Cubosomes for topical delivery of the antimicrobial pep

European Journal of Pharmaceutics and Biopharmaceutics 134, 60-67 DOI: 10.1016/j.ejpb.2018.11.009

Citation Report

#	Article	IF	CITATIONS
1	Biocompatibility of glycerol monooleate nanoparticles as tested on inner ear cells. International Journal of Pharmaceutics, 2019, 572, 118788.	2.6	5
3	Pepâ€Lipid Cubosomes and Vesicles Compartmentalized by Micelles from Selfâ€Assembly of Multiple Neuroprotective Building Blocks Including a Large Peptide Hormone PACAPâ€DHA. ChemNanoMat, 2019, 5, 1381-1389.	1.5	52
4	Nanosystems as Vehicles for the Delivery of Antimicrobial Peptides (AMPs). Pharmaceutics, 2019, 11, 448.	2.0	86
5	Peptide-Loaded Cubosomes Functioning as an Antimicrobial Unit against <i>Escherichia coli</i> . ACS Applied Materials & Interfaces, 2019, 11, 21314-21322.	4.0	35
6	Ultrasound-assisted preparation of different nanocarriers loaded with food bioactive ingredients. Advances in Colloid and Interface Science, 2019, 270, 123-146.	7.0	98
7	Characterization of Nanoparticles in Dermal Formulations. , 2019, , 199-216.		0
8	Characterization of the in vitro, ex vivo, and in vivo Efficacy of the Antimicrobial Peptide DPK-060 Used for Topical Treatment. Frontiers in Cellular and Infection Microbiology, 2019, 9, 174.	1.8	52
9	Nanocosmetics. , 2019, , .		13
10	Lipid nanomaterials for the delivery of antimicrobial peptides. Methods in Microbiology, 2019, , 173-195.	0.4	2
11	From Structure to Function: pH-Switchable Antimicrobial Nano-Self-Assemblies. ACS Applied Materials & Interfaces, 2019, 11, 2821-2829.	4.0	66
12	Carotenoid-loaded nanocarriers: A comprehensive review. Advances in Colloid and Interface Science, 2020, 275, 102048.	7.0	155
13	Topical antimicrobial peptide formulations for wound healing: Current developments and future prospects. Acta Biomaterialia, 2020, 103, 52-67.	4.1	221
14	Pegylation and formulation strategy of Anti-Microbial Peptide (AMP) according to the quality by design approach. European Journal of Pharmaceutical Sciences, 2020, 144, 105197.	1.9	21
15	Thymoquinone-Loaded Polymeric Films and Hydrogels for Bacterial Disinfection and Wound Healing. Biomedicines, 2020, 8, 386.	1.4	11
16	Evaluating the structural properties of bioactiveâ€loaded nanocarriers with modern analytical tools. Comprehensive Reviews in Food Science and Food Safety, 2020, 19, 3266-3322.	5.9	26
17	Insights of lyotropic liquid crystals in topical drug delivery for targeting various skin disorders. Journal of Molecular Liquids, 2020, 315, 113771.	2.3	46
18	Advances in lyotropic liquid crystal systems for skin drug delivery. Expert Opinion on Drug Delivery, 2020, 17, 1781-1805.	2.4	50
19	Monoolein Assisted Oil-Based Transdermal Delivery of Powder Vaccine. Pharmaceutics, 2020, 12, 814.	2.0	7

#	Article	IF	CITATIONS
20	Phytantriol-Based Cubosome Formulation as an Antimicrobial against Lipopolysaccharide-Deficient Gram-Negative Bacteria. ACS Applied Materials & Interfaces, 2020, 12, 44485-44498.	4.0	12
21	An Update on Antimicrobial Peptides (AMPs) and Their Delivery Strategies for Wound Infections. Pharmaceutics, 2020, 12, 840.	2.0	61
22	Advances in delivery systems for the therapeutic application of LL37. Journal of Drug Delivery Science and Technology, 2020, 60, 102016.	1.4	6
23	Antimicrobial and Amyloidogenic Activity of Peptides. Can Antimicrobial Peptides Be Used against SARS-CoV-2?. International Journal of Molecular Sciences, 2020, 21, 9552.	1.8	45
24	Enhanced therapeutic index of an antimicrobial peptide in mice by increasing safety and activity against multidrug-resistant bacteria. Science Advances, 2020, 6, eaay6817.	4.7	75
25	Preparation and antimicrobial properties of LLâ€37 peptide immobilized lignin/caprolactone polymer film. Polymers for Advanced Technologies, 2020, 31, 2222-2228.	1.6	9
26	Bioavailability of nutraceuticals: Role of the food matrix, processing conditions, the gastrointestinal tract, and nanodelivery systems. Comprehensive Reviews in Food Science and Food Safety, 2020, 19, 954-994.	5.9	159
27	Energy Landscapes of a Pair of Adsorbed Peptides. Journal of Physical Chemistry B, 2020, 124, 2401-2409.	1.2	1
28	Towards Robust Delivery of Antimicrobial Peptides to Combat Bacterial Resistance. Molecules, 2020, 25, 3048.	1.7	53
29	Self-assembly of glycerol monooleate with the antimicrobial peptide LL-37: a molecular dynamics study. RSC Advances, 2020, 10, 8291-8302.	1.7	7
30	Nanomedicine Fight against Antibacterial Resistance: An Overview of the Recent Pharmaceutical Innovations. Pharmaceutics, 2020, 12, 142.	2.0	188
31	Recent advances of non-lamellar lyotropic liquid crystalline nanoparticles in nanomedicine. Current Opinion in Colloid and Interface Science, 2020, 48, 28-39.	3.4	52
32	Multifunctional cubic liquid crystalline nanoparticles for chemo- and photodynamic synergistic cancer therapy. Photochemical and Photobiological Sciences, 2020, 19, 674-680.	1.6	18
33	Surface-modified nanoerythrosomes for potential optical imaging diagnostics. Journal of Colloid and Interface Science, 2021, 582, 246-253.	5.0	6
34	Cubosomes: Novel Nanocarriers for Drug Delivery. , 2021, , 227-254.		3
35	Molecular engineering of antimicrobial peptides: microbial targets, peptide motifs and translation opportunities. Biophysical Reviews, 2021, 13, 35-69.	1.5	60
36	Waterâ€inâ€oil microemulsions composed of monoolein enhanced the transdermal delivery of nicotinamide. International Journal of Cosmetic Science, 2021, 43, 302-310.	1.2	10
37	Recent Advances in Nanomaterials for Dermal and Transdermal Applications. Colloids and Interfaces, 2021, 5, 18.	0.9	43

#	Article	IF	CITATIONS
38	Antimicrobial Peptide-Functionalized Mesoporous Hydrogels. ACS Biomaterials Science and Engineering, 2021, 7, 1693-1702.	2.6	41
39	Exploring Therapeutic Potential of Invasomes, Transfersomes, Transethosomes, Oleic Acid Vesicles, and Cubosomes Adopting Topical/Transdermal Route. Micro and Nanosystems, 2022, 14, 3-20.	0.3	3
40	Protective Liquid Crystal Nanoparticles for Targeted Delivery of PslG: A Biofilm Dispersing Enzyme. ACS Infectious Diseases, 2021, 7, 2102-2115.	1.8	18
41	Analysis of the structure, loading and activity of six antimicrobial peptides encapsulated in cubic phase lipid nanoparticles. Journal of Colloid and Interface Science, 2021, 587, 90-100.	5.0	29
42	Liquid Crystals: Characteristics, Types of Phases and Applications in Drug Delivery. Pharmaceutical Chemistry Journal, 2021, 55, 106-118.	0.3	2
43	Bioinspired Antimicrobial Coatings from Peptide-Functionalized Liquid Crystalline Nanostructures. ACS Applied Bio Materials, 2021, 4, 5295-5303.	2.3	10
44	Cubosomes as Potential Nanocarrier for Drug Delivery: A Comprehensive Review. Journal of Pharmaceutical Research International, 0, , 118-135.	1.0	13
45	Antimicrobial Peptides: A New Hope in Biomedical and Pharmaceutical Fields. Frontiers in Cellular and Infection Microbiology, 2021, 11, 668632.	1.8	208
46	The Influence of Hydrophobic Blocks of PEO-Containing Copolymers on Glyceryl Monooleate Lyotropic Liquid Crystalline Nanoparticles for Drug Delivery. Polymers, 2021, 13, 2607.	2.0	6
47	Nanostructured Antimicrobial Peptides: Crucial Steps of Overcoming the Bottleneck for Clinics. Frontiers in Microbiology, 2021, 12, 710199.	1.5	25
48	Immunoenhancement effects of chitosan-modified ginseng stem-leaf saponins-encapsulated cubosomes as an ajuvant. Colloids and Surfaces B: Biointerfaces, 2021, 204, 111799.	2.5	12
49	Antimicrobial Peptides: The Promising Therapeutics for Cutaneous Wound Healing. Macromolecular Bioscience, 2021, 21, e2100103.	2.1	26
50	Enhancing the therapeutic use of biofilm-dispersing enzymes with smart drug delivery systems. Advanced Drug Delivery Reviews, 2021, 179, 113916.	6.6	32
51	Lipid-Based Nanosystems as a Tool to Overcome Skin Barrier. International Journal of Molecular Sciences, 2021, 22, 8319.	1.8	53
52	Bioavailability and Antidiabetic Activity of Gliclazide-Loaded Cubosomal Nanoparticles. Pharmaceuticals, 2021, 14, 786.	1.7	14
53	Lyotropic liquid crystalline nanoparticles: Scaffolds for delivery of myriad therapeutics and diagnostics. Journal of Molecular Liquids, 2021, 338, 116919.	2.3	8
54	Recent strategies for inhibiting multidrug-resistant and β-lactamase producing bacteria: A review. Colloids and Surfaces B: Biointerfaces, 2021, 205, 111901.	2.5	15
55	Investigation into poloxamer 188â€based cubosomes as a polymeric carrier for poor waterâ€soluble actives. Journal of Applied Polymer Science, 2022, 139, 51612.	1.3	7

#	Article	IF	CITATIONS
56	Antimicrobial peptides – Unleashing their therapeutic potential using nanotechnology. , 2022, 232, 107990.		44
57	Delivery of antimicrobial peptides to model membranes by cubosome nanocarriers. Journal of Colloid and Interface Science, 2021, 600, 14-22.	5.0	10
58	Bioinspired drug delivery strategies for repurposing conventional antibiotics against intracellular infections. Advanced Drug Delivery Reviews, 2021, 177, 113948.	6.6	45
59	Evaluating the effects of hydrophobic and cationic residues on antimicrobial peptide self-assembly. Soft Matter, 2021, 17, 4445-4451.	1.2	7
60	Phytosterols as the core or stabilizing agent in different nanocarriers. Trends in Food Science and Technology, 2020, 101, 73-88.	7.8	47
61	Cubosomes: composition, preparation, and drug delivery applications Journal of Advanced Biomedical and Pharmaceutical Sciences, 2019, .	0.3	25
62	X-Ray Characterization of Pharmaceutical and Cosmetic Lipidic Nanoparticles for Cutaneous Application. Current Pharmaceutical Design, 2019, 25, 2364-2374.	0.9	6
63	Lipid Vesicles and Nanoparticles for Non-invasive Topical and Transdermal Drug Delivery. Current Pharmaceutical Design, 2020, 26, 2149-2166.	0.9	18
64	Advances in the Design of pH-Sensitive Cubosome Liquid Crystalline Nanocarriers for Drug Delivery Applications. Nanomaterials, 2020, 10, 963.	1.9	68
65	Composition-Switchable Liquid Crystalline Nanostructures as Green Formulations of Curcumin and Fish Oil. ACS Sustainable Chemistry and Engineering, 2021, 9, 14821-14835.	3.2	33
66	Lipid Nanoparticulate Drug Delivery Systems: Recent Advances in the Treatment of Skin Disorders. Pharmaceuticals, 2021, 14, 1083.	1.7	30
67	Uptake Dynamics of Cubosome Nanocarriers at Bacterial Surfaces and the Routes for Cargo Internalization. ACS Applied Materials & Interfaces, 2021, 13, 53530-53540.	4.0	17
68	Current Advances in Lipid and Polymeric Antimicrobial Peptide Delivery Systems and Coatings for the Prevention and Treatment of Bacterial Infections. Pharmaceutics, 2021, 13, 1840.	2.0	36
69	Cubosomes and Hexosomes as Novel Nanocarriers for Bioactive Compounds. Journal of Agricultural and Food Chemistry, 2022, 70, 1423-1437.	2.4	26
70	A polytherapy based approach to combat antimicrobial resistance using cubosomes. Nature Communications, 2022, 13, 343.	5.8	31
71	Recent advances in encapsulation of drug delivery (active substance) in cubosomes for skin diseases. Journal of Drug Delivery Science and Technology, 2022, 68, 103097.	1.4	16
72	Antimicrobial peptide-based materials: opportunities and challenges. Journal of Materials Chemistry B, 2022, 10, 2384-2429.	2.9	47
73	Anti-rheumatic activity of topical nanoemulsion containing bee venom in rats. European Journal of Pharmaceutics and Biopharmaceutics, 2022, 172, 168-176.	2.0	12

#	Article	IF	CITATIONS
74	Cubosomes as an emerging platform for drug delivery: a review of the state of the art. Journal of Materials Chemistry B, 2022, 10, 2781-2819.	2.9	39
75	Lyotropic Liquid Crystalline Nanostructures as Drug Delivery Systems and Vaccine Platforms. Pharmaceuticals, 2022, 15, 429.	1.7	24
76	Development, Therapeutic Evaluation and Theranostic Applications of Cubosomes on Cancers: An Updated Review. Pharmaceutics, 2022, 14, 600.	2.0	21
77	Tamarillo Polyphenols Encapsulated-Cubosome: Formation, Characterization, Stability during Digestion and Application in Yoghurt. Antioxidants, 2022, 11, 520.	2.2	7
78	In vitro and in vivo evaluation of a novel lidocaine-loaded cubosomal gel for prolonged local anesthesia. Journal of Biomaterials Applications, 2022, 37, 315-323.	1.2	2
79	Potential of curcumin-loaded cubosomes for topical treatment of cervical cancer. Journal of Colloid and Interface Science, 2022, 620, 419-430.	5.0	26
80	Sustained delivery of salbutamol from cubosomal gel for management of paediatric asthma: <i>inÂvitro</i> and <i>inÂvivo</i> evaluation. Journal of Microencapsulation, 2022, , 1-9.	1.2	1
81	Liquid crystal nanoparticle platform for increased efficacy of cationic antimicrobials against biofilm infections. Nanomedicine: Nanotechnology, Biology, and Medicine, 2022, 42, 102536.	1.7	4
82	Polymeric Nanomaterials for Efficient Delivery of Antimicrobial Agents. Pharmaceutics, 2021, 13, 2108.	2.0	26
83	Lipid liquid-crystalline nanoparticles sustained teicoplanin delivery for treatment of chronic osteomyelitis: <i>inÂvitro</i> and <i>inÂvivo</i> studies. Journal of Microencapsulation, 2022, , 1-10.	1.2	0
84	Liquid crystalline lipid nanoparticle promotes the photodynamic activity of gallium protoporphyrin against S. aureus biofilms. Journal of Photochemistry and Photobiology B: Biology, 2022, 232, 112474.	1.7	6
85	A Versatile Nanocarrier—Cubosomes, Characterization, and Applications. Nanomaterials, 2022, 12, 2224.	1.9	8
86	A Narrative Review of the Potential Roles of Lipid-Based Vesicles (Vesiculosomes) in Burn Management. Scientia Pharmaceutica, 2022, 90, 39.	0.7	6
87	Novel Pharmaceutical Strategies for Enhancing Skin Penetration of Biomacromolecules. Pharmaceuticals, 2022, 15, 877.	1.7	10
88	Preclinical development of sodium fusidate antibiotic cutaneous spray based on water-free lipid formulation system. European Journal of Pharmaceutical Sciences, 2022, 176, 106250.	1.9	1
89	Liposomes encapsulating novel antimicrobial peptide Omiganan: Characterization and its pharmacodynamic evaluation in atopic dermatitis and psoriasis mice model. International Journal of Pharmaceutics, 2022, 624, 122045.	2.6	16
90	Cubosomes: Design, Development, and Tumor-Targeted Drug Delivery Applications. Polymers, 2022, 14, 3118.	2.0	13
91	Pharmaceutical nanotechnology: Antimicrobial peptides as potential new drugs against WHO list of critical, high, and medium priority bacteria. European Journal of Medicinal Chemistry, 2022, 241, 114640.	2.6	17

#	Article	IF	CITATIONS
92	Insights on Development Aspects of Polymeric Nanocarriers: The Translation from Bench to Clinic. Polymers, 2022, 14, 3545.	2.0	17
93	Cross-linked lyotropic liquid crystal particles functionalized with antimicrobial peptides. International Journal of Pharmaceutics, 2022, 627, 122215.	2.6	4
94	Recent Advances in the Development of Lipid-, Metal-, Carbon-, and Polymer-Based Nanomaterials for Antibacterial Applications. Nanomaterials, 2022, 12, 3855.	1.9	14
95	CUBOSOMES: A BOON FOR COSMECEUTICALS AND TOPICAL DRUG DELIVERY. International Journal of Pharmacy and Pharmaceutical Sciences, 0, , 13-17.	0.3	1
96	Exploiting Recent Trends in the Treatment of Androgenic Alopecia through Topical Nanocarriers of Minoxidil. AAPS PharmSciTech, 2022, 23, .	1.5	5
97	Progress and challenges of lyotropic liquid crystalline nanoparticles for innovative therapies. International Journal of Pharmaceutics, 2022, 628, 122299.	2.6	5
99	Therapeutic potential of antimicrobial peptides for treatment of wound infection. American Journal of Physiology - Cell Physiology, 2023, 324, C29-C38.	2.1	8
100	Tailored anti-biofilm activity – Liposomal delivery for mimic of small antimicrobial peptide. , 2023, 145, 213238.		4
101	Microbial Resistance Mechanisms and Potential of Metal-Organic Framework in Mitigation Thereof. Nanotechnology in the Life Sciences, 2022, , 237-277.	0.4	0
102	Formulation lyotropic liquid crystals from palm oilâ€based monoacylglycerols. JAOCS, Journal of the American Oil Chemists' Society, 2023, 100, 141-148.	0.8	1
103	Development of amoxicillin Trihydrate-Loaded lyotropic liquid crystal nanoparticles for skin infection. Journal of Molecular Liquids, 2023, 374, 121281.	2.3	1
104	Hair regrowth boosting via minoxidil cubosomes: Formulation development, in vivo hair regrowth evaluation, histopathological examination and confocal laser microscopy imaging. International Journal of Pharmaceutics, 2023, 634, 122665.	2.6	5
105	Current Advances in Lipid Nanosystems Intended for Topical and Transdermal Drug Delivery Applications. Pharmaceutics, 2023, 15, 656.	2.0	12
106	Functional nano-systems for transdermal drug delivery and skin therapy. Nanoscale Advances, 2023, 5, 1527-1558.	2.2	20
107	CUBOSOME-A Novel Drug Delivery for Anticancer Drugs. Current Nanoscience, 2024, 20, 206-223.	0.7	0
108	Process development and techno-economic assessment of lycopene extraction from tomatoes using surfactant. Biomass Conversion and Biorefinery, 0, , .	2.9	2
109	Cubosomes in Drug Delivery—A Comprehensive Review on Its Structural Components, Preparation Techniques and Therapeutic Applications. Biomedicines, 2023, 11, 1114.	1.4	12
116	Lipid-Based Nanomaterials: A Brief Note on Composition, Development, and Drug Delivery Applications. , 2023, , 65-98.		1

#	Article	IF	CITATIONS
117	Amphiphilic Nanocarriers to Fight Against Pathogenic Bacteria. , 2023, , 76-100.		0