Materiály, 2023, 5, .	8.5	24
388	Acetylated Distarch Phosphate-Mediated Tough and Conductive Hydrogel for Antibacterial Wearable Sensors. ACS Applied Materials & amp; Interfaces, 2022, 14, 51420-51428.	4.0	11
389	Supratough and stretchable hydrogels with time-space controllability for athletic rehabilitation. Chemical Engineering Journal, 2023, 453, 139667.	6.6	4
390	Flexible Actuator Based on Conductive PAM Hydrogel Electrodes with Enhanced Water Retention Capacity and Conductivity. Micromachines, 2022, 13, 1951.	1.4	4
391	The synthesis, mechanisms, and additives for bio ompatible polyvinyl alcohol hydrogels: A review on current advances, trends, and future outlook. Journal of Vinyl and Additive Technology, 2023, 29, 939-959.	1.8	6
392	MXene Reinforced PAA/PEDOT:PSS/MXene Conductive Hydrogel for Highly Sensitive Strain Sensors. Macromolecular Materials and Engineering, 2023, 308, .	1.7	19
393	Tensionâ€Responsive Graphene Oxide Conductive Hydrogel with Robust Mechanical Properties and High Sensitivity for Human Motion Monitoring. Macromolecular Materials and Engineering, 2023, 308, .	1.7	4
394	3D Printed Multifunctional Selfâ€Adhesive and Conductive Polyacrylamide/Chitosan/Sodium Carboxymethyl Cellulose/CNT Hydrogels as Flexible Sensors. Macromolecular Chemistry and Physics, 2023, 224, .	1.1	8
395	Versatile MXene integrated assembly for piezoresistive microâ€force sensing. View, 2022, 3, .	2.7	9
396	A Universal Tandem Device of DCâ€Driven Electrochromism and ACâ€Driven Electroluminescence for Multiâ€Functional Smart Windows. Advanced Materials Technologies, 2023, 8, .	3.0	2
397	Recent Progresses in <scp>Liquidâ€Free</scp> Soft Ionic Conductive Elastomers ^{â€} . Chinese Journal of Chemistry, 2023, 41, 835-860.	2.6	11
398	The fabrication of conductive material-decorated hydrogels for tissue repair. Molecular Systems Design and Engineering, 0, , .	1.7	0

ARTICLE IF CITATIONS Inorganic-based biomaterials for rapid hemostasis and wound healing. Chemical Science, 2022, 14, 399 3.7 22 29-53. Anisotropic hydrogels with high-sensitivity and self-adhesion for wearable sensors. Journal of 2.7 Materials Chemistry C, 2022, 11, 196-203. Merkel cell-inspired skin-like hybrid hydrogels for wearable health monitoring. Chemical Engineering 401 6.6 21 Journal, 2023, 456, 140976. Recent advances in conductive hydrogels: classifications, properties, and applications. Chemical Society Reviews, 2023, 52, 473-509. Skin-mimicking strategy to fabricate strong and highly conductive anti-freezing cellulose-based 403 3.6 16 hydrogels as strain sensors. International Journal of Biological Macromolecules, 2023, 227, 462-471. Intrinsically adhesive, conductive organohydrogel with high stretchable, moisture retention, anti-freezing and healable properties for monitoring of human motions and electrocardiogram. Sensors and Actuators B: Chemical, 2023, 377, 133098. 404 4.0 A strong and tough gelatin/polyvinyl alcohol double network hydrogel actuator with superior 405 1.2 7 actuation strength and fast actuation speed. Soft Matter, 2022, 18, 9197-9204. Perspective Chapter: Tissue-Electronics Interfaces., 0,,. 406 Antimicrobial MXene-based conductive alginate hydrogels as flexible electronics. Chemical 407 6.6 6 Engineering Journal, 2023, 455, 140546. Simultaneously Enhancing the Mechanical Strength and Ionic Conductivity of Stretchable Ionogels 408 2.2 Enabled by Polymerization-Induced Phase Separation. Macromolecules, 2022, 55, 10950-10959 High Multi-Environmental Mechanical Stability and Adhesive Transparent Ionic Conductive Hydrogels 409 4 2.0 Used as Smart Wearable Devices. Polymers, 2022, 14, 5316. Ultrasensitive Piezoresistive and Piezocapacitive Cellulose-Based Ionic Hydrogels for Wearable 2.0 Multifunctional Sensing. ACS Applied Electronic Materials, 2023, 5, 205-215. Humanoid Ionotronic Skin for Smart Object Recognition and Sorting., 2023, 5, 189-201. 411 13 Thermally Healable Food-Based Conductive Oleogel Ink with Added Edible Gold-Leaf Powder. ACS Applied Électronic Materials, 2022, 4, 6087-6093 413 Tough, Transparent, and Slippery PVA Hydrogel Led by Syneresis. Small, 2023, 19, . 5.232 An ultrasound-induced MXene doped PAM–SA super-tough hydrogel. Journal of Materials Chemistry C, 414 2023, 11, 1908-1918. High-strength hydrogels: Fabrication, reinforcement mechanisms, and applications. Nano Research, 415 5.8 54 2023, 16, 3475-3515. Hofmeister Effect Assisted Dualâ€Dynamicâ€Bond Crossâ€Linked Organohydrogels with Enhanced Ionic Conductivity and Balanced Mechanical Properties for Flexible Sensors. Advanced Functional Materials, 2023, 33, .

#	Article	IF	CITATIONS
417	Tough, anti-drying and thermoplastic hydrogels consisting of biofriendly resources for a wide linear range and fast response strain sensor. Journal of Materials Chemistry A, 2023, 11, 2002-2013.	5.2	18
418	UV-induced Self-reinforced Hydrogel Based on In-situ Hydrophobic Aggregation of Strained 1,2-Dithiolane Rings. Chemical Communications, 0, , .	2.2	1
419	Crack-Based Sensor by Using the UV Curable Polyurethane-Acrylate Coated Film with V-Groove Arrays. Micromachines, 2023, 14, 62.	1.4	4
420	Dialcohol Cellulose Nanocrystals Enhanced Polymerizable Deep Eutectic Solventâ€Based Selfâ€Healing Ion Conductors with Ultraâ€Stretchability and Sensitivity. , 2023, 2, .		3
421	Mechanically Robust and Transparent Organohydrogelâ€Based Eâ€5kin Nanoengineered from Natural Skin. Advanced Functional Materials, 2023, 33, .	7.8	45
422	Enhancement of Self-Healing Efficacy of Conductive Nanocomposite Hydrogels by Polysaccharide Modifiers. Polymers, 2023, 15, 516.	2.0	1
423	Impact of interface stress on responsive deformation of magnetic hydrogel. International Journal of Mechanical Sciences, 2023, 247, 108151.	3.6	1
424	Screen printing of stretchable silver nanomaterial inks for a stable human–machine interface. Journal of Materials Chemistry C, 2023, 11, 5009-5017.	2.7	2
425	Muscle Contraction-Inspired Tough Hydrogels. ACS Applied Materials & Interfaces, 2023, 15, 8462-8470.	4.0	8
426	Rapid Preparation of Antifreezing Conductive Hydrogels for Flexible Strain Sensors and Supercapacitors. ACS Applied Materials & amp; Interfaces, 2023, 15, 10006-10017.	4.0	20
427	Single-Electrode Triboelectric Nanogenerators Based on Ionic Conductive Hydrogel for Mechanical Energy Harvester and Smart Touch Sensor Applications. ACS Applied Materials & Interfaces, 2023, 15, 16768-16777.	4.0	10
428	Integration of high strength, resilience and stretchability into the nanocomposite hydrogel sensor for a wide working range detection and underwater sensing. Journal of Materials Research and Technology, 2023, 24, 3524-3533.	2.6	1
429	Stretch-Induced Robust Intrinsic Antibacterial Thermoplastic Gelatin Organohydrogel for a Thermoenhanced Supercapacitor and Mono-gauge-factor Sensor. ACS Applied Materials & Interfaces, 2023, 15, 20278-20293.	4.0	6
430	Chemically identical gels I – under-crosslinked networks. Journal of the Mechanics and Physics of Solids, 2023, 175, 105278.	2.3	2
431	Sodium alginate reinforced polyacrylamide/xanthan gum double network ionic hydrogels for stress sensing and self-powered wearable device applications. Carbohydrate Polymers, 2023, 309, 120678.	5.1	104
432	Fabrication of high-quality microcapsules containing ionic liquid for application in self-healing conductive materials. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 667, 131361.	2.3	2
433	Self-healing, self-adhesive, and stretchable conductive hydrogel for multifunctional sensor prepared by catechol modified nanocellulose stabilized poly(α-thioctic acid). Carbohydrate Polymers, 2023, 313, 120813.	5.1	20
434	Tough and stretchable all-κ-carrageenan hydrogel based on the cooperative effects between chain conformation transition and stepwise mechanical training. Carbohydrate Polymers, 2023, 313, 120869.	5.1	4

ARTICLE IF CITATIONS A super-tough ionic conductive hydrogel with anti-freezing, water retention, and self-regenerated 435 2.3 6 properties for self-powered flexible sensor. Applied Materials Today, 2023, 32, 101820. Highly Sensitive Flexible Thermal Sensors Based on a Kind of MXene/DES Inks. ACS Applied Electronic Materials, 2023, 5, 1252-1261. 3D Printable Self-Adhesive and Self-Healing Ionotronic Hydrogels for Wearable Healthcare Devices. 437 4.0 17 ACS Applied Materials & amp; Interfaces, 2023, 15, 11042-11052. Dual Physically Crosslinked Silk Fibroin Ionoelastomer with Ultrahigh Stretchability and Low 3.2 Hysteresis. Chemistry of Materials, 2023, 35, 1752-1761. Cellulose Gel Mechanoreceptors – Principles, Applications and Prospects. Advanced Functional 439 7.8 9 Materials, 2023, 33, . Tough and antiâ \in swelling $\hat{1}^3$ â \in polyglutamic acid/polyvinyl alcohol hydrogels for wearable sensors. Journal of Applied Polymer Science, 2023, 140, . 1.3 Soft Ionic Diode Fabricated Using Asymmetric Ion Distribution in Li⁺-Zn(II)/Cu(II) 441 4.0 3 Metallohydrogels. ACS Applied Materials & amp; Interfaces, 2023, 15, 11970-11976. Flexible, Permeable, and Recyclable Liquidâ€Metalâ€Based Transient Circuit Enables Contact/Noncontact 449 4.6 26 Sensing for Wearable Human–Machine Interaction. Small Methods, 2023, 7, . Flexible Antiswelling Photothermalâ€Therapy MXene Hydrogelâ€Based Epidermal Sensor for Intelligent 443 7.8 23 Human–Machine Interfacing. Advanced Functional Materials, 2023, 33, . Sustainable and Tough MXene Hydrogel Based on Interlocked Structure for Multifunctional Sensing. 444 3.2 ACS Sustainable Chemistry and Engineering, 2023, 11, 4177-4186. Anisotropic double-network hydrogels integrated superior performance of strength, toughness and 445 6.6 16 conductivity for flexible multi-functional sensors. Chemical Engineering Journal, 2023, 462, 142226. High-Sensitivity Composite Dual-Network Hydrogel Strain Sensor and Its Application in Intelligent 446 Recognition and Motion Monitoring. ACS Applied Polymer Materials, 2023, 5, 2628-2638. Multifunctional conductive hyaluronic acid hydrogels for wound care and skin regeneration. 447 2.6 16 Biomaterials Science, 2023, 11, 2266-2276. Entanglement in Smart Hydrogels: Fast Response Time, Antiâ€Freezing and Antiâ€Drying. Advanced 448 Functional Materials, 2023, 33, . Dynamic Cross-Linking Network Construction of Carboxymethyl Starch Enabling Temperature and 449 4.0 6 Strain Bimodal Film Sensors. ACS Applied Materials & amp; Interfaces, 2023, 15, 17293-17300. Highly Stretchable, Repairable, and Tough Nanocomposite Hydrogel Physically Crossâ€linked by Hydrophobic Interactions and Reinforced by Surfaceâ€Grafted Hydrophobized Cellulose Nanocrystals. Macromolecular Rapid Communications, 2023, 44, . Naturally sourced hydrogels: emerging fundamental materials for next-generation healthcare 451 18.7 41 sensing. Chemical Society Reviews, 2023, 52, 2992-3034. Skin-Inspired Ultra-Tough Supramolecular Multifunctional Hydrogel Electronic Skin for 454 14.4 Human–Machine Interaction. Nano-Micro Letters, 2023, 15, .

#	Article	IF	CITATIONS
455	A Quenched Doubleâ€Hydrophilic Coating for the Enhancement of Water Retention of Hydrogels. Advanced Functional Materials, 2023, 33, .	7.8	3
457	Self-healing liquid metal hydrogel for human–computer interaction and infrared camouflage. Materials Horizons, 2023, 10, 2945-2957.	6.4	19
459	Stimuli-Responsive Polymeric Nanovaccines Toward Next-Generation Immunotherapy. ACS Nano, 2023, 17, 9826-9849.	7.3	9
465	Soft Conductive Interfacing for Bioelectrical Uses: Adhesion Mechanisms and Structural Approaches. Macromolecules, 2023, 56, 4431-4446.	2.2	3
490	Cellulose-Based Ionic Conductor: An Emerging Material toward Sustainable Devices. Chemical Reviews, 2023, 123, 9204-9264.	23.0	30
495	Conductive hydrogels for bioelectronics: molecular structures, design principles, and operation mechanisms. Journal of Materials Chemistry C, 2023, 11, 10785-10808.	2.7	1
497	A solar/radiative cooling dual-regulation smart window based on shape-morphing kirigami structures. Materials Horizons, 2023, 10, 4243-4250.	6.4	7
532	Conductive hydrogels for tissue engineering applications. , 2024, , 249-264.		0
550	Recent advances in fabricating injectable hydrogels <i>via</i> tunable molecular interactions for bio-applications. Journal of Materials Chemistry B, O, , .	2.9	1
553	Structure driven piezoresistive performance design for rubbery composites-based sensors and application prospect: a review. Acta Mechanica Sinica/Lixue Xuebao, 2024, 40, .	1.5	1
560	Solid-state, liquid-free ion-conducting elastomers: rising-star platforms for flexible intelligent devices. Materials Horizons, 2024, 11, 1152-1176.	6.4	0
587	An overview of conductive composite hydrogels for flexible electronic devices. Advanced Composites and Hybrid Materials, 2024, 7, .	9.9	Ο