Liquidâ€Alloyâ€Assisted Growth of 2D Ternary Ga<sub toward Highâ€Performance UV Photodetection

Advanced Materials 31, e1806306 DOI: 10.1002/adma.201806306

Citation Report

#	Article	IF	CITATIONS
1	Uniform Li deposition by regulating the initial nucleation barrier <i>via</i> a simple liquid-metal coating for a dendrite-free Li–metal anode. Journal of Materials Chemistry A, 2019, 7, 18861-18870.	5.2	93
2	Selective photoresponse of plasmonic silver nanoparticle decorated Bi ₂ Se ₃ nanosheets. Nanotechnology, 2019, 30, 435204.	1.3	5
3	Roomâ€Temperature Liquid Metal Confined in MXene Paper as a Flexible, Freestanding, and Binderâ€Free Anode for Nextâ€Generation Lithiumâ€Ion Batteries. Small, 2019, 15, e1903214.	5.2	79
4	Largeâ€Scale Growth and Fieldâ€Effect Transistors Electrical Engineering of Atomicâ€Layer SnS ₂ . Small, 2019, 15, e1904116.	5.2	58
5	Precise Vapor-Phase Synthesis of Two-Dimensional Atomic Single Crystals. IScience, 2019, 20, 527-545.	1.9	10
6	Sensitive Deep Ultraviolet Photodetector and Image Sensor Composed of Inorganic Lead-Free Cs ₃ Cu ₂ I ₅ Perovskite with Wide Bandgap. Journal of Physical Chemistry Letters, 2019, 10, 5343-5350.	2.1	171
7	Salt-assisted chemical vapor deposition of two-dimensional materials. Science China Chemistry, 2019, 62, 1300-1311.	4.2	66
8	High-performance ultra-violet phototransistors based on CVT-grown high quality SnS ₂ flakes. Nanoscale Advances, 2019, 1, 3973-3979.	2.2	29
9	Production of large-area 2D materials for high-performance photodetectors by pulsed-laser deposition. Progress in Materials Science, 2019, 106, 100573.	16.0	160
10	In situ physical examination of Bi2S3 nanowires with a microscope. Journal of Alloys and Compounds, 2019, 798, 628-634.	2.8	9
11	Elastic Properties of 2D Ultrathin Tungsten Nitride Crystals Grown by Chemical Vapor Deposition. Advanced Functional Materials, 2019, 29, 1902663.	7.8	37
12	Salt-Assisted Growth of Ultrathin GeSe Rectangular Flakes for Phototransistors with Ultrahigh Responsivity. ACS Applied Materials & Interfaces, 2019, 11, 23353-23360.	4.0	38
13	2D Metal Chalcogenides for IR Photodetection. Small, 2019, 15, e1901347.	5.2	121
14	Highly sensitive and selective light-up fluorescent probe for monitoring gallium and chromium ions <i>in vitro</i> and <i>in vivo</i> . Analyst, The, 2019, 144, 3807-3816.	1.7	35
15	Effect of Electric Field on the Lubricating Performance of Gaâ€Based Liquid Metal. Advanced Materials Interfaces, 2019, 6, 1900028.	1.9	9
16	2D semiconductors towards high-performance ultraviolet photodetection. Journal Physics D: Applied Physics, 2019, 52, 303002.	1.3	22
17	Highly polarization-sensitive, visible-blind and self-powered ultraviolet photodetection based on two-dimensional wide bandgap semiconductors: a theoretical prediction. Journal of Materials Chemistry A, 2019, 7, 27503-27513.	5.2	42
18	CsPbl ₃ Nanotube Photodetectors with High Detectivity. Small, 2019, 15, e1905253.	5.2	41

CITATION REPORT

#	Article	IF	CITATIONS
19	Spaceâ€confined microwave synthesis of ternaryâ€layered BiOCl crystals with highâ€performance ultraviolet photodetection. InformaÄnÃ-Materiály, 2020, 2, 593-600.	8.5	32
20	2D material broadband photodetectors. Nanoscale, 2020, 12, 454-476.	2.8	167
21	Edgeâ€Epitaxial Growth of InSe Nanowires toward Highâ€Performance Photodetectors. Small, 2020, 16, e1905902.	5.2	22
22	Novel 2D hybrids composed of SnIn ₄ S ₈ nanoplates on BiOBr nanosheets for enhanced photocatalytic applications. Nanotechnology, 2020, 31, 105202.	1.3	3
23	2D Perovskite Sr ₂ Nb ₃ O ₁₀ for Highâ€Performance UV Photodetectors. Advanced Materials, 2020, 32, e1905443.	11.1	210
24	Giant Detectivity of ZnO-Based Self-Powered UV Photodetector by Inserting an Engineered Back Gold Layer Using RF Sputtering. IEEE Sensors Journal, 2020, 20, 3512-3519.	2.4	14
25	Van der Waals Epitaxial Growth of Two-Dimensional BiOBr Flakes with Dendritic Structures for the Hydrogen Evolution Reaction. ACS Applied Energy Materials, 2020, 3, 11848-11854.	2.5	8
26	Atomicâ€Thin ZnO Sheet for Visibleâ€Blind Ultraviolet Photodetection. Small, 2020, 16, e2005520.	5.2	45
27	Ferroelectric-Modulated MoS ₂ Field-Effect Transistors as Multilevel Nonvolatile Memory. ACS Applied Materials & Interfaces, 2020, 12, 44902-44911.	4.0	13
28	Band Structure Engineering in MoS ₂ Based Heterostructures toward Highâ€Performance Phototransistors. Advanced Optical Materials, 2020, 8, 2000430.	3.6	28
29	Synthesis and Applications of Wide Bandgap 2D Layered Semiconductors Reaching the Green and Blue Wavelengths. ACS Applied Electronic Materials, 2020, 2, 1777-1814.	2.0	50
30	P–N conversion of charge carrier types and high photoresponsive performance of composition modulated ternary alloy W(SxSe1â"x)2 field-effect transistors. Nanoscale, 2020, 12, 15304-15317.	2.8	12
31	TFT Channel Materials for Display Applications: From Amorphous Silicon to Transition Metal Dichalcogenides. Advanced Materials, 2020, 32, e1907166.	11.1	58
32	Solution-processed organometallic quasi-two-dimensional nanosheets as a hole buffer layer for organic light-emitting devices. Nanoscale, 2020, 12, 6983-6990.	2.8	14
33	High-performance near-infrared Schottky-photodetector based graphene/ln ₂ S ₃ van der Waals heterostructures. RSC Advances, 2020, 10, 23662-23667.	1.7	14
34	Largeâ€6cale Ultrathin 2D Wideâ€Bandgap BiOBr Nanoflakes for Gateâ€Controlled Deepâ€Ultraviolet Phototransistors. Advanced Materials, 2020, 32, e1908242.	11.1	100
35	A self-powered photodetector based on two-dimensional boron nanosheets. Nanoscale, 2020, 12, 5313-5323.	2.8	60
36	Recent Progress of Heterojunction Ultraviolet Photodetectors: Materials, Integrations, and Applications. Advanced Functional Materials, 2020, 30, 1909909.	7.8	264

# 37	ARTICLE Atomically Thin Oxyhalide Solarâ€Blind Photodetectors. Small, 2020, 16, e2000228.	IF 5.2	Citations 31
38	Raman fingerprints and exciton-phonon coupling in 2D ternary layered semiconductor InSeBr. Applied Physics Letters, 2020, 116, 163105.	1.5	3
39	<scp>Waferâ€scale</scp> vertical van der <scp>Waals</scp> heterostructures. InformaÄnÃ-Materiály, 2021, 3, 3-21.	8.5	70
40	Atomically Thin Hexagonal Boron Nitride and Its Heterostructures. Advanced Materials, 2021, 33, e2000769.	11.1	71
41	A highly selective "turn-on―water-soluble fluorescent sensor for gallium ion detection. RSC Advances, 2021, 11, 19747-19754.	1.7	14
42	Synergistic Additiveâ€Assisted Growth of 2D Ternary In ₂ SnS ₄ with Giant Gateâ€Tunable Polarization‣ensitive Photoresponse. Small, 2021, 17, e2008078.	5.2	18
43	2D Siliconâ€Based Semiconductor Si ₂ Te ₃ toward Broadband Photodetection. Small, 2021, 17, e2006496.	5.2	19
44	Crossâ€Substitution Promoted Ultrawide Bandgap up to 4.5ÂeV in a 2D Semiconductor: Gallium Thiophosphate. Advanced Materials, 2021, 33, e2008761.	11.1	41
45	FePS ₃ Nanosheet-Based Photoelectrochemical-Type Photodetector with Superior Flexibility. Journal of Physical Chemistry C, 2021, 125, 9526-9533.	1.5	12
46	Oriented Growth of Inâ€Oxo Chain Based Metalâ€Porphyrin Framework Thin Film for Highâ€5ensitive Photodetector. Advanced Science, 2021, 8, 2100548.	5.6	23
47	Rapid production of mixed metal oxy-fluoride nanoplates as superior oxygen evolution electrocatalysts. Materials Letters, 2021, 291, 129530.	1.3	0
48	Selfâ€Powered MXene/GaN van der Waals Heterojunction Ultraviolet Photodiodes with Superhigh Efficiency and Stable Current Outputs. Advanced Materials, 2021, 33, e2101059.	11.1	302
49	Template Approach to Large-Area Non-layered Ga-Group Two-Dimensional Crystals from Printed Skin of Liquid Gallium. Chemistry of Materials, 2021, 33, 4568-4577.	3.2	33
50	NIRâ€II Responsive Inorganic 2D Nanomaterials for Cancer Photothermal Therapy: Recent Advances and Future Challenges. Advanced Functional Materials, 2021, 31, 2101625.	7.8	126
51	Multielement 2D layered material photodetectors. Nanotechnology, 2021, 32, 392001.	1.3	12
52	Wide Band Gap P ₃ S Monolayer with Anisotropic and Ultrahigh Carrier Mobility. Journal of Physical Chemistry Letters, 2021, 12, 8481-8488.	2.1	10
53	Binary-ternary transition metal chalcogenides interlayer coupling in van der Waals type-II heterostructure for visible-infrared photodetector with efficient suppression dark currents. Nano Research, 2022, 15, 2689-2696.	5.8	16
54	Silk fibroin protein as dual mode picric acid sensor and UV photoactive material. Journal of Materials Science, 0, , 1.	1.7	2

CITATION REPORT

#	Article	IF	CITATIONS
55	Ultra-broadband photodetection based on two-dimensional layered Ta2NiSe5 with strong anisotropy and high responsivity. Materials and Design, 2021, 208, 109894.	3.3	26
56	Robustness of Pentacene:MoS ₂ :ZnO Ternary Blend for Optoelectronic Devices. IEEE Transactions on Device and Materials Reliability, 2021, 21, 528-535.	1.5	1
57	Highâ€Performance Broadband Photodetectors of Heterogeneous 2D Inorganic Molecular Sb ₂ O ₃ /Monolayer MoS ₂ Crystals Grown via Chemical Vapor Deposition. Advanced Optical Materials, 2020, 8, 2000168.	3.6	17
58	Emerging 2D Organic-Inorganic Heterojunctions. Cell Reports Physical Science, 2020, 1, 100166.	2.8	23
59	Chemical Vapor Deposition-Grown Nonlayered α-MnTe Nanosheet for Photodetectors with Ultrahigh Responsivity and External Quantum Efficiency. Chemistry of Materials, 2021, 33, 338-346.	3.2	26
60	An isocamphanyl-based fluorescent "turn-on―probe for highly sensitive and selective detection of Ga ³⁺ and application <i>in vivo</i> and <i>in vitro</i> . Analyst, The, 2021, 146, 7294-7305.	1.7	4
61	High Breakdown Current Density in Quasi-1D van der Waals Layered Material Ta ₂ NiSe ₇ . ACS Applied Materials & Interfaces, 2021, 13, 52871-52879.	4.0	6
62	Epitaxial Growth of 2D Ultrathin Metastable γâ€Bi ₂ O ₃ Flakes for High Performance Ultraviolet Photodetection. Small, 2022, 18, e2104244.	5.2	24
63	Flexible, freestanding and lithiophilic Indium/MXene heterostructure enabling dendrite-free lithium metal anode in commercial carbonate-based electrolyte with high voltage cobalt-free LiNi0.5Mn1.5O4 cathode. Journal of Power Sources, 2022, 520, 230901.	4.0	14
64	Controlled growth of ultrathin ferromagnetic βâ€MnSe semiconductor. SmartMat, 2022, 3, 482-490.	6.4	7
65	Surface Engineering of Quantum Dots for Self-Powered Ultraviolet Photodetection and Information Encryption. Langmuir, 2022, 38, 2668-2676.	1.6	4
66	Ultrasensitive, Ultrafast, and Gate-Tunable Two-Dimensional Photodetectors in Ternary Rhombohedral ZnIn ₂ S ₄ for Optical Neural Networks. ACS Applied Materials & Interfaces, 2022, 14, 12571-12582.	4.0	18
68	Epitaxial Growth of 2D Ternary Copper–Indium–Selenide Nanoflakes for Highâ€Performance Nearâ€Infrared Photodetectors. Advanced Optical Materials, 0, , 2200033.	3.6	4
69	Flexible electronics and optoelectronics of 2D van der Waals materials. International Journal of Minerals, Metallurgy and Materials, 2022, 29, 671-690.	2.4	10
70	Waferâ€Scale InN/In ₂ S ₃ Core–Shell Nanorod Array for Ultrafast Selfâ€Powered Photodetection. Advanced Functional Materials, 2022, 32, .	7.8	18
71	A Submicrosecond-Response Ultraviolet–Visible–Near-Infrared Broadband Photodetector Based on 2D Tellurosilicate InSiTe ₃ . ACS Nano, 2022, 16, 7745-7754.	7.3	32
72	NiTe ₂ Nanosheets for Broadband Photodetection. ACS Applied Nano Materials, 2022, 5, 6094-6099.	2.4	6
73	Spin Ordering Induced Broadband Photodetection Based on Twoâ€Dimensional Magnetic Semiconductor <i>α</i> â€MnSe. Advanced Science, 2022, 9, .	5.6	9

CITATION REPORT

#	Article	IF	CITATIONS
74	High responsivity and flexible deep-UV phototransistor based on Ta-doped Î ² -Ga2O3. Npj Flexible Electronics, 2022, 6, .	5.1	28
75	Improved Polarization in the Sr ₆ Cd ₂ Sb ₆ O ₇ Se ₁₀ Oxyselenide through Design of Lateral Sublattices for Efficient Photoelectric Conversion. Angewandte Chemie - International Edition. 2022. 61	7.2	7
76	Improved Polarization in the Sr ₆ Cd ₂ Sb ₆ O ₇ Se ₁₀ Oxyselenide through Design of Lateral Sublattices for Efficient Photoelectric Conversion. Angewandte Chemie, 2022, 134, .	1.6	3
77	Ultrasensitive Solarâ€Blind Ultraviolet Photodetector Based on FePSe ₃ /MoS ₂ Heterostructure Response to 10.6ÂÂμm. Advanced Functional Materials, 2022, 32, .	7.8	24
78	Two-dimensional wide-bandgap GeSe ₂ vertical ultraviolet photodetectors with high responsivity and ultrafast response speed. Nanoscale Advances, 2022, 4, 5297-5303.	2.2	2
79	Phase Transformation and Tunable Optoelectrical Properties of Two-Dimensional Layered GaTe _{1–<i>x</i>} Se _{<i>x</i>} Crystals. ACS Applied Electronic Materials, 2022, 4, 5267-5276.	2.0	0
80	Lowâ€Symmetry 2D Perovskite CaNb ₂ O ₆ for Polarizationâ€Sensitive UV Photodetection. Advanced Optical Materials, 0, , 2201627.	3.6	1
81	Solvent-free fabrication of broadband WS ₂ photodetectors on paper. Opto-Electronic Advances, 2023, 6, 220101-220101.	6.4	4
82	2D SiP ₂ /h-BN for a Gate-Controlled Phototransistor with Ultrahigh Sensitivity. ACS Applied Materials & Interfaces, 2023, 15, 15810-15818.	4.0	6
83	A high-performance UV photodetector with superior responsivity enabled by a synergistic photo/thermal enhancement of localized surface plasmon resonance. Journal of Materials Chemistry C, 2023, 11, 6227-6238.	2.7	1
84	Low-dimensional wide-bandgap semiconductors for UV photodetectors. Nature Reviews Materials, 2023, 8, 587-603.	23.3	124